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Abstract
Fragile X syndrome (FXS) is a common form of mental disability and one of the known causes of
autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeats
which leads to DNA methylation of the fragile X mental retardation gene 1 (FMR1) and
transcriptional silencing, resulting in the absence of fragile X mental retardation protein (FMRP),
an mRNA binding protein. Although it is widely known that FMRP is critical for metabotropic
glutamate receptor (mGluR)-dependent long-term depression (LTD), which has provided a general
theme for developing pharmacological drugs for FXS, specific downstream targets of FMRP may
also be of therapeutic value. Since alterations in potassium channel expression level or activity
could underlie neuronal network defects in FXS, here we describe recent findings on how these
channels might be altered in mouse models of FXS and the possible therapeutic avenues for
treating FXS.
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Introduction
Fragile X syndrome (FXS), with an incidence of 1 in 5,000 males [1], causes mild to severe
mental disability, often accompanied by autism-like behaviors, developmental delay,
increased susceptibility to seizures, and macroorchidism in males [2]. A key advance for
understanding FXS was the cloning of the fragile X mental retardation gene 1 (FMR1) [3*]
located at Xq27.3, the diagnostic fragile site on the X chromosome [4], and the generation of
the fmr1 knockout (KO) mouse line [5*]. In affected individuals, expansion of a CGG repeat
(>200) located in the 5’ untranslated region (UTR) of FMR1 [6] leads to hypermethylation
of both the CGG repeats and the FMR1 promoter, transcriptional silencing, and loss of its
protein product fragile X mental retardation protein (FMRP) [7, 8]. In addition, a small
number of deletions and missense mutations in the FMR1 gene have been linked to FXS
[9-11]. Multiple symptoms seen in FXS patients, including the altered spine morphology
[12-14], are recapitulated in fmr1 KO mice [15, 16], which also display compromised
learning, abnormal behavior and altered synaptic plasticity [17]. The fmr1 KO mouse is
therefore a useful system for mechanistic studies of FXS.
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FMRP is ubiquitously expressed in mammalian tissues [18], and its abundance in the brain
and testes is consistent with FXS symptoms [18, 19]. FMRP is expressed primarily in
neurons in the brain [18] and can bind target mRNAs directly or indirectly [20]. FMRP has
multiple RNA-binding motifs including two K homology domains (KH1 and KH2) and the
arginine-glycine-glycine (RGG) box [21**], whose affinity for certain mRNAs may be
regulated by the methylation status of the arginines in the RGG box [22]. In addition to these
conserved domains, other regions of FMRP have also been implicated in protein-protein
interactions that are important for its function [21**].

Multiple U-rich pentamers reside in both the coding region and 3’UTR of some FMRP
target mRNAs [23], and a U-rich region in the 5’UTR of hASH1 also binds FMRP [24]. The
C-terminal RGG box recognizes the G quadruplex [25**, 26] likely present in targets such
as the FMRP, MAP1b, and Sema3F mRNAs [21**]. Another secondary structure known as
the kissing complex binds the KH2 domain in vitro [27]. Moreover, FMRP also binds to the
superoxide dismutase 1 (Sod1) mRNA through a novel RNA structure termed Sod1 stem
loops interacting with FMRP (SoSLIP) [28], which interacts with the RGG box-containing
C-terminal domain and competes with G quadruplex for FMRP binding [28].

The dense and immature dendritic spines associated with FXS [12-14] indicate that FMRP
regulates dendritic development and function. Because FMRP is localized to dendrites and
spines, it could regulate local protein synthesis to modulate spine development and synaptic
plasticity [20]. Indeed, many of the FMRP target mRNAs localize to dendrites [21**], and
FMRP may regulate mRNA localization [29], stability [30], or translation [31, 32] in central
neurons [33, 34].

FMRP inhibits translation of most of its target mRNAs, which has been demonstrated in
rabbit reticulocyte lysate [35], in Xenopus laevis oocytes [36] and in immortalized cells
from an fmr1 KO mouse [37]. In addition, brains and synaptosomes from fmr1 KO mice
have an overabundance of FMRP targets such as Map1b, Arc, and CamKIIα [38, 32], and
they have the CamKIIα, PSD-95, and GluR1/2 mRNAs shifted to actively translating
polyribosomes [31]. Surprisingly, FMRP seems to upregulate the translation of Sod1 mRNA
by strengthening SoSLIP’s ability to activate translation [28]. Thus far, only a small number
of mRNAs have been verified as FMRP targets [21**], while the molecular mechanisms for
FMRP regulation of translation remain to be elucidated.

FMRP repression of its targets may be relieved to mediate dynamic regulation – a process
that may involve phosphorylation regulation of FMRP [39-41], which contains a highly
conserved serine (human Ser500, murine Ser499, Drosophila Ser406) that is phosphorylated
[39] to enable FMRP repression of translation [39, 42*, 43**]. Phosphorylated FMRP is
associated with stalled ribosomes, whereas unphosphorylated FMRP allows ribosomes to
proceed with translation [39], and may also associate with Dicer [44].

Targeted treatments for neurodevelopmental disorders such as FXS have become a feasible
therapeutic strategy following the development of appropriate animal models [45**, 46**],
such as the fmr1 KO mice. Recent studies of FXS have opened new avenues of investigation
leading to the rational design of potential therapeutics for FXS. Besides FMRP, the
metabotropic glutamate receptor 5 (mGluR5) signaling pathway may provide a target for the
treatment of FXS. Recent studies have also implicated abnormal potassium channel activity
in FXS, which will be discussed later in this review. Hence, mGluR5 and potassium
channels have emerged as targets for developing novel therapeutic reagents for FXS.
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Current strategy for targeted treatment based on the mGluR theory
Because group I mGluR-dependent long-term depression (mGluR-LTD) is a major form of
synaptic plasticity involving synaptic regulation of local protein synthesis of dendritically
localized mRNAs, mGluR-LTD and the antagonistic regulation by FMRP have been studied
extensively. Given that mGluR-LTD is enhanced in the hippocampus of fmr1 KO mice
[47**, 48], Huber et al. [47**] proposed that FMRP limits LTD by inhibiting mGluR-
dependent translation of dendritic mRNAs encoding the hypothetical “LTD protein(s)”, so
that FMRP synthesis induced by mGluR5 would provide a brake to prevent runaway
synaptic protein synthesis. The increase in cerebral protein synthesis in fmr1 KO mice [49,
50*] may lead to the internalization of α-amino-3-hydroxyl-4-isoxazole propionic acid
receptors (AMPAR), a key step in mGluR-LTD [51**, 52**]. In addition,
dephosphorylation of FMRP following mGluR activation correlates with the release of
translational inhibition of FMRP target mRNAs [40, 42*], with protein phosphatase 2A
(PP2A) and ribosomal protein S6 kinase 1 (S6K1) as the primary phosphatase and kinase
[40, 41]. Both the persistently enhanced mGluR-LTD and the inability of synaptic inputs to
further increase protein synthesis uncovered in these studies are likely culprits in FXS,
possibly involving FMRP targets such as MAP1b, eEF1A, Arc, CaMKIIα, PSD-95,
SAPAP3, and APP [33, 53, 21**].

The hypothesis that overactive mGluR5 functions mediate many of the symptoms of fragile
X suggests that mGluR5 antagonism may be a plausible therapeutic strategy for the disease.
2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent negative allosteric modulator of
mGluR5 [54] that crosses the blood-brain barrier, can rescue behavioral and cognitive
deficits in mouse models of FXS [55*, 56*]. Acute administration of MPEP reduces
audiogenic seizures and the abnormal response of fmr1 KO mice in an open field test of
anxiety-like phenotypes [55*]. MPEP also rescues other deficits including AMPAR
internalization defects [57], prolonged epileptiform discharges in hippocampal slices [58],
deficits in prepulse inhibition of startle [56*], decreased mRNA granule expression [59],
excess protein synthesis in hippocampal slices [60], increased density of dendritic filopodia
in hippocampal cultures [56*], and hyperactivity of glycogen synthase kinase-3 [61]. These
studies have prompted development of novel therapeutic interventions; several clinical trials
of drugs that target the mGluR pathway are currently underway [45**, 46**].

As a crucial validation of the mGluR theory, genetic reduction of mGluR5 in fmr1 KO mice
rescues many of the disease-related phenotypes [50*, 62], but not macroorchidism [50*],
and provides compelling evidence that manipulating mGluR5 signaling can reverse fragile
X–related phenotypes across species. This indicates that mGluR5 is a viable target for the
treatment of FXS.

MPEP can rescue several major defects of fmr1 KO mice, but not the deficit in long-term
potentiation (LTP), a cellular correlate for learning and memory. While fmr1 KO mice
display LTP deficits in various brain regions including the hippocampus [63*, 64*, 65], in
the few brain areas surveyed thus far MPEP fails to correct the deficit in LTP [66, 67]. This
indicates that not all synaptic defects may be amenable to group I mGluR-targeted
intervention [46**]. Moreover, some of the proposed FMRP target proteins such as PSD95
do not show the expected basal upregulation in fmr1 KO mice [30]. Given that there are
limitations of the current attempts in FXS treatment, it is important to extend our
understanding of FMRP functions beyond those that involve mGluR signaling, and to
explore other therapeutic avenues.
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The search for additional strategies for targeted treatment
Identification of potassium channels as FMRP targets

FMRP binds ~4% of the mRNA in the mammalian brain [68*]. Over 400 putative mRNAs
are found to associate with FMRP using various methods [69**, 70, 71], although fewer
than 20 of these have been validated biochemically [21**]. A recent study used high-
throughput sequencing of RNAs isolated through cross-linking immunoprecipitation (HITS-
CLIP) has identified FMRP target mRNAs in neurons [72**], providing evidence
supporting the notion that FMRP causes ribosomes to stall during the elongation phase of
translation [72**]. Another approach towards an understanding of FMRP function has been
the search for proteins that interact directly with FMRP or that are components of the
FMRP-containing mRNP complex. Several proteins such as FXR1P, FXR2P, 82-FIP,
NUFIP1, CYFIP1 and CYFIP2 have been characterized as FMRP interacting proteins to
date [73]. Strikingly, these various approaches also identified several potassium channel
mRNAs as well as a potassium channel protein as FMRP targets, as detailed below.

There are many different potassium channels in the nervous system including inward
rectifier and leak potassium channels that control the resting membrane potential [74, 75],
and voltage-gated potassium channels that regulate the action potential waveform [76].
Potassium channels have to be at the right place in the right number to endow individual
neurons with their specific character. Their biophysical properties together with their spatial
distribution define the signaling characteristics of a neuron.

Mouse models of FXS show defects in three kinds of potassium channels, the Na+-activated
K+ channel (KNa) Slack-B [77**], and the voltage-gated K+ channels Kv3.1b [78**] and
Kv4.2 [43**]. FMRP binds the mRNAs for Kv3.1b and Kv4.2, and also interacts directly
with the Slack-B protein to modulate its activity in heterologous expression systems [77**,
78**, 43**] (Figure 1). We will discuss how these channels might be altered in fmr1 KO
mice.

The Slack Potassium Channel as a Therapeutic Target for FXS in the Auditory System
Individuals with FXS have a range of perceptual deficits in processing auditory stimuli, and
may be particularly sensitive to loud sounds [79]; they also have fluctuations in their speech
pattern [80]. These symptoms interfere with brain functions such as attention, learning,
language development, and social interactions. The integrity of neuronal encoding and
processing of sensory inputs depends on ion channels that regulate the action potential
waveform and firing pattern, such as Slack-B that has a large cytoplasmic C-terminal
domain [81] and is widely expressed in the brain [81].

A recent study has found that FMRP directly binds to the C-terminus of the Slack-B channel
protein and causes a several-fold activation of Slack-B channel activity by increasing
channel openings (77**), thus providing the first example for direct binding of FMRP to a
membrane protein (Figure 1a). Moreover, Slack potassium currents in the medial nucleus of
the trapezoid body (MNTB) of the auditory brainstem are reduced by about 50% in fmr1 KO
mice (Figure 1a). Slack is required for accurate timing of action potentials of these central
auditory neurons in response to synaptic stimuli [82]. Defects with this potassium channel
function may contribute to the difficulty of some FXS patients to adapt to the ambient
auditory environment [83]. Slack activators may thus be considered as novel therapeutic
agents that could act either independently or in concert with agents that affect group I
mGluRs, which may in turn regulate Slack channels [84].
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Alteration in Kv3.1 Levels in Auditory Brainstem Nuclei of fmr1 KO Mice
Studies have shown that fmr1 KO mice exhibit abnormal sensitivity to auditory stimuli
including hyper reactivity and the induction of audiogenic seizures [50*, 55*]. While
audiogenic seizures have not been reported in Fragile X patients, the onset and manifestation
of autistic behavior in these individuals correlates with auditory hypersensitivity [2, 17].
Audiogenic seizures are thought to arise from increased excitation in auditory nuclei rather
than an overall increase in brain excitability. Kv3.1 channels are at particularly high levels
in neurons of auditory nuclei [85] and their fast gating kinetics permits neurons to fire
prolonged trains of action potentials at very high frequencies with little adaptation [86].

Kv3.1 mRNA has been identified [25**] and validated [78**] as a binding target for FMRP.
The physiological role of Kv3.1 channels is to allow specific types of neurons to fire at very
high rates [83], which helps in decoding loud and diverse sounds. Moreover, the faithful
delivery of all sound frequencies is dependent on a precise tonotopic gradient of Kv3.1b
splice isoform expression within MNTB of the auditory brainstem; Kv3.1b levels are highest
at the medial end, which corresponds to high auditory frequencies [83]. Disruption of this
auditory space code, or map, due to the Kv3.1b mysregulation would be expected to
interfere with auditory processing in auditory nuclei of the brain stem and in the auditory
cortex.

To explore the regulation of the Kv3.1b by FMRP, Strumbos et al. [78**] investigated
Kv3.1b immunoreactivity and potassium currents in the auditory brainstem sound
localization circuit of male mice by exposing animals to high-frequency, amplitude-
modulated sound stimuli, which elicit predictable and stereotyped patterns of input to the
anterior ventral cochlear nucleus (AVCN) and MNTB. While wild-type (WT) animals show
a tonotopic gradient with Kv3.1b expression in the MNTB, fmr1 KO mice display
dramatically flattened gradients in tonotopicity as shown by the Kv3.1b immunoreactivity
and K+ currents at the basal condition (Figure 1b). Moreover, after 30 min of acoustic
stimulation, the levels of Kv3.1b immunoreactivity were significantly elevated in both the
MNTB and AVCN of WT, but not fmr1 KO mice. This finding suggests that auditory
neurons are likely to be hyperexcitable in FXS individuals and also suggests that FMRP is
necessary for maintaining the gradient of Kv3.1b protein levels across the tonotopic axis of
the MNTB, consistent with a role for FMRP as a repressor of protein translation. It will be
important to determine the basis for the FMRP-dependent dysregulation of Kv3.1b
translation in fmr1 KO mice; these future investigations may provide clues to novel
approaches towards therapeutic interventions.

Rescue of LTP deficits in the hippocampus from fmr1 KO mice by a Kv4 channel blocker
As mentioned earlier, deficits in LTP have been reported in the fmr1 KO mice [63*, 64*,
65], however MPEP fails to correct this deficit in LTP [66, 67, 46**]. The levels of Kv4.2
that generate the A-type K+ currents (IA) on the dendritic membrane are critical for synaptic
plasticity [87]; loss of Kv4.2 function causes enhanced induction of LTP in hippocampal
CA1 pyramidal neurons [88], while increasing Kv4.2 expression abolishes the ability to
induce LTP [89*].

Kv4.2 mRNA has been identified and validated as a binding target for FMRP [43**, 72**].
Kv4.2 is the most abundant isoform of dendritic voltage-gated A-type K+ channel in CA1
pyramidal neurons in the hippocampus [88]. Enriched on the spines of CA1 pyramidal
neurons, Kv4.2 is under the regulation of synaptic activity and it in turn contributes to the
regulation of synaptic plasticity [87, 89*]. A recent study [43**] found the dendritic
localization of Kv4.2 mRNA and FMRP suppression of Kv4.2 levels through the interaction
with segments of Kv4.2-3’UTR with U-rich sequences (Figure 1c). Moreover, the deficit in
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LTP induction can be rescued by reducing Kv4 channel activity in hippocampal slices from
fmr1 KO mice [43**] (Figure 1c).

The N-methyl-D-aspartate receptor (NMDAR)-induced total protein synthesis is defective in
synaptosomes from fmr1 KO mice [90]. Given the bidirectional feedback regulation
between Kv4.2 and NMDAR for the dynamic modulation of synaptic plasticity [89*] and
the NMDAR-dependent regulation of dendritic Kv4.2 for branch strength potentiation [91],
it is of interest to determine how the Kv4.2 protein level can recover quickly after its down
regulation by NMDAR via internalization and degradation [92-94]. Lee et al. [43**] found
that NMDAR activation increases Kv4.2 protein production in an FMRP-dependent process
likely involving PP1-dependent dephosphorylation of FMRP, and the resulting de-repression
of Kv4.2 corresponds to a homeostasis mechanism to reset the neuronal activity (Figure 1c).

Taken together, this study identifies Kv4.2 mRNA as a new target of FMRP. Whereas
FMRP suppresses Kv4.2 in the basal condition, FMRP suppression is relieved by its
dephosphorylation upon NMDAR activation. This derepression to increase Kv4.2
production compensates for NMDAR-mediated Kv4.2 degradation so that there is a
transient down regulation of Kv4.2 – a positive feedback regulation of neuronal excitability,
thereby maintaining neurons within the dynamic range of synaptic plasticity. Given that a
Kv4 channel blocker (the cysteine knot venom peptide; heteropodatoxin HpTx2) rescues the
LTP deficit in fmr1 KO mice, pharmacological inhibitors of Kv4.2 may be considered for
potential therapeutic applications.

Therapeutic prospects
FXS symptoms likely involve multiple neuronal signaling pathways in different brain
regions, including those linked to mGluR and several potassium channels that have been
recently identified as novel therapeutic targets for treating FXS. A major focus of the field is
to determine which pathways are crucial for the symptoms observed in patients and which of
these are amenable to pharmaceutical intervention. These molecular studies of FMRP have
led to the rational design of novel therapeutics. Now that the identities of many FMRP
targets are known, investigators may be able to associate the dysregulation of specific target
mRNAs with specific FXS phenotypes. In light of the significant variability of the disease
and the limitations of mGluR drug therapy, patients with the disorder could potentially
benefit from a cocktail of drugs.

Given that potassium channels (Slack, Kv3.1b and Kv4.2) show alterations in their activity
or expression levels in fmr1 KO mice, modulators have therapeutic potentials in fragile X
treatments. Potassium channel openers have been suggested for countering or preventing
neuronal damages by interfering with different steps of the neurodegenerative cascade [95].
Thus, the discovery and development of pharmaceutical drugs targeting potassium channels
is important for treating a variety of medical conditions and diseases. Recent advances in
large-scale screening for molecules affecting ion channel function using optical-based and
electrophysiological technologies have improved drug development in this field [96].
Moreover, methods for the discovery of peptide-based neurotoxins and other natural
products have proven useful not only in the pharmacological assessment of ion channel
structure and function, but also in the identification of lead molecules for drug development
[96]. The extensive efforts and experience in developing pharmacological reagents targeting
ion channels followed by a suitable validation process should facilitate the development of
therapeutic reagents for consideration of potential FXS treatment.
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Highlights

• FXS is a common form of mental disability and one of the known causes of
autism.

• Targeted treatments of FXS based-on the mGluR theory is a feasible therapeutic
strategy.

• It is also important to extend our understanding of FMRP functions beyond
mGluR signaling.

• Several potassium channels show alterations in mouse models of FXS.

• We suggest possible therapeutic avenues for treating FXS regarding the role of
potassium channels
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Figure 1.
Summary of the alterations of potassium channels in fmr1 KO mice.
(a) FMRP increases Slack-B channel activity by binding to the C-terminus of Slack-B. Slack
potassium currents are reduced by about 50% in fmr1 KO mice.
(b) While WT animals show a tonotopic gradient of Kv3.1b expression in the MNTB, fmr1
KO mice display dramatically flattened gradients. Representative three-dimensional plots of
the average Kv3.1b immunoreactivity (OD) in each of 25 stereotaxic zones. Lat, lateral;
Med, medial; Post, posterior; Ant, anterior. (Adapted from [78**].)
(c) FMRP suppression of Kv4.2 levels in neuronal dendrites through its interaction with
segments of Kv4.2-3’UTR. Whereas FMRP suppresses Kv4.2 in the basal condition, FMRP
suppression is relieved by its dephosphorylation upon NMDAR activation, as a homeostasis
mechanism to reset the neuronal activity. Without FMRP, the basal level of Kv4.2 is
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elevated in fmr1 KO mice. Reducing Kv4 channel activity by the specific channel blocker
HpTx2 rescues the deficits of LTP induction in the hippocampus from fmr1 KO mice.
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