
Volume 14 Number 1 1986 Nucleic Acids Research

Data structures for DNA sequence manipulation

Charles B.Lawrence

Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030,
USA

Received 6 June 1985

ABSTRACT
Two data structtires designated Fragment and Construct are described. The

'Fragment data structure defines a continuous nucleic acid sequence from a
unique genetic origin. The Construct defines a continuous sequence composed
of sequences from multiple genetic origins. These data structures are mani-
pulated by a set of software tools to simulate the construction of mosaic
recombinant DNA molecules. They are also tsed as an interface between
sequence data banks and analytical programs.

IWTROIWJCTION

The recent availability of up-to-date compilations of nucleic acid

sequences such as the GenBank (7) nucleic acid sequence data bank is of

substantial benefit to the molecular biologist wishing to compare a gene

sequence of interest with other known sequences and to the genetic engineer

wishing to create chimeric recombinant DNA molecules in the laboratory having

predictable properties. For the comparison or analyis of gene sequences,

efficient methods are required to extract sequences of interest from the

sequence data banks for use by analytical programs. For genetic engineering

purposes, it is necessary to be able to locate a region of a sequence which

will be used in a genetic construction (a restriction endonuclease fragment,

for example) and join that region to other sequences used in the construc-

tion. At the same time it is useful to be able to keep track of the various

genetic elements used in a complex genetic construction.

There have been several approaches taken to the problem of manipulating

gene sequences in computer programs. One solution is the definition of a

specific language which is used to specify the portion of a gene sequence to

* The software tools described in this paper will be available as part of a
general purpose sequence analysis package as of July, 1986. The package will
cost $600 (non-profit) or $1800 (commercial). Contact Charles Lawrence, Dept.
of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX,
77030, (713) 799-6226.

t I RL Press Limited, Oxford, England. 205

Nucleic Acids Research

be used or analyzed. Genglish (1) is an English-like language designed for

use by genetic enginering researchers and serves as a user-interface to a

knowledge base for molectular genetics. Delila (2) is a language designed for

the manipulation of sequences in a specifically formatted data base called a

library. In this case, the structure of the data base itself is the under-

lying data structure for the representation of sequences. DNA* (3) is another

example of a language designed specifically for the manipulation of gene

sequences. Another approach is the development of specialized prograrms for

the simulation of the construction of recombinant DNA molecules. Programs

such as KLONER (4), MATILDA (5) and a system based on SAS (statistical

Analysis System) (6) can be used to simulate genetic construction by manipu-

lating representations of restriction endonuclease fragments. However, these

programs do not have a direct method of converting the recombinant construc-

tions to the actual nucleotide sequence they represent.

This paper describes data structures which can serve as the basis for a

flexible system to interface sequence data banks with analytical programs and

for the efficient simulation of recombinant DNA constructions. The data

structures are a representation of molecules of DNA as viewed by the molecular

biologist and can be thought of as objects which can be manipulated in soft-

ware in a manner analagous to operations performed on DNA molecules in the

laboratory. These have been implemented with a series of software tools for

sequence manipulation, but could be used as the underlying data structures for

an interpreted language such as those described above.

The Use of an Abstract Data Structure to Represent Nucleic Acid Sequences

To develop an efficient method to manioulate nucleic acid sequences, it

was necessary to define an abstract data structure which represents the pro-

perties of a gene sequence which are of importance to the molecular biologist
or genetic engineer. For example, information about the structture of the ends

of a molecule of DNA is important in determining its properties in a ligation

reaction. Appropriately organized information ahouit a DNA molecule will allow

programs to perform operations on the data structures which mimic procedures

used by the scientist in the laboratory. Two data structures were defined to

accomplish this. The Fragmet data structure is used to precisely define a

continuous nucleic acid sequence from a unique genetic origin. It can repre-

sent any subsection of a specific sequence in any of its possible orientations

and retains the information which relates the sequence to its exact genetic

origin through subsequent manipulations. A second data structure called

206

Nucleic Acids Research

Construct consists of one or more Fragments linked together to represent a

continuous nucleic acid sequence composed of sub-sequences of different

genetic origins. The value of the Construct data structure is the ability to

manipulate a complex mosaic sequence as a single molecule, yet retain the

information which precisely defines the genetic origin of all of its sub-

sequences (which are defined by the component Fragment data structures).

The Fragment data structure

programming language:

typedef struct {
char frg_name[161;
char const_name(16];
char *seq;

Specification specs;

Frag_end I_end;
Frag_end r_end;
Bank_specs bspecs;

Fragment *next;
} Fragment;

is defined below as a structure in the 'C'

/* name of Fragment */
/* name of construct containing Fragment */
/* points to string representing Fragment

sequence */
/* information relating Fragment to its

parent sequence */
/* describes left end of Fragment */
/* describes right end of Fragment */
/* describes data bank from which Fragment

sequence originated */
/* used to form linked list of Fragments *1

The structure contains members which specify a name for the Fragment, a name

for the Construct of which it is a component (if any), a pointer to a string

which represents the actual sequence, a pointer to another Fragment data

structure which is used to form a linked list, and four other structures.

These other structures contain information which specify the relationship of

the Fragment sequence to its parent (Specification), the nature of the ends of

the Fragment (Frag_end) and information about the data bank (if any) from

which the Fragment sequence was obtained (Bank_specs).
The Specification structure relates the Fragment sequence to its parent

sequence and is defined below:

typedef struct {
long start; /* position of first base in Fragment

long stop;

char dir;

char comp;

long f_len;
long p_len;
char typel4];
I Specification;

relative to parent sequence */
/* position of last base in Fragment

relative to parent sequence */
/* (0 or 1) if true, Fragment is in same

orientation as parent sequence */
/* (0 or 1) if true, Fragment sequence is

the complement of the parent sequence */
/* number of bases in Fragment sequence */
/* number of bases in parent sequence */
/* "DNA" or "RNA" */

Fragment sequences are often sub-sequences of a longer parent sequence (a
sequence from the GenBank database, for example) or a transformation of a

207

Nucleic Acids Research

parent sequence, such as its reverse-complement. The Specification structure

members contain information that precisely defines the relationship of the

sequence represented by the Fragment to its parent sequence. This information

includes the position of the first and last bases in the Fragment relative to

the parent (start, stop), its orientation (dir), and whether it is the

sequence complement of the parent (comp).

The Frag_end structure describes one end (left or right) of a Fragment as

seen by the genetic engineer:

typedef struct {
int oh_len; /* length and type of overhanging end (if

any) positive = 5'-overhang; negative =
3'-overhang */

char oh_seq[81; /* sequence of overhanging nucleotides */
char enzf 161; /* name of endonuclease generating end */
char lig; /* (O or 1) if true, Fragment end is ligated

to next Fragment in linked list */
} Frag_end;

The members of this structure specify the type and length oF the overhanging

end (oh_len), the actual sequence in the overhang (oh_seq), the enzyme that

was used to generate the end (enz) and whether the end has been ligated to an

adjacent Fragment to form a Construct (lig).
The Bank specs structure members describe the sequence data bank (if any)

from which the parent sequence was derived:

typedef struct {
char entryl16J; /* code name of data bank entry for parent

sequence */
char accr81; /* accession # of bank entry *1
char b namer121; /* name of bank containing parent sequence

(mammalian, viral, etc.) */
int release; /* release number of bank */
int format; /* indicates format of file containing par-

ent sequence (i.e. I is GenBank format */
} Bank specs;

This structure includes the entry name of the sequence (all), its accession

number (acc), the name of the bank (b name; mammal, viral, etc.), the release

number of the bank (release) and a code indicating the type of format of the

sequence data bank file (format; for example, the integer value 1 indicates

that the file is in GenBank format). A value of zero for the format member

indicates that the seqtuence represented by the Fragment did not originate froin

a data bank file but an unformatted text file.

Fragment structures are chained together in a linked-list for use in

programs by using the next member of the structure to point to next Fragment

in the list. The last structure points to the first structujre in the list to

208

Nucleic Acids Research

make a circular list. Programs operate on a group of Fragments defined in the

linked list.

The seq member of the Fragment structure points to a string containing

the sequence represented by the Fragment. If the Fragment represents double-

stranded DNA with overhanging ends, all nucleotides including those in the

overhangs are included in the sequence. Memory to hold the sequence is always

allocated dynamically using information in the Sepcification member to cal-

culate the amount of space needed to hola the sequence. This allows the

Fragment to specify a sequence of any length without wasting memory.

A Construct is defined as one or more adjacent Fragments in a linked-list

whose ends have been "ligated" by setting the Ilg member of the associated

Frag_end struicture to true. Fragment ends must be compatible for ligation in

the biochemical sense in order to be ligated to form a Construct. Constructs

allow defined genetic sequences from diverse origins to be joined and treated

as a single molecule of DNA while retaining all the information pertaining to

the origin of its components. Thus, Constructs can be used to represent

complex recombinant DNA molecules, or the sequence of a mRNA molecule for a

gene having several exons. In the latter case, individual Fragments are used

to represent each exon from the complete sequence of the natural gene. A

single linked-list can represenw either a group of Constructs which specify a

collection of sequences such as a group of actin mRNAs from different species

or possibly a single recombinant molecule which can either be a linear or

circular molecule (by ligating the left end of the first Fragment and right
end of the last Fragment in the linked-list). Fragments can also be used to

represent linkers, adapters and oligonuclez3tides which are tused in genetic

constructions. Thus, complex constructions can be precisely specified.

Creation and Storage of Fragmet Definitions

Fragments can be created by two different methods. The simplest method

is to "excise" a Fragment from a sequence data bank. In our implementation,

an interactivie program called EXC (excise) is used to create Fragment

definitions from seqtuences in the GenBank sequence data bank. The user

spectfies the sequence entry name, the position of the first base in the

Fragment relative to the first base in the data bank sequence, the position of

the last base in the Fragment relative to the last base in the data bank

sequience, and whether or not the reverse-complement of the data bank sequence

is desired. EXC then locates the desired sequence in the sequence data bank,

allocates space for the Fragment structure, fills in the specifications which

209

Nucleic Acids Research

define the Fragment, writes the Fragment definition out to a file (see below)

and prompts for the excision of another Fragment. It is important to note

that the Fragment structture is not dependent at all on the format of

information in a sequence data bank file and can be uised to represent in a

uniform manner sequences stored in databanks with different internal formats.

A second method to create Fragments is used for the conversion of

sequences that are not included in a formatted data hank. A raw' sequence

can be entered into a file with a text editor in free format. A utility named

RAW2FRG is then used to convert the raw sequience into a Fragment definition

and to save it in a file.

Fragment definitions are saved as formatted text in a file that has an

frg extension. A group of any number of Fragments can be saved in a single

file. A library function, putfrgso, is used to write all the Fragment

definitions in a linked-list of Fragments to a frg file. The complementary

function, loadfrgso, loads Fragment definitions stored in a frg file into a

circular linked-list of Fragments. Space is allocated dynamically for the

necessary Fragment structures as they are loaded, so that the number of

Fragments that can be used by a program is limited only by the memory

available to that process.

Manipulation of Constructs

We have implemented several utilities for the manipulation of

Construicts. These utilities operate on Construicts as a funcitonal unit rather

than individual Fragments because the Construct is used to represent a single

molecule of DNA (with multiple genetic components). The utilities listed in

Table I mimic operations performed on DNA molecules in the laboratory and can

therefore be used to simulate the construction of recombinant DNA molecujles.

All utilities modify Construct definitions to reflect the biochemical modifi-

cations which would result if the operations they represent were performed in

the test tube. For example, TRM (trim) and FLN (fill in) alter the Frag_end,

seq and Specification members of Constructs as if their overhang ends had been

trimmed with an exonuclease or filled in with a polymerase to produce blunt

ends. Combined wtih the ability to rapidly excise any portion of any sequience
in the sequence data banks, these tools provide a convenient and powerful

means of simulating genetic constructions and preparing n'icleotide sequences

for use by analytical programs.

Two key programs in this set of uitilities are LIG and CUT. LIG is used

to ligate two Fragment ends together to form a Construct. CUT is used to

210

Nucleic Acids Research

TABLE I

SOFTWARE TOOLS FOR MANIPULATING FRAGMENTS AND CDNSTRUCTS

generate from one Construct (consisting of one or more Fragments) the set of

Constructs which would result if the DNA sequence represented by the original

Construct was cllt by one or more restriction endonucleases specified by the

user. CUT recognizes all internal restriction endonuclease sites as well as

the sites at all boundaries of ligated Fragments, thus It is able to correctly

recognize all sites in a linked-list representing a covalent circle of DNA.

CUT makes use of a data structure called Endo to represent the

recognittion and cutting sites for specific endonucleases:

typedef struct {
char name[241;
char pattern[241;
char sym;

int oh_size;

/* name of endonticlease */
/* recognition sequence for enzyme */
/* (O or 1) if true, recognition site is

symmetrical */
/* length and type of overhang left by

endonuclease cut */

EXC - Excise a Fragment from the nucleic acid sequlence
data bank

RAW2FRG - Convert a sequence in a text file to a Fragment

LIG - Ligate Fragment ends to make Constructs

RC - Reverse-complement a Construct

REV - Reverse a Construct

CMP - Comolement a Construct

TRM - Trim overhanging ends of a Construct

FLN - Fill in overhanging ends of a Construct

PUR - Purify a Construct from a group of Constructs

NSRT - Insert a Construct into a group of Constructs

DLT - Delete a Construict from a group of Constructs

BRKFRG - Break a Fragment at a specific point; creates new
Fragments

LINKFRG - Merge two Fragments to create a Construct (used for
assembling sequences)

LSTFRG - List Fragments and Constructs in a frg file

211

Nucleic Acids Research

int to end; /* number of bases past start of recognition
site to the end of the fragment on the
5'-side of the cut */

lnt to_next; /* number of bases past start of recognition
site to the end of the fragment on the
3'-side of the cut */

Endo *next; /* used to form linked list of Endo
structures */

} Endo;

The pattern member of the structure is used by a general purpose pattern

finding function to find alt occurences of the pattern in a Construct

sequence. The to end and to next members specifiy exactly where the cuts

occur relative to the start of the pattern and this information is used to

generate the new Fragment structures representing the cut Construct (Figure

1). The sys member is used to determine if the reverse-complement of the

sequence should be searched for recognition sequences which aren't

symmetrical.

!pay-ofrd!!nsadncts
Fragment definitions contain a great deal of information related to a

sequence, much of which is housekeeping data for the manipulation utilities.

To make the sequence represented by a Fragment or Construct comprehensible to

the user, a simple text representation was devised. This is used to display

the contents of a linked-list of Fragments being used in a program or to show

the contents of a frg file. The output of a utility called LSTFRG (list

Start of
recognition pattern

-to next 8 1

5' - N N N N N N G 'A A T T C N N N N N N - 3'

3' - N N N N N N C T T A A G N N N N N N - 5'

to end -- 4

Figure 1. Relationship of Endo structure members to the recognition site
for the restriction endonucleases EcoRl. The to end member is the number of
bases from the start of the recognition site pattern to the last base (includ-
ing overhang) of the DNA on the 5'-side of the cut (represented by the dashed
line). The to_ext member is the number of bases from the start of the
recognition pattern to the first base of the DNA on the 3'-side of the cut.

212

Nucleic Acids Research

fragments) which displays the contents of a frg file as Constructs is shown

here:

Construct #1: [655 bases]
5'-AVAII-(#2014)+++++SV40+++++(#2668)-HPAI-3' [655 bases]

Construct #2: [655 bases]
5'-HPAI-(#2668)-----SV40---(#2014)-AVAII-3' [655 bases]

Construct #3: [626 bases]
5'-AVAII-(#5119)+++++SV40+++++(#5243)-f-3' [125 bases]
-5 ' - |-(#ffl1) +++++SV40+++++(#5WS0 1)-sIPAI-3 ' [501 bases]

Illustrated are three constructs derived from cutting (with the program CUT) a

construct representing the SV40 genome with the enzymes AvalI and Hpal. The

first Construct has a left end generated by AvaIl (the 5'-nucleotide of the

overhanging end is position 2014 in the parent sequence - the SV40 sequence

from GenBank), and a right end generated by Hpal (the 3'-nucleotide is

position 2668 in the parent). The "*++++" strings indicate that the sequience

positions represented by the Fragment increases from 2014 to 2668. Construct

2 is the reverse-complement of Construct 1. Note that the "- " string

idicates that positions decrease from 2668 to 2014 in this construct.

Construct 3 represents two ligated Fragments. Ligation is indicated by the

two tildes on the right end of the first Fragment and left end of the

second. This construct spans the ends of the SV40 sequence (positions 5243

and 1) as it is provided in GenBank illustrating the use of a construct to

represent continuious sequences composed of multiple discrete genetic elements.

Such a display shows very concisely the contents of a group of Constructs

and emphasizes the notion that Constructs represent discrete objects which can

be manipulated. Our experience has been that users become comfortable with

this concept quite readily because of its analogy to the work they perform
with DNA molecules in the laboratory.

The Use of Constructs in a Program

The use of Constructs to represent complex sequences provides a conven-

tional method for interfacing sequences in a sequience data bank with

analytical programs. A typical analysis would involve excising desired

Fragments from the data bank with EXC followed by any necessary modification

with the utilities in Table I. Analytical programs can then use frg files

directly as input to specify the sequence to be analyzed.

213

Nucleic Acids Research

The following listing illustrates the use of Construicts in a prograin

written in 'C':

/* program produces formatted output of the sequence represented by
Constructs in the "frg" file specified on the command line */

#include <stdio.h>

#include <fragment.h> /* defines data structures */

main(argc,argv)
int argc;
char **argv;
{

char fname[32];; /* file name *1
char *seq; /* pointer to sequence */
Fragment *first; /* pointer to first strtuctture in list */
Fragment *cstp; /* pointer to first Fragment in various

Constructs */
char *getcstseqo;
Fragment *loadfrgso;

strcpy(fname,argvfl[);
/* get "frg" file name from command line */

first = cstp = loadfrgs(fname);
/* loadfrgs() returns pointer to first Fragment in circular lnked-
list of Fragments stored in file "fname" */

do { /* loop through Constructs */

seq = getcstseq(cstp);
/* getcstseq() allocates space for and returns a pointer to the
sequence defined by the construct pointed to by "cstp" *1

format(seq);
/* produce formatted display of sequence pointed to by "seq" *

free(seq); /* free space allocated by getcstseq()*o
cstp = nxtcst(sctp);
/* nxtcst() returns a pointer to the first Fragment in the next
construct in the linked-list */

} /* end do*/

while (cstp != first);
/* test to see if all have been formatted */

} /* end main */

This example shows the ease with which Constructs are used to represent

sequences in analytical programs. The function loadfrgs() loads the Fragment

definitions stored in a frg file into a linked-list. The function getcstseq()

(get construct seqtuence) takes care of the details of putting together the

214

Nucleic Acids Research

Construct sequence composed of an arbitrarily complex collection of ligated

Fragments. The function format() is a general purpose routine for producing

formatted output of Construct sequences. The function nxtcst() (next

construct) finds the next construct in the linked-list. These functions are

stored in a common library for use by a number of different programs.

Sumary

Two data structures have been developed to represent DNA sequences that

can he manipulated by computer programs in a manner similar to the way that

DNA molecules are manipulated in the laboratory for genetic engineering

experiments. This has proven to be an effective means of simulating the

construction of recombinant DNA molecules as well as providing a convenient

interface between nucletc acid sequence data banks and analytical programs.

The underlying data structures and functions used to operate on them are quite

flexible and could serve as a basis for developing efficient user interfaces

for the manipulation and analysis of sequences. For example, they could

easily be integrated with a system which provides a bit-mapped graphics

display and a mouse pointing device to create an interface where the user

controls the analysis of sequences simply by pointing to various items and

menus on the terminal display: or they could be tised as the underlying data

structure for an interpreted langtuage for sequence manipulation such as

DNA*(3).

The software tools described here are part of a general purpose sequence

analysis package which is written in 'C' for processors running the UNIX

4.2bsd operating system.

ACKNOWLEDGEMENTS

The author would like to thank Michelle Browner for helpful feedback

during the implementation of the data structures and software tools and for

constructive criticism of the manuscript; and Steve Delaune for typing the

manuscript. This work was supported by NIH grant AI 19578 to the author.

REFERENCES

1. Friedland, P., Kedes, L., Brutlag, D., Iwasaki, Y. and Bach, R. 1982.
Nucl. Acids Res. 10,323-340.

2. Schneider, T.D., Stormo, G.D., Haemer, J.S. and Gold, L. (1982). Nucl.
Acids Res. 10,3013-3024.

3. Schroeder, J.L. and Blattner, F.R. 1982. Nucl. Acids Res. 10,69-84.

215

Nucleic Acids Research

4. Caron, P.R. 1984. Nucl. Acids Res. 12,731-737.
5. Shalloway, D. and Deering, N.R. 1984. Nucl. Acids Res. 12,739-750.
6. Engel, L.W. 1985. Bio/Technology 3,329-335.
7. GenBank is a registered trademark oF the Department of Health and Human

Services.

216

