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Abstract
Genotyping of rare variants on a large scale is now possible using next-generation sequencing.
The sample selection is a crucial step in designing the genetic study of a complex disease and
knowledge of the efficiency and limitations of the population-based and family-based designs can
help making the appropriate choice.

The 9 contributions to the Group 5 of the Genetic Analysis Workshop 17 evaluated the
population-based and family-based designs by comparing the results obtained with various
methods applied on the mini-exome simulations. These simulations consisted of 200 replicates
comprising unrelated individuals and 8 extended pedigrees with genotypes and various
phenotypes. The methods tested for association with a population-based and/or a family-based
design, tested for linkage with a family-based design or estimated heritability.

In this paper, we summarize the strength and weaknesses of both designs. While a population-
based design seems more suitable to detect the effect of multiple rare variants, a family-based
design can potentially enrich the sample in very rare variants, for which the effect would be
concealed at the population level. However, as of today, the main limitation is still the expensive
cost of next-generation sequencing.
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INTRODUCTION
Complex diseases result from the interplay of multiple genetic and environmental factors.
To locate and identify common genetic variants involved in complex diseases, many
statistical methods based on genetic linkage and/or association have been proposed. In the
last five years, genome-wide association studies have successfully identified hundreds of
associations of common variants with complex diseases and traits [Manolio, 2010]. Yet, this
success is partially shadowed by the small portion of heritability explained by these
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associations. One possible explanation for this missing heritability is that rare variants with
moderate to strong effects might play a role in the inheritance of complex diseases [Bansal
et al., 2010; Eichler et al., 2010; Maher, 2008]. With recent improvements in next-
generation sequencing, testing this hypothesis is now at reach, but choosing the appropriate
sampling design needs to be considered early in the study. Furthermore, sequencing a whole
genome or exome is still expensive. So, comparing the power achieved while using
population-based or family-based designs is essential to select the most cost-effective
design.

To study the genetic basis of complex diseases, two broad types of sampling designs are
often used: the population-based and the family-based designs. The population-based design
consists in sampling affected and unaffected individuals who are unrelated, such as
population cohorts or case-control samples. The family-based design consists in either
ascertaining affected individuals with relatives, such as parents (trios), parents and siblings
(nuclear families) or larger families (extended pedigrees) or in collecting unascertained
related individuals (usually nuclear or extended pedigrees).

The Group 5 of the Genetic Analysis Workshop 17 (GAW 17) evaluated the population-
based and family-based designs by comparing the results obtained with various methods
applied on the mini-exome simulations. In this paper, we summarize the main topics
discussed by the 9 papers of Group 5 and the strengths and weaknesses of both sampling
designs.

GAW 17 DATA
The GAW 17 mini-exome simulations consisted of 200 replicates comprising 697 unrelated
individuals and 697 members of 8 extended pedigrees. Genotypes of 24,487 variants located
in 2305 genes were based on the pilot 3 study of the 1000 Genomes Project [Durbin et al.,
2010]. Fully informative markers provided the Identity By Descent (IBD) for pairs of
relatives at each gene, assuming no recombination within genes. Age, sex, population and
genotypes of individuals were the same for the 200 replicates. The dichotomous disease
phenotype, three quantitative traits (Q1, Q2, and Q4) and the smoking status were simulated
in each replicate according to the simulation model described in [Almasy et al., 2011].

The 9 contributions to the group 5 used different outcome variables. The outcome studied
was the dichotomous disease for 4 contributions [Fardo et al., 2011; Kazma et al., 2011; Lin
et al., 2011; Liu and Thalamuthu, 2011] Q1 for 5 contributions [Kazma et al., 2011;
Mahachie John et al., 2011; Saad et al., 2011; Shetty et al., 2011; Zhang et al., 2011b], Q2
for 1 contribution [Zhang et al., 2011a], and Q4 for 1 contribution [Shetty et al., 2011]. Two
contributions [Fardo et al., 2011; Kazma et al., 2011] split the 8 pedigrees provided in the
GAW 17 simulations into 194 trios without loss of individuals, whereas the 7 other
contributions used the 8 extended pedigrees [Lin et al., 2011; Liu and Thalamuthu, 2011;
Mahachie John et al., 2011; Saad et al., 2011; Shetty et al., 2011; Zhang et al., 2011a; Zhang
et al., 2011b] (Table I).

METHODS
The 9 contributions to the Group 5 applied various methods with different purposes to
analyze the 2 sampling designs available. Using the population-based design, 6 contributions
tested for genetic association through a generalized linear model or a non-parametric test
[Kazma et al., 2011; Lin et al., 2011; Liu and Thalamuthu, 2011; Mahachie John et al.,
2011; Saad et al., 2011; Zhang et al., 2011b]. Using the family-based design, 7 contributions
tested for genetic association and 2 contributions tested for genetic linkage [Kazma et al.,
2011; Lin et al., 2011; Liu and Thalamuthu, 2011; Mahachie John et al., 2011; Saad et al.,
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2011; Zhang et al., 2011a; Zhang et al., 2011b]. In addition to single marker tests, all
participants aggregated rare variants when testing for association with both sampling
designs. Finally, Fardo et al., [2011] explored 3 methods combining the population-based
and family-based designs to test for genetic association and Shetty et al. [2011] applied 3
methods to estimate heritability using the population-based or the family-based designs
(Table I).

Association tests
Aggregation of rare variants—To improve the power of association tests with rare
variants, several methods proposed to aggregate rare variants within a specific region, e.g. a
gene [Han and Pan, 2010; Hoffmann et al., 2010; Li and Leal, 2008; Madsen and Browning,
2009; Morgenthaler and Thilly, 2007; Morris and Zeggini, 2010; Price et al., 2010]. For a
comprehensive review of these methods see in this volume of the Journal [Dering et al.,
2011]. In the Cohort Allelic Sum Test (CAST), all variants below a frequency threshold are
aggregated into an indicator variable set 0 for individuals with no variant and 1 for those
with at least 1 variant in the gene. A proportion score corresponding to the proportion of rare
variant sites with a rare allele can also be used to aggregate rare variants in the CAST [Li
and Leal, 2008]. The Combined Multivariate and Collapsing (CMC) method consists in
aggregating rare variants below a frequency threshold and including this score with all
common variants in a single model. Several contributions assessed whether aggregating rare
variants improved the power to detect “causal genes” (i.e., genes harboring causal variants),
in particular when using a family-based design [Lin et al., 2011; Liu and Thalamuthu, 2011;
Mahachie John et al., 2011; Saad et al., 2011; Zhang et al., 2011b].

Saad et al. [2011] and Zhang X. et al. [2011] compared the power and false positive rates of
the single marker test and 5 aggregating methods applied to population-based and family-
based association tests : the indicator and proportion scores used in CAST, the CMC, the
Variable Threshold and the Weighted Sum methods [Li and Leal, 2008; Madsen and
Browning, 2009; Price et al., 2010]. Setting the frequency threshold defining rare variants at
1 % or 5 % was also assessed and a modified version of CMC was proposed, where variants
with a minor allele frequency (MAF) below 1 % and variants with a MAF between 1 % and
5 % are aggregated separately [Saad et al., 2011].

However, when multiple covariates need to be adjusted for, the CMC method often fails to
converge and to provide parameter estimates [Kazma et al., 2011]. To deal with this issue,
the Principal Component and Collapsing (PCC) method uses a Principal Component
Analysis (PCA) to summarize the genetic information of aggregated rare variants and
individual common variants in a gene. The first Principal Component (PC) is then used in a
regression model to test for the effect of the gene [Kazma et al., 2011]. The PCC was
compared to the Weighted Sum [Price et al., 2010] and to the Step-Up [Hoffmann et al.,
2010] methods. An extension of PCC to analyze trios is also implemented.

A non-parametric association test, the Model-based Multifactorial Dimensionality Reduction
(MB-MDR) [Calle et al., 2008], was recently extended to family-based designs: FAM-MDR
[Cattaert et al., 2011]. Mahachie et al. [2011] compared the power and false positive rates of
MB-MDR and FAM-MDR to their parametric counterparts, the Lasso penalized regression
[Tibshirani, 1996] and the PBAT screening approach followed by the FBAT statistic [Van
Steen et al., 2005]. In particular, they assessed whether aggregating rare variants with an
indicator score could increase the power to detect association using a non-parametric test.

Familial relatedness—When testing for association using large pedigrees, affected and
unaffected individuals are related and the correlation between their genotypes must be
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accounted for. Three methods to adjust for familial relatedness have been assessed by
contributions to the Group 5.

The first method uses a Unified Mixed Model (UMM) correcting for population
stratification and familial relatedness [Zhang et al., 2011a]. Population stratification is
accounted for by incorporating in the model the first 10 PCs using all variants with a MAF
above 10 % as a fixed effect variable, whereas familial relatedness is accounted for by
incorporating the kinship matrix as a random effect variable. Zhang Q et al. [2011]
evaluated two methods to derive the kinship matrix using either the pedigree information or
the Identity By State (IBS) allele sharing matrix. The second method uses the kinship matrix
derived from the pedigrees to adjust the logistic model with generalized estimating
equations (GEE) [Liu and Thalamuthu, 2011].

Finally the third method uses the Modified Quasi-Likelihood Score test (MQLS) adapted
from the Case-Control Quasi-Likelihood Score test (CC-QLS) [Bourgain et al., 2003].
Compared to the CC-QLS test, the MQLS test can improve power because it relies on the
property that variants are enriched in affected individuals with affected relatives [Thornton
and McPeek, 2007]. Lin et al. [2011] extended this method to analyze aggregated rare
variants.

Combination of family-based and population-based designs—A valuable
approach involves combining the population-based and family-based designs. Such a
situation often arises when a family sample used to test for linkage is enriched with a sample
of unrelated cases and controls to test for association. Fardo et al. [2011] examined the
properties of 3 methods to combine family-based and population-based designs. The first
approach uses simultaneously two samplings: the trios and the unrelated controls with the
cases from the trios. After verifying that the estimators of the genetic effect obtained by each
sampling designs are consistent, a weighted least square estimator is constructed and used to
test for the genetic effect [Chen and Lin, 2008]. The second and third approaches use trios
and unrelated cases and controls. In the second approach, unrelated individuals (cases,
controls and parents of trios) are used to calculate PCs and correct for population
stratification. Then a covariance between genotypic and phenotypic residuals is calculated
and used as test statistic adjusting for within family correlation [Zhu et al., 2008]. In the
third approach, a multivariate GEE-based score test [Lange et al., 2003] is calculated for the
unrelated sample (cases-controls and parents) and for the related sample (offspring)
separately and then both score tests are added. Adjustment for population stratification is
done using a standard PCA for the unrelated sample and a TDT-like PCA for the related
sample [Zhang et al., 2009].

Linkage tests
Two genetic linkage approaches were applied to the family-based design (Table I–B). In the
first approach, a 2 degrees of freedom chi-square statistic compared the IBD distributions
between pairs of cases and pairs of controls sampled from the 8 pedigrees [Liu and
Thalamuthu, 2011]. In the second approach, two-points linkage LOD scores at the 9 genes
containing causal variants were calculated using the Sequential Oligogenic Linkage
Analysis Routines (SOLAR) [Almasy and Blangero, 1998] and the provided IBD scores
[Zhang et al., 2011b].

Heritability estimation
Heritability was estimated for Q1 using the population-based (200 replicates) and the
family-based (4 random replicates) designs, adjusting for age, sex, and the smoking status
[Shetty et al., 2011] (Table I–C). In the family-based design, heritability was estimated using
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a polygenic mixed effect model applying the George-Elston transformation to normalize the
distribution of residuals obtained after adjustment for age, sex, and smoking status [George
and Elston, 1988]. In the population-based design, heritability was estimated as the
proportion of variance described by all variants under an additive model using the Ordinary
Least Square (OLS) [Yang et al., 2010] and the Restricted Maximum Likelihood (REML)
methods.

RESULTS
Type I error rate and power across association methods

The type I error rates of the methods was assessed by 5 of the contributions [Fardo et al.,
2011; Liu and Thalamuthu, 2011; Mahachie John et al., 2011; Saad et al., 2011; Zhang et al.,
2011a]. Three of them assessed the type I error rate using the average over the 200 replicates
of the false positive detections among all non-causative variants [Fardo et al., 2011], among
all non-causative genes [Liu and Thalamuthu, 2011], or for each of 7 non-causative genes
selected with characteristics (number of variants and MAF distributions) similar to the
causative ones [Saad et al., 2011]. Mahachie John et al. [2011] used the family-wise error
rate (FWER) and Zhang et al. [2011a] interpreted visually quantile-quantile plots.

When using the population-based design to test for association with the quantitative trait Q1,
most of the methods aggregating rare variants had inflated false positive rates. But after
adjusting on the first 5 PCs of the PCA of all common variants, most false positive rates had
the expected nominal α value (5%) [Saad et al., 2011].

MB-MDR and FAM-MDR also had inflated false positive rates (FWER of 0.13 and 0.065,
respectively), in particular for rare variants (MAF < 1 %) while the power to detect the
association of Q1 with the 11 causal variants located on chromosome 4 was quite low.
Moreover, when aggregating rare variants, the FWER increased drastically, rendering the
power comparisons difficult. The elevated FWER observed can be attributed to a limited
number of “problematic” rare variants [Mahachie John et al., 2011].

Whether using the pedigree-based kinship matrix or the IBS allele sharing matrix, adjusting
for familial relatedness using the UMM decreased false positive rates and increased the
power to detect the association of Q2 using a family-based design. However correcting for
population stratification using the first 10 PCs had little impact on false positive and power
rates of the association test with Q2 [Zhang et al., 2011a].

When adjusting for familial relatedness using GEE, the test of association with the disease
phenotype using a family-based design had an inflated false positive rate (on average 9.6%
at α = 5 %) [Liu and Thalamuthu, 2011].

Population-based versus family-based methods
Most methods to test for association, whether using a population-based or a family-based
design, had a high power to detect the effects of the genes FLT1 and KDR on Q1. With a
population based-design, the power of the single marker was 100 % and 74 % to detect
association of Q1 with any variant of FLT1 and KDR, respectively, at α = 5 %. With a
family-based design the power to detect association of Q1 with FLT1 and KDR was 95 %
and 61 %, respectively. When aggregating rare variants in the population-based design, the
power to detect association of Q1 with FLT1 was maintained except when rare variants are
defined with a lower threshold (1 % versus 5 %). However, when using the family-based
design, aggregating rare variants in FLT1 diminished substantially the power [Saad et al.,
2011]. The FLT1 and KDR genes harbor 13 and 4 causal variants among 35 and 16 variants,
respectively. Each of those 2 genes has 1 common causal variant with a population MAF of
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6.67 % and 16.50 % and an Odds-Ratio (OR) of 1.92 and 1.15 (association with Q1),
respectively [Almasy et al., 2011].

Interestingly, association tests with the family-based design had a high power to detect the
effects of VEGFA and VEGFC on Q1 (100 % at α = 0.01 %) [Saad et al., 2011; Zhang et
al., 2011b]. The VEGFA gene harbors 1 causal variant (C6S2981) with a population MAF
of 0.22 % and an OR of 3.34 among 6 variants, whereas VEGFC harbors only 1 causal
variant (C4S4935) with a population MAF of 0.017 % and an OR of 3.89. However, in the
family dataset the MAFs of the causal variants in VEGFA (C6S2981) and VEGFC
(C4S4935) are 3.3 % and 2.2 %, respectively.

In some cases, aggregating rare variants proved to be detrimental in particular when
common variants are not included in the model, such as in the CAST. Conversely,
aggregating rare variants improved the power to detect some other genes with causal rare
variants, but no single method did systematically better than the others. Analyzing Q1 using
the PCC approach to summarize common variants and the aggregated rare variants gave
results similar to a Weighted Sum or to the Step-Up method with the population-based
design. Using the PCC approach with the family-based design, VEGFA and FLT1 were the
2 genes with the strongest association, but did not reach the significance threshold after
correcting for multiple testing [Kazma et al., 2011].

When adjusting for familial relatedness using the MQLS method, the power to detect the
association of Q1 with VEGFC and VEGFA were respectively 99 % and 94.5 % at α =1.56
× 10−5. When collapsing rare variants with an indicator variable at a threshold of 1 %, the
power decreased drastically for the genes SIRT1 and VLDLR, but it increased slightly for
the genes SREBF1, PIK3R3, PLAT and FLT4 [Lin et al., 2011].

Combination of population-based and family-based designs
While the false positive rate was well controlled, the power of the 3 association tests
combining population-based and family-based designs were very low for rare variants (MAF
< 5 %). Averaging over all causal SNPs, the 3 tests had a power to detect association of the
disease phenotype with rare variants lower than the power to detect it with common variants.
However, high powers were observed for a few rare variants in particular when using the
multivariate GEE-based score test [Zhang et al., 2009]. For this test, the power to detect the
association of the disease phenotype with causal rare variants in VEGFA and VEGFC were
93.5 % and 80.5 % respectively, at α = 5%, but it also detected other causal rare variants in
SIRT1, VLDLR, KDR and PIK3C2B with power rates between 73 % and 40 %.

Type I error rate and power across linkage methods
The linkage test based on the differences of IBD distributions between pairs of cases and
pairs of controls suffered from an inflated false positive rate (on average 11.2 % at α = 5 %)
[Liu and Thalamuthu, 2011]. The two-point linkage analysis detected a strong linkage (LOD
score ≥ 3) for VEGFA and VEGFC in, respectively, 55 % and 63 % of the replicates.
However, the false positive rate of this method was not evaluated [Zhang et al., 2011b].

Heritability estimation
The mean heritability estimate for Q1 was 0.65 using the family-based design and 0.53
using the population-based design (calibrated REML). Heritability estimates using the
family-based design are reasonable but slightly overestimating the true heritability used to
simulate the data (0.58 for Q1). Conversely, the population-based methods are not adapted
to estimate heritability with data containing rare variants.
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DISCUSSION
The population-based and family-based designs detect different causal genes with rare
variants. Association tests using the population-based design detected the association of
FLT1 and KDR with Q1, even when using the single marker test. Indeed, both genes have a
causal common variant and multiple causal rare variants. Aggregating rare variants
improved the power to detect association with some genes, such as KDR, when the
threshold defining rare variants was not too low and when common variants were included
in the final model [Kazma et al., 2011; Saad et al., 2011; Zhang et al., 2011b]. However
when looking at each causal gene, there are no particular genetic models (number and MAFs
of causal variants) which seem to have a better power with any of the methods [Saad et al.,
2011].

The PCC method provides a quick and reliable alternative to consider common variants and
aggregated rare variants when multiple adjustments are done [Kazma et al., 2011].
Nonetheless, further assessments of the PCC method are needed. In particular the number of
PCs required in the regression model should be evaluated.

Several contributions identified inflated type I error [Liu and Thalamuthu, 2011; Mahachie
John et al., 2011; Saad et al., 2011; Zhang et al., 2011a]. Adjusting for population
stratification corrected for the inflated type I error when testing for the association with Q1
using a population-based design [Saad et al., 2011], but not when testing for the association
with Q2 using a family-based design [Zhang et al., 2011a].

The MB-MDR and FAM-MDR methods are flexible non-parametric tests that can handle
different types of genetic models including epistasis and gene-environment interactions with
population-based and family-based designs. With the GAW 17 simulation, those methods
had severely inflated false positive rates with low power to detect association with rare
variants [Mahachie John et al., 2011]. However, comparison of the false positive rates of
MB-MDR and FAM-MDR to the false positive rates of the other methods in Group 5 is not
possible. For MB-MDR and FAM-MDR, false positive rates were considered family-wise
(FWER), i.e. the proportion of datasets for which at least one non-causal variant (or non-
causal gene) has been declared significant. In contrast, for other methods, false positive rates
were considered for each non-causal variant (or non-causal gene) separately, not accounting
for multiple testing. However, Mahachie John et al. [2011] observed that removing a few
spurious rare variants decreased the FWER. This issue has also been reported in other GAW
17 groups [Luedtke et al., 2011].

Association tests using the family-based design detected FLT1 and KDR with a lower power
than those using the population-based design, as well as the causal rare variants of VEGFA
and VEGFC [Lin et al., 2011; Liu and Thalamuthu, 2011; Saad et al., 2011; Zhang et al.,
2011b]. However, caution should be taken to avoid inflation of false positive rates when
cases and controls are related (e.g., using extended pedigrees for a standard association test).
Using the IBS allele sharing matrix to adjust for familial relatedness requires no information
about the pedigree structure but has computational burdens. Conversely, if the pedigree
structure is available, the kinship matrix has been shown to be a good alternative [Zhang et
al., 2011a]. Assessing the empirical p-value using the classical permutation procedure,
where case-control statuses (or continuous trait values) are randomly reassigned to
genotypes, might be invalid in association tests with extended pedigree [Bourgain and
Génin, 2005]. Consequently, methods that account for the correlation between individuals
should be preferred when the pedigree structure is available.

Linkage tests using the family-based design detected VEGFA and VEGFC too, but did not
detect FLT1, nor KDR [Liu and Thalamuthu, 2011; Zhang et al., 2011b]. The linkage signal
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of VEGFA is only observed in family 7, whereas the linkage signal of VEGFC is only
observed in families 2 and 7 [Reference of the linkage group summary paper?].

Although, methods combining both designs had an overall power to detect causal rare
variants quite low, such approaches could be a good compromise to take advantage of both
designs [Fardo et al., 2011]. Incorporating aggregation of rare variants might increase
further the power to detect association with rare variants.

In a population sample “large enough”, all the rare variants present in the population will be
sampled. Of course, the larger the sample, the lower the frequency of rare variants sampled.
Conversely, in an extended pedigree, rare variants are sampled through a limited number of
founders and are then transmitted (or not) to their offspring. Therefore, family samples can
be enriched with one or multiple rare variants. In the GAW 17 simulations, we observed this
“founder effect” for the causal rare variants of the genes VEGFA (C6S2981) and VEGFC
(C4S4935) which had different frequencies between the population and the family datasets.
The fact that the genotypes were fixed among the replicates limited the possibility for other
rare variants to be selected by founders and transmitted to the offspring. This simulation
procedure explains why the power to detect the 2 causal rare variants of VEGFA and
VEGFC is very high (often 100%) and why the power of other variants, which never
occurred in any founder, is very low. Several rare variants in KDR and FLT1 genes had
lower MAFs in the family datasets than in the population datasets. In consequence, the
power for detecting association with these 2 genes using family datasets was reduced.

To take advantage of this “founder effect” in the family-based design, it will be important to
focus on developing clever ascertainment tools to select families, such as the sampling of
extreme phenotypes [Guey et al., 2011]. Comparing different family-based designs (trios,
nuclear families, various sizes of pedigrees) should be further investigated with more
realistic settings, such as generating missing data, or estimating IBD.

In conclusion, while a population-based design seems more suitable to detect the effect of
multiple rare variants, a family-based design can potentially enrich the sample in very rare
variants, for which the effect would be concealed at the population level. However, as of
today, the main limitation is still the expensive cost of next-generation sequencing.
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TABLE I

Summary of the data and methods used by Group 5 contributions

A. ASSOCIATION TESTS

Sampling design Method Aggregation methods
a Adjustment variables Contribution (outcome)

Population Based

Logistic/Linear regression

SM, CMC, CASTi,
CASTp, VT, WS Population Saad M et al. (Q1)

SM, CASTi, CASTp,
WS

Age, sex, smoking
Population Zhang X et al. (Q1)

PCC, WS, Step-Up Age, sex, smoking
Population

Kazma R et al. (Disease,
Q1)

SM, CASTi Population Lin P et al. (Disease)

MB-MDR SM, CASTi Mahachie J et al. (Q1)

Lasso penalized regression SM, CASTi Mahachie J et al. (Q1)

Logistic regression SM, CASTp Age, smoking status Liu T et al. (Disease)

Family Based
b

Measured genotype test (QTDT)

SM, CMC, CASTi,
CASTp, WS Saad M et al. (Q1)

SM, CASTi Age, sex, smoking
Population Zhang X et al. (Q1)

Score test (FBAT) PCC Age, sex, smoking Kazma R et al. (Disease,
Q1)

FAM-MDR SM, CASTi Mahachie J et al. (Q1)

PBAT screening + FBAT SM Mahachie J et al. (Q1)

Logistic regression| + GEE SM, CASTp Liu T et al. (Disease)

Modified quasi-likelihood score
test SM, CASTi Population Lin P et al. (Disease)

Unified Mixed Model CASTi Population Zhang Q et al. (Q2)

Population and

Family Based
b

Weighted least square estimator
of combined effects SM

Fardo DW et al. (Disease)Genotype-Phenotype covariance SM Population

FBAT-GEE SM Population

B. LINKAGE TESTS

Sampling design
a Model Adjustment variables Contribution (outcome)

Family Based
IBD analysis Liu T et al. (Disease)

Two point linkage (SOLAR) Age, sex, smoking Population Zhang X et al. (Q1)

C. HERITABILITY ESTIMATION

Sampling design
a Model Adjustment variables Contribution (outcome)

Population Based Linear mixed model (OLS / REML) Age, sex, smoking Shetty PB et al. (Q1)

Family Based Polygenic mixed effect (S.A.G.E. ASSOC) Age, sex, smoking Shetty PB et al. (Q1, Q4)

a
SM: Single marker test; CASTi: Cohort Allelic Sum Test (indicator variable); CASTp: Cohort Allelic Sum Test (proportion variable); CMC:

Combined Multivariate and Collapsing; VT: Variable Threshold; WS: Weighted Sum

b
Kazma et al. and Fardo et al. split the 8 extended pedigrees into 194 trios IBD: Identity By Descent; IBS: Identity By State; MB-MDR: Model-

Based Multifactor Dimensionality Reduction; FAM-MDR: Familial MB-MDR; MQLS: Maximum Quasi-Likelihood Score; OLS: Ordinary Least
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Square; PC: Principal Component; PCC: Principal Component and Collapsing; QTDT: Quantitative Transmission Disequilibrium Test; REML
Restricted Maximum Likelihood; SOLAR: Sequential Oligogenic Linkage Analysis Routine
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