Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):o2149. doi: 10.1107/S1600536812027018

2-[(E)-(4-Fluoro­benzyl­imino)­meth­yl]-4-methyl­phenol

Yue-Bao Jin a, Ying Zhang a, Yong-Kang Chang a, Ke-Wei Lei a,*
PMCID: PMC3393957  PMID: 22798822

Abstract

In the title Schiff base compound, C15H14FNO, the benzene rings make a dihedral angle of 72.75 (13)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, weak π–π stacking occurs between the phenol rings of inversion-related mol­ecules, the centroid–centroid distance being 3.7731 (14) Å.

Related literature  

For background and related compounds, see: Cohen et al. (1964); Xia et al. (2009).graphic file with name e-68-o2149-scheme1.jpg

Experimental  

Crystal data  

  • C15H14FNO

  • M r = 243.28

  • Monoclinic, Inline graphic

  • a = 15.0297 (9) Å

  • b = 6.1496 (3) Å

  • c = 14.3090 (9) Å

  • β = 104.142 (6)°

  • V = 1282.45 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.38 × 0.21 × 0.14 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • 9046 measured reflections

  • 2265 independent reflections

  • 1552 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.150

  • S = 1.10

  • 2265 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027018/xu5548sup1.cif

e-68-o2149-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S1600536812027018/xu5548Isup2.hkl

e-68-o2149-Isup2.hkl (113.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027018/xu5548Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.628 (3) 147

Acknowledgments

This project was supported by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University, China (No. Xkl09070).

supplementary crystallographic information

Comment

Schiff base have played an important role in the development of coordination chemistry (Xia et al., 2009) as they readily form stable complexes with most of the transition metals. Some of the reasons are that the N atom plays an important role in the formation of metal complexes, and that Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). Here we report on a new Schiff base.

The molecular structures of(I) illustrated in the Fig. 1. The C8 and N1 atoms form a 1.46 (4) Å single bond is longer than the double bond [1.28 (3) Å] formed by C7 and N1. The molecular structure is stabilized by an intramolecular O—H···N hydrogen bond.

Experimental

2-Hydroxy-4-methylbenzaldehyde (20 mmol, 2.72 g) and (4-fluorophenyl)methanamine (20 mmol, 2.5 g) were dissolved in ethanol respectively. Then put them together and the solution was refluxed for 30 min. Yellow powder precipitates when cooled to room temperature. After evaporation, a crude product was recrystallized twice from methanol to give yellow crystals.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93– 0.97, O—H = 0.82 Å). Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C15H14FNO F(000) = 512.0
Mr = 243.28 Dx = 1.260 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2338 reflections
a = 15.0297 (9) Å θ = 1.0–25.0°
b = 6.1496 (3) Å µ = 0.09 mm1
c = 14.3090 (9) Å T = 293 K
β = 104.142 (6)° Block, yellow
V = 1282.45 (13) Å3 0.38 × 0.21 × 0.14 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 1552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
Graphite monochromator θmax = 25.0°, θmin = 2.8°
ω scans h = −17→17
9046 measured reflections k = −7→7
2265 independent reflections l = −16→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4777P] where P = (Fo2 + 2Fc2)/3
2265 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.15 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.02053 (15) 0.5287 (4) 0.65069 (15) 0.0460 (6)
O1 0.10373 (12) 0.2040 (3) 0.63178 (13) 0.0702 (5)
H1 0.1454 0.2793 0.6633 0.105*
C7 0.10205 (17) 0.6427 (4) 0.70213 (16) 0.0553 (6)
H7A 0.0966 0.7852 0.7218 0.066*
C6 0.02389 (17) 0.3154 (4) 0.61582 (16) 0.0515 (6)
C5 −0.05629 (19) 0.2196 (4) 0.56346 (18) 0.0606 (7)
H5A −0.0550 0.0787 0.5402 0.073*
C3 −0.14383 (18) 0.5419 (4) 0.57872 (17) 0.0587 (7)
C2 −0.06444 (16) 0.6353 (4) 0.63143 (16) 0.0533 (6)
H2A −0.0671 0.7752 0.6553 0.064*
N1 0.18143 (15) 0.5538 (4) 0.72148 (15) 0.0637 (6)
C4 −0.13757 (18) 0.3317 (5) 0.54576 (17) 0.0624 (7)
H4A −0.1905 0.2642 0.5103 0.075*
C9 −0.23392 (19) 0.6640 (6) 0.5563 (2) 0.0902 (10)
H9A −0.2224 0.8168 0.5521 0.135*
H9B −0.2649 0.6388 0.6066 0.135*
H9C −0.2717 0.6140 0.4960 0.135*
C10 0.32939 (16) 0.7009 (5) 0.71083 (18) 0.0594 (7)
C8 0.25963 (19) 0.6878 (6) 0.7706 (2) 0.0798 (9)
H8A 0.2878 0.6250 0.8330 0.096*
H8B 0.2385 0.8328 0.7809 0.096*
F1 0.51784 (14) 0.7389 (4) 0.54697 (17) 0.1337 (9)
C15 0.38998 (19) 0.5337 (5) 0.7092 (2) 0.0754 (8)
H15A 0.3883 0.4105 0.7464 0.090*
C13 0.45416 (19) 0.7270 (6) 0.5999 (2) 0.0800 (9)
C11 0.33333 (18) 0.8798 (5) 0.6546 (2) 0.0701 (8)
H11A 0.2928 0.9943 0.6544 0.084*
C14 0.45313 (19) 0.5445 (6) 0.6536 (2) 0.0840 (9)
H14A 0.4937 0.4308 0.6529 0.101*
C12 0.3958 (2) 0.8944 (5) 0.5983 (2) 0.0795 (9)
H12A 0.3976 1.0163 0.5604 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0579 (14) 0.0454 (13) 0.0398 (12) −0.0019 (11) 0.0216 (10) 0.0035 (10)
O1 0.0752 (12) 0.0557 (11) 0.0887 (13) 0.0113 (9) 0.0373 (10) −0.0010 (10)
C7 0.0664 (16) 0.0565 (15) 0.0483 (13) −0.0059 (12) 0.0244 (12) −0.0014 (12)
C6 0.0675 (16) 0.0451 (14) 0.0507 (13) 0.0023 (12) 0.0312 (12) 0.0029 (11)
C5 0.0812 (18) 0.0508 (15) 0.0591 (15) −0.0124 (14) 0.0347 (14) −0.0112 (13)
C3 0.0670 (16) 0.0643 (17) 0.0475 (13) 0.0028 (13) 0.0191 (12) 0.0075 (13)
C2 0.0694 (16) 0.0446 (13) 0.0497 (13) 0.0042 (12) 0.0219 (12) 0.0033 (11)
N1 0.0596 (13) 0.0755 (15) 0.0597 (13) −0.0104 (12) 0.0216 (11) −0.0014 (11)
C4 0.0697 (17) 0.0713 (18) 0.0494 (14) −0.0164 (14) 0.0207 (13) −0.0049 (14)
C9 0.0684 (19) 0.105 (3) 0.092 (2) 0.0169 (17) 0.0095 (17) 0.018 (2)
C10 0.0463 (14) 0.0720 (18) 0.0561 (15) −0.0083 (13) 0.0050 (11) −0.0012 (14)
C8 0.0684 (18) 0.110 (2) 0.0631 (17) −0.0216 (17) 0.0198 (14) −0.0138 (17)
F1 0.1096 (15) 0.160 (2) 0.159 (2) −0.0252 (14) 0.0876 (15) −0.0185 (16)
C15 0.0673 (18) 0.074 (2) 0.0802 (19) −0.0018 (15) 0.0096 (15) 0.0124 (16)
C13 0.0612 (18) 0.097 (3) 0.089 (2) −0.0158 (17) 0.0329 (16) −0.009 (2)
C11 0.0580 (16) 0.0698 (19) 0.0807 (19) 0.0033 (14) 0.0136 (14) −0.0013 (16)
C14 0.0587 (17) 0.083 (2) 0.109 (3) 0.0091 (16) 0.0190 (17) −0.012 (2)
C12 0.078 (2) 0.075 (2) 0.087 (2) −0.0110 (17) 0.0240 (17) 0.0117 (17)

Geometric parameters (Å, º)

C1—C2 1.402 (3) C9—H9B 0.9600
C1—C6 1.409 (3) C9—H9C 0.9600
C1—C7 1.447 (3) C10—C11 1.373 (4)
O1—C6 1.352 (3) C10—C15 1.378 (3)
O1—H1 0.8200 C10—C8 1.508 (3)
C7—N1 1.280 (3) C8—H8A 0.9700
C7—H7A 0.9300 C8—H8B 0.9700
C6—C5 1.385 (3) F1—C13 1.360 (3)
C5—C4 1.371 (4) C15—C14 1.381 (4)
C5—H5A 0.9300 C15—H15A 0.9300
C3—C2 1.372 (3) C13—C12 1.349 (4)
C3—C4 1.387 (4) C13—C14 1.362 (4)
C3—C9 1.513 (4) C11—C12 1.381 (4)
C2—H2A 0.9300 C11—H11A 0.9300
N1—C8 1.466 (3) C14—H14A 0.9300
C4—H4A 0.9300 C12—H12A 0.9300
C9—H9A 0.9600
C2—C1—C6 118.4 (2) H9A—C9—H9C 109.5
C2—C1—C7 119.4 (2) H9B—C9—H9C 109.5
C6—C1—C7 122.2 (2) C11—C10—C15 117.7 (3)
C6—O1—H1 109.5 C11—C10—C8 120.7 (3)
N1—C7—C1 122.1 (2) C15—C10—C8 121.6 (3)
N1—C7—H7A 118.9 N1—C8—C10 110.2 (2)
C1—C7—H7A 118.9 N1—C8—H8A 109.6
O1—C6—C5 119.7 (2) C10—C8—H8A 109.6
O1—C6—C1 121.3 (2) N1—C8—H8B 109.6
C5—C6—C1 119.1 (2) C10—C8—H8B 109.6
C4—C5—C6 120.3 (2) H8A—C8—H8B 108.1
C4—C5—H5A 119.9 C10—C15—C14 121.6 (3)
C6—C5—H5A 119.9 C10—C15—H15A 119.2
C2—C3—C4 117.1 (2) C14—C15—H15A 119.2
C2—C3—C9 121.4 (3) C12—C13—F1 119.6 (3)
C4—C3—C9 121.5 (3) C12—C13—C14 122.7 (3)
C3—C2—C1 122.7 (2) F1—C13—C14 117.7 (3)
C3—C2—H2A 118.7 C10—C11—C12 121.8 (3)
C1—C2—H2A 118.7 C10—C11—H11A 119.1
C7—N1—C8 117.3 (3) C12—C11—H11A 119.1
C5—C4—C3 122.5 (2) C13—C14—C15 118.0 (3)
C5—C4—H4A 118.8 C13—C14—H14A 121.0
C3—C4—H4A 118.8 C15—C14—H14A 121.0
C3—C9—H9A 109.5 C13—C12—C11 118.2 (3)
C3—C9—H9B 109.5 C13—C12—H12A 120.9
H9A—C9—H9B 109.5 C11—C12—H12A 120.9
C3—C9—H9C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.90 2.628 (3) 147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5548).

References

  1. Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.
  2. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  3. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Xia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027018/xu5548sup1.cif

e-68-o2149-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S1600536812027018/xu5548Isup2.hkl

e-68-o2149-Isup2.hkl (113.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027018/xu5548Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES