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Abstract
Objectives—To investigate whether (1) machine learning classifiers can help identify
nonrandomized studies eligible for full-text screening by systematic reviewers; (2) classifier
performance varies with optimization; and (3) the number of citations to screen can be reduced.

Methods—We used an open-source, data-mining suite to process and classify biomedical
citations that point to mostly nonrandomized studies from 2 systematic reviews. We built training
and test sets for citation portions and compared classifier performance by considering the value of
indexing, various feature sets, and optimization. We conducted our experiments in 2 phases. The
design of phase I with no optimization was: 4 classifiers × 3 feature sets × 3 citation portions.
Classifiers included k-nearest neighbor, naïve Bayes, complement naïve Bayes, and evolutionary
support vector machine. Feature sets included bag of words, and 2- and 3-term n-grams. Citation
portions included titles, titles and abstracts, and full citations with metadata. Phase II with
optimization involved a subset of the classifiers, as well as features extracted from full citations,
and full citations with overweighted titles. We optimized features and classifier parameters by
manually setting information gain thresholds outside of a process for iterative grid optimization
with 10-fold cross-validations. We independently tested models on data reserved for that purpose
and statistically compared classifier performance on 2 types of feature sets. We estimated the
number of citations needed to screen by reviewers during a second pass through a reduced set of
citations.

Results—In phase I, the evolutionary support vector machine returned the best recall for bag of
words extracted from full citations; the best classifier with respect to overall performance was k-
nearest neighbor. No classifier attained good enough recall for this task without optimization. In
phase II, we boosted performance with optimization for evolutionary support vector machine and
complement naïve Bayes classifiers. Generalization performance was better for the latter in the
independent tests. For evolutionary support vector machine and complement naïve Bayes
classifiers, the initial retrieval set was reduced by 46% and 35%, respectively.
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Conclusions—Machine learning classifiers can help identify nonrandomized studies eligible for
full-text screening by systematic reviewers. Optimization can markedly improve performance of
classifiers. However, generalizability varies with the classifier. The number of citations to screen
during a second independent pass through the citations can be substantially reduced.

Keywords
medical informatics; clinical research informatics; text mining; document classification;
systematic reviews

1. Introduction
Translation of biomedical research into practice depends in part on the production of
systematic reviews that synthesize available evidence for clinicians, researchers, and
policymakers. Unfortunately, remarkable growth in the number of reviews has not kept pace
with growth in the number of medical trials, which are sources of evidence [1]. The problem
is even more serious because most reviews are traditional rather than systematic. What is
needed is streamlined production of the latter [1, 2] to better control known threats to
validity [3] while promoting transparent and reproducible science.

To support the creation and maintenance of quality systematic reviews (also known as
evidence reports or comparative effectiveness reviews), a global network of Cochrane
entities [4] and a North American network of AHRQ-funded Evidence-based Practice
Centers [5, 6] exist. Even so, production is slow. For example, Tricco et al [7] report that
19% of protocols published in the respected Cochrane Library fail to reach fruition as full
reviews. Of those that are published as reviews, the average time to completion is 2.4 years
with a reported maximum of 9 years, which is the ceiling imposed by the study design.
Worse, these estimates ignore time spent exploring the literature to assess significance of
possible review questions, and then time spent developing a protocol.

A major bottleneck occurs when teammates screen studies. In a two-step process involving
independent and replicated effort, teammates first identify provisionally eligible studies by
reading typically thousands of citations. Then they repeat the process by reading full texts of
studies identified in the first step to select the final set of studies for inclusion in a review. In
other words, to be included in a review, a study must first appear to meet eligibility criteria
based on reading its citation; if so, it is eligible for full-text review and provisionally eligible
for inclusion in the systematic review. However, not until the full text of its report has been
carefully considered in light of the protocol is a final decision made whether to include a
study.

In a best-case scenario, teammates compare their decisions and resolve their differences
after each step, usually by discussion. It is worth noting that screening procedures vary. For
example, some review teams will consider a study for full-text review if at least one
teammate thinks the citation (title plus abstract) appears to meet eligibility criteria. In
contrast, other teams work to reach consensus when screening citations before they will
consider a study worth reading as full text. Presumably, the latter procedure for screening
citations is more labor intensive. The point is that workflow patterns vary by review team
and topic (A. McKibbon, PhD, written communication, December 2010). Furthermore, it is
likely that estimates of workload for professional review teams associated with established
centers are underestimates for inexperienced volunteer teams that may be conducting one-
off reviews, e.g., when launching new research programs.
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The research that serves as the foundation for this study was conducted by
Aphinyanaphongs et al [8], and later extended by Kilicoglu et al [9]. Their work entailed
supervised machine learning methods and natural language processing to identify rigorous
clinical trials in broad domains, such as therapy, rather than topical domains defined by
review questions. Based on the work of Haynes and colleagues in a series of papers (e.g.,
see [10]), rigor was presumed if trials comparing treatments were randomized and
controlled. However, identifying nonrandomized (NR) studies for inclusion in systematic
reviews is an important problem because randomized controlled trials (RCTs) may be
unlikely or even unethical for some research questions [11, 12]. For example, NR studies,
such as case-control, cross-sectional, and cohort studies, are commonly employed to
investigate exposure to environmental hazards, diagnostic test accuracy, disease etiology,
human development, invasive surgery, adverse events, and rare disorders. Notably, in what
is perhaps the first study to use machine learning methods to identify topically relevant trials
for inclusion in systematic reviews, classification involved randomized and controlled drug
trials [13], which is in keeping with the foundational research of [8].

For many review questions, the classification task involves a mix of designs because
reviewers search for NR studies (if eligible) in addition to RCTs. The latter are preferred
because they tend to be less biased relative to NR studies. However, when NR studies are
eligible for inclusion in a systematic review, the Cochrane Non-Randomised Studies
Methods Group enjoins investigators to not include design terms in their search filters [12].
Although filters exist to reliably retrieve RCTs [14], filters “to identify other study types are
limited” (Appendix 2 in [15]; see also [11]). This is true even though development of filters
is ongoing (e.g., see [16–20]). Thus, the initial screening phase can be more labor intensive
when NR studies are eligible. In response to this dilemma, some of the Cochrane Review
Groups allow NR design terms when the retrieval set is so large that the review becomes
impractical (e.g., see [21]). If we take seriously the preference for not including design terms
in searches for NR studies, an informatics solution to assist review teams seems especially
warranted.

Researchers interested in [semi-]automating the screening phase for systematic reviews are
currently using the classifiers complement naïve Bayes (cNB) [22] or a Support Vector
Machine (SVM) with a linear kernel [23, 24], or are developing a factorized version of cNB
[25]. The fact that these researchers are using different classifiers for their specific tasks
indicates that understanding relative classifier performance is a necessary step for our task.
Thus, we are interested in empirically comparing the performance of several supervised
machine learning classifiers for a binary classification task using biomedical citations from
extant systematic reviews. The task is binary because we want to classify primary studies as
being eligible or not for further consideration by the review team. We also consider no
optimization vs. optimization of features and parameters. Interestingly, a comparative study
of classifiers by Colas and Brazdil [26] is sometimes cited as support for using a particular
classifier. They found that an optimized k-nearest neighbor (k-NN) or naïve Bayes (NB)
classifier could be as good as a linear SVM based on 20,000 newsgroup e-mails. However,
they cautioned that their results should be validated for other document classification tasks
to ensure generalizability. In sum, classifiers useful for newsgroup e-mail may not be as
useful for biomedical citations. Thus, comparative studies of classifiers are warranted.

In general, our motivation for conducting this research is similar to that of other groups [13,
22–25], i.e., we want to facilitate production of systematic reviews. However, we are
interested in assisting reviewers (regardless of experience or affiliation) by identifying
classifiers that can reduce the number of citations that must be screened during a second
independent pass through a set of citations. We interpret the usefulness of a classifier with
respect to reducing the number of citations to screen rather than time spent screening
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because of differences in procedures, reviewer expertise, and number of teammates available
for dividing the labor. In other words, valid baseline estimates of time spent screening and
subsequent reductions in time depend on several variables that are not the focus of this
study.

Additionally, until this relatively new area of translational informatics research matures, we
assume that reviewers will insist on at least one complete cycle where human(s) screen the
full set of citations. We further assume that a team consists of at least two people to ensure
independent and replicated screening. In reality, more than one teammate can screen
citations for the first pass as long as other people independently screen the same citations
during the second pass. This procedure is meant to control random errors and bias
introduced by humans. However, there are times when even two people cannot
independently screen the entire set of citations. When this is the case, Cochrane suggests “a
second person look at a sample [emphasis added] of the records” [27]. This is precisely our
intention, i.e., we envision a machine learning system that returns a reduced set or sample of
citations to screen for the second pass. The reduced set would include most if not all of the
citations labeled as eligible for full-text review, as well as a subset of those labeled as
ineligible during the initial screening. Human reviewers would still have to reach consensus
regarding discrepant eligibility decisions from the first pass through the entire set when
compared to a second pass through the reduced set (see Figure 1). Assisting reviewers in this
way would enable a more focused, independent screening of citations during the second
pass. Reviewer bias and error would be controlled, in part, because of the opportunity for a
second screening by different teammate(s) who could potentially identify studies overlooked
by the first reviewers. Furthermore, the workload would be reduced because the
disproportionately large set of citations identified as ineligible by both humans and machine
would be eliminated from further consideration.

In sum, we conducted this study to investigate whether (1) machine learning classifiers can
help identify NR studies eligible for full-text screening by systematic reviewers; (2)
classifier performance varies with optimization of parameters and features extracted from
biomedical citations; and (3) the number of citations to screen can be reduced. We did this
by empirically comparing classifier performance using citations that point to mostly NR
studies, varying optimization conditions, and then estimating the reduction in the number of
citations to screen for the best classifier.

2. Methods
The citations for this study were from 2 Cochrane systematic reviews. One has to do with
surgical interventions for treating ameloblastomas of the jaws [21] and the other with
vaccines for preventing influenza in the elderly [28]. By using citations from extant
systematic reviews, we capitalized on domain-specific knowledge. This is because citations
were initially retrieved by Cochrane trials search coordinators who developed filters given
reviewers’ knowledge of their topics.

For the ameloblastoma dataset, we had access to the entire set of citations (N=1815)
retrieved from MEDLINE [29], EMBASE [30], the Cochrane Central Register of Controlled
Trials, and the Cochrane Oral Health Group Trials Register. For the influenza dataset, we
retrieved 5485 citations (94%) by re-running published MEDLINE and EMBASE searches.
We also manually searched for 147 studies not in our retrieval set, but listed in the review as
eligible for further consideration.

We managed citations in EndNote and recorded decisions as either exclude or include.
Decisions were based on the consensus of at least 2 reviewers in the published author lists
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regarding eligibility [21, 28, 31]. From EndNote, we exported each corpus as a text file in
MEDLINE format. We then created 3 text files for each citation: (1) the full citation,
including title, abstract, and metadata (FULL); (2) the title and abstract (TIABS); and (3) the
title (TITLE). We built training and test sets for each type of text file by randomly assigning
files using a 2:1 split, respectively. To ensure comparability across training and test sets, we
used the same random assignment for citation portions.

For the ameloblastoma review, the training set for each citation portion consisted of 1209
files: exclude=1133; include=76 (6.3%). The test set for each portion consisted of 606 files:
exclude=567; include=39 (6.4%). For the influenza review, the training set consisted of
3679 files: exclude=3469; include=210 (5.7%); the test set consisted of 1806 files:
exclude=1699; include=107 (5.9%). The citations labeled as include point to studies eligible
for full text-review, as well as being provisionally eligible for eventual inclusion in the
systematic review.

To extract features (processed words) and classify studies, we used the open-source, data-
mining suite RapidMiner v.4.6 [32, 33] with a text plugin [34]. We processed text to create
weighted feature vectors that represent each citation portion. This involved tokenizing
(splitting up) strings of text, converting to lower case, filtering out stopwords and tokens
with length less than 3, Porter stemming, and pruning out tokens that occurred in at most 3
citations. Features were weighted with TFIDF weights ([35], p.109), which are the product
of term frequencies (TF) and inverse document frequencies (IDF). Note that for citations
retrieved from MEDLINE or EMBASE, the metadata include tags and indexing terms from
MeSH [36] or EMTREE [37], respectively. For this study, we treated metadata as any other
text without preserving the tags, such as the MeSH tags TI for title or SO for source.

In general, we first trained a set of classifiers known to work well with text [26, 38] using
processed features extracted from citations. Then we independently tested classifier models
on a third of the data reserved for this purpose. We compared performance with respect to
recall, precision, and a summary measure that overweights recall relative to precision. We
chose to overweight recall because this is in keeping with the human goal of near-perfect
recall when screening citations [12, 25, 39]. Human reviewers are overly inclusive during
this phase in order to reduce the risk of overlooking relevant studies. This means that
precision is sacrificed for recall. During their full-text review of studies identified by
screening citations, reviewers effectively improve precision by eliminating studies that do
not meet their inclusion criteria. Thus, for our purposes, we wanted to find classifiers with
nearly perfect recall and precision good enough to reduce the number of citations to screen.

We conducted this study in two phases. Phase I involved neither optimization nor validation;
phase II involved optimization of features and classifier parameters with cross-validation. In
both phases, we conducted independent tests on the reserved data.

We defined best models as returning highest recall with precision good enough to reduce
workload. Specifically, recall had to be at least 95% and precision had to be greater than 7%
and 6% for the ameloblastoma and influenza datasets, respectively. The rationale for the
cutoffs is as follows: when a model returns nearly perfect recall but poor precision, almost
all of the eligible studies are identified along with many falsely identified ones. In the
extreme, if precision equals the percentage eligible, the returned set of studies is as large as
the entire set and no reduction in workload is possible. Thus, precision must surpass the
percentage of studies identified by humans as being eligible for full-text review. Note that
when recall is 95%, the machine falsely excludes 5% of the eligible studies. However, in
comparing discrepant decisions, human(s) would reconsider the 5% they had identified but
the machine had missed.
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In our experiments, we compared the following classifiers: k-NN [26], NB [40], cNB [41],
and evolutionary support vector machine (EvoSVM) [42]. NB and cNB are probabilistic
learners; EvoSVM is functional; and k-NN is a lazy learner that classifies based on
similarity or distance measures. Further, NB assumes conditional and positional
independence of features; thus, the immediate context of features or processed words
extracted from citations is ignored. cNB is suitable for imbalanced data and presumably
more appropriate for this task because the percentage of eligible studies in systematic
reviews is usually relatively small. Additionally, cNB relaxes the particularly unrealistic
assumptions of NB regarding independence of features extracted from text written by
humans. EvoSVM uses a kernel function to find a nonlinear hyperplane that maximally
separates classes of documents. EvoSVM generalizes support vector machine classifiers and
can optimize non-positive semi-definite kernel functions [42].

We used RapidMiner default settings for classifier parameters with the following
exceptions: For EvoSVM, we set C=1 instead of C=0 in phase I based on [42]. In phase II,
we set C=1, 10, or 20. The parameter C is a regularization constant that sets an upper bound
for multipliers used in maximizing the margin between classes (cf. chapter 15 in [35]). For
k-NN, we used cosine similarity measures instead of mixed Euclidean distances.

For both phases, performance measures included recall, precision, and an overall
performance measure (F3), which is a weighted harmonic mean ([35], p.144). The formula
for F is:

(1)

where beta is a non-negative number. Note that the notation F1 or F3 is short for Fbeta=1 or
Fbeta=3, respectively. Thus, the formula for F3 is:

(2)

We estimated F3 rather than the traditional measure F1 that equally weights recall and
precision. Although the relative weighting is more obvious when beta is expressed in terms
of alpha (cf. [35], p. 144), the formulas presented are more common. In our opinion, F1 is
inappropriate for this task because it is not in keeping with reviewer behavior during the
screening phase.

2.1 Design of phase I (no optimization)
The design of phase I was: 4 classifiers × 3 citation portions × 3 feature sets. We used the
ameloblastoma citations and did not optimize features or classifier parameters.

Classifiers included k-NN, NB, cNB, and EvoSVM. In early analyses, LibSVM with a radial
or polynomial kernel either failed or returned very poor performance. We therefore dropped
LibSVM from subsequent analyses.

Citation portions included TITLES, TIABS, and FULL citations.

Feature sets included unigrams or bag of single words (BOW), and 2-term (2G) and 3-term
n-grams (3G). N-gram sets are hierarchical and therefore consist of features from previous
set(s). For example, a 3G set consists of contiguous triples and pairs, as well as single
processed features, i.e., trigrams, bigrams, and unigrams. We had competing reasons for
comparing these feature sets. On the one hand, 2G or 3G could add linguistic phrases that
improve classification; on the other, BOW could reduce computational burden.
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Varying feature sets and citation portions allowed comparison of their relative contribution
to classification. We expected that an n-gram feature set extracted from FULL citations
would improve classifier performance. We reasoned that 2G or 3G sets would preserve
some of the information in the indexing terms or phrases found in the metadata of FULL
citations and, therefore, this feature–citation portion combination would be associated with
better performance.

2.2 Design of phase II (optimization with cross-validation)
In this phase, we used ameloblastoma and influenza citations. We considered 3 classifiers, 2
feature sets, and 1 citation portion. Classifiers included k-NN, cNB, and EvoSVM. Given
the results from phase I, we dropped NB and used BOW extracted from FULL citations. We
also developed a second feature set by adding 2G title features to the BOW. This enrichment
overweighted titles and added contextual information residing in pairs of title words.

For each information gain (IG) threshold, we selected features if the absolute value of the IG
weight was >= to the threshold. We manually set the IG threshold outside of a loop for grid
optimization of classifier parameters with an inner loop for 10-fold cross-validations.

We used the RapidMiner operator Grid Parameter Optimization to find the best parameter
set per information threshold. This operator searches over a grid of parameter combinations
to return an optimal set. Given the nature of human screening behavior, we searched for
optimal sets yielding highest recall with precision greater than the cutoff. The size of the
grid is determined by the levels of the parameters under consideration. For example, if one
combines 2 parameters with 3 possible values each, the search is over a 3 × 3 grid with 9
cells. For each cell, an n-fold cross-validation is run. In our experiments, the total number of
runs (N) for each classifier equals the number of IG thresholds × the number of cells in the
grid × the number of folds in the cross-validations. For example, N=480 (k-NN), 540
(EvoSVM), and 600 (cNB), ameloblastoma data.

We randomly selected partitions for the cross-validations and stratified to ensure that the
percentage of eligible studies was the same across partitions. Further, we used the same
random seed to ensure that partitions were equivalent when comparing classifiers. For each
fold in a 10-fold cross-validation, we trained a classifier on 90% of the training data given a
particular combination of parameters in the optimization grid, and assessed performance on
the remaining 10%. Because cross-validations are iterative, performance measures were
means of 10 values.

To develop a reasonable series of IG thresholds, we inspected a plot of normalized IG
weights for BOW extracted from FULL ameloblastoma citations. The absolute values
ranged from 0.0 to 1.0, with ameloblastoma having the largest weight; most values were less
than 0.20. Thus, our series of threshold values included the following: none (no feature
selection), 0.0001, 0.04, 0.08, 0.12, and 0.16. Based on the ameloblastoma results, the
thresholds for the influenza data were none and 0.0001.

To ensure feasibility of the EvoSVM optimization runs, we conducted scoping analyses to
select appropriate parameter values. By scoping, we mean that we conducted grid
optimization with simple validation using a 1:1 split of the training set with no feature
selection. However, for mutation types (Gaussian, switching, and sparsity) we followed the
methods of phase I in addition to optimization with simple validation. Given the guidance of
[43, 44], we considered various values for C and gamma; the default for gamma=1.0 was
best. We also confirmed that the default value for epsilon=0.1 was reasonable for our data.
We chose a nonlinear kernel based on our pilot study [45]. Given these preliminary
analyses, we used the following settings: radial kernel; Gaussian mutation; gamma=1.0;
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epsilon=0.1; population size=1, 10, 20; and C=1, 10, 20. Thus, population size and C were
the input parameter values for the grid optimization in phase II.

For cNB, the input parameter values included smoothing values = 0.001, 0.4, 0.6, 0.8, 1.0
and normalized class weights=false, true, based on [41].

For k-NN, the input parameter values included number of neighbors k = 1, 3, 5, 7 and
weighted vote = false, true. Note that when k=1, vote is not relevant.

In addition to cross-validation, we independently validated the best model for each classifier
on a reserved test set. Note that the independent tests are stricter than the tests on held-out
partitions during cross-validation because data for the former are not used when training
classifiers. Thus, the independent tests are probably better estimates of generalizability.

For phase II, we expected that optimization would improve performance for all classifiers.
We further expected that after optimization at least one classifier would return recall greater
than or equal to 95% with precision greater than 7% for the ameloblastoma data and greater
than 6% for the influenza data. Based on the results from phase I, we expected that enriching
the feature set extracted from FULL citations with 2G title features would improve
performance for cNB.

3. Results
3.1 Phase I (no optimization)

Table 1 displays the independent test results for phase I. In general, there appears to be a
complex interaction between classifier, citation portion, and feature set.

Over 9 possible conditions (3 citation portions × 3 feature sets), EvoSVM returned the best
recall (82.05%) for BOW extracted from FULL citations; 1-NN returned the best F3
(67.84%), also for BOW extracted from FULL citations. NB and cNB returned the worst
recall (7.69%) and F3 (8.47%) for 2G and 3G extracted from FULL citations.

Over all conditions, recall was best for EvoSVM 5 of 9 times. Precision was maximal when
recall was very low, e.g., precision=100% and recall=7.69% for NB, 2G, FULL. NB was the
weakest classifier regarding F3 (range: 8.47% to 56.90%).

Fig. 2 (top) displays the results for recall as a function of classifier and feature set when
features were extracted from the FULL citation. Using BOW appears to improve recall for
EvoSVM, 1-NN, and cNB, but not for NB.

Fig. 2 (bottom) displays the results for recall as a function of classifier and citation portion
when the feature set was BOW. Metadata in the FULL citation appear to improve recall for
EvoSVM and 1-NN, but not for NB and cNB. (Consider that the difference between FULL
and TIABS is the metadata in FULL.) However, extracting BOW from TITLES was
associated with best recall for cNB and NB, and was second to FULL citations for EvoSVM.

No classifier reached the recall criterion of at least 95% for acceptable performance.

3.2 Phase II (optimization with cross-validation)
Based on phase I results, we dropped NB from further consideration. We optimized features
and parameters with respect to recall and cross-validated models for k-NN, cNB, and
EvoSVM using BOW extracted from FULL citations. We also cross-validated optimized
models on enriched feature sets (BOW plus 2G title features). All independent tests applied
the best training models from the grid optimizations with cross-validations to the reserved
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data. The best feature-parameter combinations per classifier were the same across
ameloblastoma and influenza datasets.

Tables 2, 3, and 4 display the results for optimization with cross-validation; recall and
precision are in bold for models that surpassed both cutoffs. Table 5 displays the
independent test results.

Fig. 3 displays mean recall and precision as a function of IG threshold for the
ameloblastoma data. The curves for both cNB and EvoSVM were inversely related, which is
typical of the tradeoff between recall and precision. Two points surpassed both recall and
precision criteria: when the IG threshold=none for cNB and 0.0001 for EvoSVM. For k-NN,
the curves were similar, but diverged for the largest IG threshold. Although k-NN always
surpassed the precision cutoff, it never met the recall criterion.

3.2.1 EvoSVM—The best model for EvoSVM over all IG thresholds involved a subset of
features for which the IG weight was >= 0.0001; n=1430 (40%) and n=2205 (32%) features,
ameloblastoma and influenza data, respectively. The best parameter set was C=1 and
population size=10 (see Tables 2 and 4).

For the independent tests with ameloblastoma data, recall was stable when compared to the
best optimization results, i.e., recall=100% for both BOW and enriched BOW (see Tables 2,
3, and 5). However, with influenza data, recall degraded from 100% to 79.44% and 90.65%
for BOW and the enriched BOW, respectively (see Tables 4 and 5). Enrichment boosted
precision 2.4% (13.40% vs. 13.09%, ameloblastoma) and 8.5% (8.90% vs. 8.20%,
influenza) (see Table 5). We computed the percentage improvement as [(.0890–.0820)/.
0820] × 100=8.5%. EvoSVM surpassed both recall and precision thresholds for the
ameloblastoma data, and the precision threshold for influenza data. However, it failed with
respect to recall for the influenza data.

Compared to the results from phase I, recall for the optimized model on the ameloblastoma
test set was 21.9% better (100% vs. 82.05%) and F3 was 3.8% worse (60.74% vs. 63.11%).
(See Table 1, BOW/FULL and Table 5.)

3.2.2 cNB—The best optimized model for cNB over all IG thresholds involved the full set
of features: n=3574 and n=6828, ameloblastoma and influenza data, respectively. The best
parameter set was smoothing value=0.001 and normalized weights for each class (see Tables
2 and 4).

For the independent tests, recall was relatively stable when compared to the best
optimization results (ameloblastoma and influenza data) (see Tables 2–5). Enrichment
boosted precision 18.8% (10.95% vs. 9.22%, ameloblastoma) and 3.8% (7.58% vs. 7.30%,
influenza) (see Table 5). cNB surpassed both recall and precision thresholds with influenza
data (both feature sets) and ameloblastoma data (BOW). However, it just missed the recall
threshold of 95% with ameloblastoma data and the enriched BOW (recall=94.87%).

Compared to the results from phase I, recall for the optimized model on the ameloblastoma
test set was 2.8 times better (97.44% vs. 25.64%); F3 was 81.3% better (49.80% vs.
27.47%). (See Table 1, BOW, FULL and Table 5).

3.2.3 k-NN—The best optimized model for k-NN over all IG thresholds was based on the
full set of features. The best parameter setting was k=1, vote not applicable (see Tables 2
and 4).
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The results for the independent tests were quite mixed. For example, recall improved when
compared to the best optimization results for the ameloblastoma data, but degraded for the
influenza data (see Tables 2, 4, and 5). Enrichment boosted precision for the ameloblastoma
data, but degraded precision for the influenza data (see Table 5). k-NN failed to meet the
recall threshold for both datasets regardless of feature set, whereas it always surpassed the
precision threshold.

For the ameloblastoma data, the results of the independent test for BOW extracted from
FULL citations were the same as in phase I (see Table 1, BOW/FULL and Table 5). This is
because the models were the same.

3.2.4 Comparison of classifiers—Following the advice of Demsar [46], we computed
an omnibus Friedman test statistic to assess differences among mean ranks for 3 classifiers
per performance measure (see Table 5). The Friedman test is a robust, nonparametric
alternative to repeated measures ANOVA. When the Friedman test statistic was statistically
significant (P < .05), we computed Bonferroni-Dunn tests for post hoc comparisons; we
adjusted alpha for the number of comparisons to control the Type I error rate. Note that
higher ranks are associated with better performance.

Mean ranks for recall were significantly different: 2.5 (EvoSVM), 2.5 (cNB), and 1.0 (k-
NN); Friedman chi2 (2 df) = 6, P =.0498. Because the post hoc comparison for EvoSVM vs.
k-NN was the same as for cNB vs. k-NN—2.5 vs. 1.0—alpha was not adjusted. For
EvoSVM or cNB vs. k-NN, mean recall was significantly different: z = 2.12, P = .034. Thus,
recall was not significantly different for EvoSVM vs. cNB, but was when each was
compared to k-NN. Recall was always better for EvoSVM or cNB vs. k-NN. Overall, recall
usually improved or was stable when features were enriched by overweighting titles for
EvoSVM and cNB, but not for k-NN.

The mean ranks for precision were significantly different: 2.0 (EvoSVM), 1.0 (cNB), and
3.0 (k-NN); Friedman chi2 (2 df) = 8, P = .0183. Because 3 post hoc comparisons were
computed, the adjusted alpha = .05/3 = .0167. For EvoSVM vs. cNB: z = 1.41, P = .1585.
For EvoSVM vs. k-NN, z = −1.41, P = .1585. For cNB vs. k-NN: z = −2.83, P=.0047. Thus,
precision was not significantly different for EvoSVM vs. cNB or EvoSVM vs. k-NN, but
was for cNB vs k-NN. Precision was always better for k-NN when compared to cNB. In
general, precision improved for EvoSVM and cNB when features were enriched by
overweighting titles, whereas results for k-NN were mixed.

The mean ranks for F3 were not significantly different: 2.5 (EvoSVM), 1.8 (cNB), and 1.8
(k-NN); Friedman chi2 (2 df) = 1.5, P = .4724. Because the omnibus test was not statistically
significant, post hoc comparisons were not warranted.

4. Discussion
4.1 Implications

To understand the implications of this research, consider the following scenario. Assume
that (1) a reliable machine learning system exists to assist systematic reviewers when
screening citations; (2) 3000 citations have been retrieved; (3) human reviewer(s) complete
the first pass through the entire set of citations and label 180 (6%) as eligible for full-text
review; and (4) two machine learning classifiers are available (EvoSVM and cNB). Given
sampling variability, our best estimates for recall and precision are the averages for the
independent test results on the enriched feature sets. Thus, further assume that recall and
precision are 95.32% and 11.15% for EvoSVM, and 96.50% and 9.27% for cNB (based on
Table 5).
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The questions of concern to potential users are: How many citations will each machine
learning classifier identify as eligible and how does this compare to screening the entire set
once again? If the system is useful, reviewers need not consider further the
disproportionately large number of citations labeled as ineligible both by human(s) and
machine.

If the reviewers choose EvoSVM, the classifier correctly labels 172 citations and incorrectly
labels another 1443 as eligible. Thus, a noisy set of 1615 true and false positives
(172+1443=1615) is returned for the second pass through the citations by at least one more
human reviewer—we refer to the size of this set as the number needed to screen (NNS).
However, the NNS should be adjusted somewhat by the 8 citations overlooked by the
machine, but identified by human(s). This is because recall is not perfect. Thus, the NNS for
EvoSVM is 1615+8=1623, which is a 46% reduction in the size of the initial retrieval set:
(3000-1623)/3000=.459.

If the reviewers choose cNB, the classifier correctly labels 174 citations and incorrectly
labels another 1768 as eligible. A set of 1942 true and false positives is returned. Adding in
the 6 citations overlooked by the machine, the NNS is 1948, which is a 35% reduction in the
size of the initial retrieval set.

Clearly, if a reliable system were in place and both classifiers were reasonably efficient,
systematic reviewers would choose EvoSVM in favor of cNB because the NNS=1623 for
EvoSVM and 1948 for cNB. Nevertheless, until we have more citations from SRs on topics
where NR studies are likely, our estimates for recall and precision may be unrealistic.

A major challenge for future research is boosting precision to reduce further the screening
burden while maintaining very high recall. More than likely, we need feature sets that
capitalize on both the structure of citations and the language that scientists and indexers use
to describe studies. Regarding the latter, review teams outside of the United States are likely
to search EMBASE, which is the European counterpart of MEDLINE. However, indexers
use different terms for the same concepts, and MeSH and EMTREE terms can appear in
different places in the citation. Thus, modeling structure is a challenge if we want to extract
indexing terms and tag for source. In this paper, we demonstrated that adding contextual
information from pairs of title words tends to boost precision modestly—suggesting that we
can do a better job of modeling the format and scientific language of biomedical citations.

4.2 Classifier performance
The results were somewhat surprising. For phase I, we had expected that without
optimization, recall and overall performance would be best using 2- or 3-term n-grams
extracted from complete citations. Instead, using single processed words (BOW) from FULL
citations was associated with best performance. This suggests that indexing in the complete
citation improves performance, even when the indexing terms are processed as single words.
To improve this feature set in future work, we could preserve the MeSH and EMTREE
terms (phrases), which would yield a feature set similar to the one used by Cohen and
colleagues [23, 47].

Because none of the classifiers from phase I attained high enough recall to be of use,
optimization in phase II was warranted.

For phase II, we had expected that all classifiers would benefit from optimization. This was
generally true for EvoSVM and cNB, but not for k-NN. As it turned out, the optimized
model for k-NN was the same as the one we used during phase I. Additionally, just
EvoSVM benefited from selecting features based on IG. The results did support our
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expectation that, with optimization, one or more classifiers would return recall at least as
high as 95% and precision greater than 6% or 7%, depending on the dataset. Both EvoSVM
and cNB met these criteria, but generalization performance for EvoSVM was not as good as
for cNB. This suggests either sampling variability or overfitting of EvoSVM during training.
If the latter, the parameter C may not have been tuned well because C purportedly controls
overfitting ([35], p. 301). Additionally, a radial kernel may have been inappropriate (see
below).

Additionally, we had expected that enriching the BOW from full citations by overweighting
titles would improve performance for cNB. It was somewhat surprising that enrichment
improved performance for both cNB and EvoSVM.

Although researchers currently favor variants of both of these classifiers [22–25], the
evidence suggests that optimization is necessary to boost performance. In fact, the results for
cNB were startling with an almost three-fold improvement for recall and an 81%
improvement for overall performance when comparing phase I and phase II results for
ameloblastoma data.

4.3 Limitations
The major limitation of this study is that the citations came from just two systematic
reviews. Future comparative studies of classifiers should use citations from several reviews,
paying attention to phrases for NR study designs that meet inclusion criteria as specified in
the protocols. Presumably, more precise classification is possible for randomized controlled
trials because the indexing is better than for NR studies (see the Introduction here and in
[45]).

Another limitation is that we wrapped feature selection around grid optimization of classifier
parameters, ignoring the class imbalance problem [48]. While using a wrapper strategy is a
well-known approach [49], a better one could involve selecting features within the positive
(include) and negative (exclude) classes before grid optimization (e.g., see [49, 50]).
Recently, Le and colleagues [51] compared other optimization methods, including stochastic
gradient descent (SGD), limited memory BFGS (L-BFGS), and conjugate gradient (CG)
methods. They reported that in contrast to the favored SGD method, L-BFGS and CG
methods outperform SGD with respect to speed and accuracy. However, their overall
conclusion was that performance of the optimization method varies with the research
problem.

Certainly, a more thorough comparison of parameter settings for EvoSVM is required as this
classifier has quite a few parameters. In particular, a study comparing performance as a
function of kernel is essential in the context of classifying biomedical citations. Because
generalization performance is “dominated by the chosen kernel function” ([52], p. 1313),
researchers are developing automatic methods for learning kernel functions. A promising
nonparametric approach was described in [52], wherein a family of simple nonparametric
kernel learning (NPKL) algorithms was presented. Simple NPKL algorithms are reportedly
as accurate as other NPKL methods, but more efficient and scalable. This line of research is
timely inasmuch as parametric SVMs do not scale well for many applications, selection of
the appropriate kernel is not obvious, and parametric kernels may be inappropriate for this
task.

Although the results from our study and [45] suggest that EvoSVM with a nonlinear kernel
is promising, the runtimes are much longer than for cNB. In the near term, cNB may be the
better choice to semi-automate citation screening, especially when the number of citations is
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large. Finally, in our opinion, conditional random fields [53] and latent Dirichlet allocation
[54] might profitably be compared to variants of cNB and SVM.

5. Conclusion
We have demonstrated that machine learning classifiers can help identify NR studies
eligible for full-text screening by systematic reviewers. We have further shown that
optimization can markedly improve classifier performance. In our opinion, careful
comparative research is needed before a classifier is chosen to semi-automate screening
citations. Further, stability of performance for optimized classifiers needs to be
demonstrated over various medical review topics.
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Fig. 1.
Machine learning can reduce the number of citations needed to screen by systematic
reviewers.
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Fig. 2.
Recall varied with classifier and feature set (top), as well as citation portion (bottom).
BOW=bag of words; 2G=2-term n-grams; 3G=3-term n-grams; FULL=title, abstract, and
metadata; TIABS= title and abstract; ameloblastoma data.
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Fig. 3.
Mean recall and precision varied by information gain (IG) threshold. Complement naïve
Bayes (cNB) and evolutionary support vector machine (EvoSVM) surpassed both recall and
precision cutoffs when all features were selected or when the IG weight was >= 0.0001
(top). For k-nearest neighbor (k-NN), no points surpassed the recall cutoff (bottom).
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Table 2

Classifier performance after grid optimization with 10-fold cross-validation: ameloblastoma dataa

IG thresholdb Best parameter set MN recall (SD) % MN precision (SD) % MN F3 (SD) %

EvoSVMc

none C=20, pop size=10 89.46 (11.05) 14.01 (2.64) 58.15 (10.20)

0.0001 C=1, pop size=10 100.00 (0.00) 13.11 (1.37) 60.14 (5.58)

0.04 C=1, pop size=10 87.14 (9.71) 22.31 (5.90) 67.52 (14.52)

0.08 C=10, pop size=10 80.54 (14.03) 22.50 (6.16) 64.02 (14.65)

0.12 C=10, pop size=10 79.11 (15.53)  29.24 (6.51) 67.58 (13.77)

0.16 C=10, pop size=10 79.11 (15.53) 36.51 (7.87) 70.84 (13.27)

cNBd

none smoothing value=.001, normalized=true 97.32 (5.37) 8.72 (0.86) 48.27 (4.53)

0.0001 smoothing value=.4, normalized=false 74.82 (16.74) 39.54 (9.56) 68.69 (15.36)

0.04 smoothing value=.4, normalized=false 88.21 (10.93) 33.79 (6.23) 75.97 (11.50)

0.08 smoothing value=.001, normalized=false  80.36 (12.29) 32.50 (7.97) 70.04 (14.29)

0.12 smoothing value=.6, normalized=false 80.36 (15.65) 24.72 (5.04) 65.60 (12.38)

0.16 smoothing value=.001, normalized=true 71.25 (12.31) 38.98 (12.18) 65.80 (15.16)

k-NNe

none k=1 52.78 (12.35) 52.02 (11.69) 52.70 (7.04)

0.0001 k=1 32.86 (11.82) 47.30 (23.35) 33.90 (11.87)

0.04 k=1 31.07 (15.45) 41.05 (16.66) 31.84 (13.30)

0.08 k=1 38.04 (15.61) 47.99 (23.03) 38.84 (14.99)

0.12 k=1 47.32 (13.95) 58.33 (13.59) 48.23 (10.44)

0.16 k=5, weighted vote=true 44.64 (13.74) 12.15 (3.39) 35.22 (9.85)

a
Bag of words extracted from full citations.

b
IG=information gain; feature set size varies inversely with IG threshold.

c
EvoSVM = evolutionary support vector machine; radial kernel; Gaussian mutation; gamma=1.0; epsilon=0.1; C=1, 10, 20; population size=1, 10,

20.

d
cNB= complement naïve Bayes; smoothing values=.001, .4, .6, .8, 1.0; normalized class weights=true, false.

e
k-NN=k-nearest neighbor; k=1, 3, 5, 7 neighbors; weighted vote=true, false, n/a when k=1; cosine similarity measures.
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Table 3

Classifier performance after 10-fold cross-validation: enriched feature set, ameloblastoma dataa

IG thresholdb Best parameter set MN recall (SD) % MN precision (SD) % MN F3 (SD) %

EvoSVMc

0.0001 C=1, pop size=10 100.00 (0.00) 14.41 (1.87) 62.74 (7.01)

cNBd

none smoothing value=.001, normalized=true 100.00 (0.00) 10.96 (1.21) 55.18 (5.51)

k-NNe

none k=1 41.79 (18.04) 49.69 (20.78) 42.46 (15.99)

a
Bag of words extracted from full citations plus overweighted titles.

b
IG=information gain; number of features = 1677 when IG >=0.0001; 4607 features when IG threshold=none.

c
EvoSVM=evolutionary support vector machine; radial kernel; Gaussian mutation; gamma=1.0; epsilon=0.1; C=1, 10, 20; population size=1, 10,

20.

d
cNB=complement naïve Bayes; smoothing values=.001, .4, .6, .8, 1.0; normalized class weights=true, false.

e
k-NN=k-nearest neighbor; k=1, 3, 5, 7 neighbors; weighted vote=true, false, n/a when k=1; cosine similarity measures.

Artif Intell Med. Author manuscript; available in PMC 2013 July 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bekhuis and Demner-Fushman Page 22

Ta
bl

e 
4

C
la

ss
if

ie
r 

pe
rf

or
m

an
ce

 a
ft

er
 o

pt
im

iz
at

io
n 

an
d 

va
lid

at
io

n:
 in

fl
ue

nz
a 

da
ta

G
ri

d 
op

ti
m

iz
at

io
n 

w
it

h 
10

-f
ol

d 
cr

os
s-

va
lid

at
io

na

IG
 th

re
sh

ol
db

N
 f

ea
tu

re
s

B
es

t p
ar

am
et

er
 s

et
M

N
 r

ec
al

l (
SD

) 
%

M
N

 p
re

ci
si

on
 (

SD
) 

%
M

N
 F

3 
(S

D
) 

%

E
vo

SV
M

c

no
ne

68
28

C
=

20
, p

op
 s

iz
e=

20
74

.7
2 

(1
0.

37
)

7.
72

 (
1.

00
)

40
.0

0 
(5

.1
7)

0.
00

01
22

05
C

=
1,

 p
op

 s
iz

e=
10

10
0.

00
 (

0.
00

)
10

.6
9 

(0
.6

5)
54

.4
8 

(3
.0

2)

cN
B

d

no
ne

68
28

sm
oo

th
in

g 
va

lu
e=

.0
01

, n
or

m
al

iz
ed

 =
tr

ue
97

.6
4 

(3
.1

2)
7.

14
 (

0.
24

)
43

.0
6 

(1
.4

2)

0.
00

01
22

05
sm

oo
th

in
g 

va
lu

e=
.4

, n
or

m
al

iz
ed

=
fa

ls
e

69
.5

6 
(8

.7
1)

41
.0

2 
(7

.0
9)

65
.0

4 
(8

.8
0)

k-
N

N
e

no
ne

68
28

k=
1

36
.7

0 
(1

0.
51

)
34

.8
2 

(9
.4

2)
36

.5
0 

(9
.7

9)

0.
00

01
22

05
k=

1
24

.7
9 

(7
.3

8)
36

.7
3 

(1
3.

59
)

25
.6

2 
(7

.6
4)

10
-f

ol
d 

cr
os

s-
va

lid
at

io
n:

 e
nr

ic
he

d 
fe

at
ur

e 
se

tf

IG
 th

re
sh

ol
d

N
 fe

at
ur

es
B

es
t p

ar
am

et
er

 s
et

M
N

 re
ca

ll 
(S

D
) %

M
N

 p
re

ci
si

on
 (S

D
) %

M
N

 F
3 

(S
D

) %

E
vo

SV
M

0.
00

01
29

13
C

=
1,

 p
op

 s
iz

e=
10

10
0.

00
 (

0.
00

)
10

.7
4 

(0
.5

9)
54

.6
1 

(2
.7

3)

cN
B

no
ne

97
52

sm
oo

th
in

g
va

lu
e=

.0
01

,
no

rm
al

iz
ed

=
tr

ue

99
.5

2 
(1

.4
3)

7.
48

 (
0.

27
)

44
.6

2 
(1

.5
1)

k-
N

N

no
ne

97
52

k=
1

36
.7

3 
(1

3.
92

)
31

.8
6 

(9
.0

9)
36

.1
8 

(1
1.

35
)

a B
ag

 o
f 

w
or

ds
 e

xt
ra

ct
ed

 f
ro

m
 f

ul
l c

ita
tio

ns
.

Artif Intell Med. Author manuscript; available in PMC 2013 July 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bekhuis and Demner-Fushman Page 23
b IG

=
in

fo
rm

at
io

n 
ga

in
.

c E
vo

SV
M

=
ev

ol
ut

io
na

ry
 s

up
po

rt
 v

ec
to

r 
m

ac
hi

ne
; r

ad
ia

l k
er

ne
l; 

G
au

ss
ia

n 
m

ut
at

io
n;

 g
am

m
a=

1.
0;

 e
ps

ilo
n=

0.
1;

 C
=

1,
 1

0,
 2

0;
 p

op
ul

at
io

n 
si

ze
=

1,
 1

0,
 2

0.

d cN
B

=
co

m
pl

em
en

t n
aï

ve
 B

ay
es

; s
m

oo
th

in
g 

va
lu

es
=

.0
01

, .
4,

 .6
, .

8,
 1

.0
; n

or
m

al
iz

ed
 c

la
ss

 w
ei

gh
ts

=
tr

ue
, f

al
se

.

e k-
N

N
=

k-
ne

ar
es

t n
ei

gh
bo

r;
 k

=
1,

 3
, 5

, 7
 n

ei
gh

bo
rs

; w
ei

gh
te

d 
vo

te
=

tr
ue

, f
al

se
, n

/a
 w

he
n 

k=
1;

 c
os

in
e 

si
m

ila
ri

ty
 m

ea
su

re
s.

f B
ag

 o
f 

w
or

ds
 e

xt
ra

ct
ed

 f
ro

m
 f

ul
l c

ita
tio

ns
 p

lu
s 

ov
er

w
ei

gh
te

d 
tit

le
s.

Artif Intell Med. Author manuscript; available in PMC 2013 July 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bekhuis and Demner-Fushman Page 24

Table 5

Independent test results by classifier for influenza and ameloblastoma dataa

Evolutionary support
vector machine

Complement naïve Bayes k-nearest neighbor

Recall (%)

Full citationb

Influenza 79.44 97.20 29.91

Ameloblastoma 100.00 97.44 69.23

Full citation + weighted titlesc

Influenza 90.65 98.13 25.23

Ameloblastoma 100.00 94.87 58.97

Mean rankd, e 2.5 2.5 1.0

Precision (%)

Full citation

Influenza 8.20 7.30 30.48

Ameloblastoma 13.09 9.22 57.45

Full citation + weighted titles

Influenza 8.90 7.58 25.47

Ameloblastoma 13.40 10.95 60.53

Mean ranke 2.0 1.0 3.0

F3 (%)

Full citation

Influenza 42.51 43.56 29.97

Ameloblastoma 60.10 49.80 67.84

Full citation + weighted titles

Influenza 47.25 44.71 25.25

Ameloblastoma 60.74 53.71 59.12

Mean rankf 2.5 1.8 1.8

a
Using best training models after optimization and validation (see Tables 2–4).

b
Bag of words extracted from full citations.

c
Bag of words extracted from full citations plus overweighted titles.

d
Higher ranks associated with better performance.

e
Mean ranks significantly different for recall and precision: Friedman chi2 (2 df)=6, P=.0498 and Friedman chi2 (2 df)=8, P=.0183, respectively.

f
Mean ranks not significantly different for F3: Friedman chi2 (2 df)=1.5, P= .4724.
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