Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 23;68(Pt 7):o2169. doi: 10.1107/S1600536812027651

2-Amino-3-nitro­pyridinium 4-hy­droxy­benzene­sulfonate

Yao-hui Lv a,*, Wei Zhang a, Hong Liu b
PMCID: PMC3393975  PMID: 22798840

Abstract

In the crystal structure of the title salt, C5H6N3O2 +·C6H5O4S, N—H⋯O and O—H⋯O hydrogen bonds link the cations and anions. The dihedral angle between the rings of the cation and anion is 79.91 (6)°.

Related literature  

For related structures, see: Nicoud et al. (1997); Akriche & Rzaigui (2009a,b ); Toumi Akriche et al. (2010); Koshima et al. (2004). For the design of second-order non-linear optical materials, see: Fur et al. (1998); Aakeröy et al. (1998). For information on the determination of non-linear optical properties, see: Kurtz & Perry (1968).graphic file with name e-68-o2169-scheme1.jpg

Experimental  

Crystal data  

  • C5H6N3O2 +·C6H5O4S

  • M r = 313.29

  • Monoclinic, Inline graphic

  • a = 9.0683 (19) Å

  • b = 13.5177 (16) Å

  • c = 10.9203 (17) Å

  • β = 94.042 (14)°

  • V = 1335.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.48 × 0.31 × 0.22 mm

Data collection  

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.879, T max = 0.942

  • 4067 measured reflections

  • 2005 independent reflections

  • 1989 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.063

  • S = 1.07

  • 2005 reflections

  • 194 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 825 Friedel pairs

  • Flack parameter: 0.05 (6)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027651/pk2420sup1.cif

e-68-o2169-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027651/pk2420Isup2.hkl

e-68-o2169-Isup2.hkl (98.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027651/pk2420Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.86 2.01 2.862 (2) 172
N1—H1B⋯O1 0.86 2.08 2.674 (2) 126
N3—H3A⋯O6 0.86 1.88 2.734 (2) 170
N1—H1B⋯O3i 0.86 2.57 3.125 (3) 123
O3—H3⋯O4ii 0.75 (3) 1.98 (3) 2.688 (2) 158 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported financially by the Youth Foundation of Anhui University of Technology.

supplementary crystallographic information

Comment

Research on new materials with large nonlinear optical (NLO) efficiencies has been extensively developed in the past two decades. A promising crystal-engineering strategy is to design organic cocrystals, using molecules with large macroscopic susceptibility components (Nicoud et al., 1997). As an excellent donor-acceptor system with high susceptibility, 2-amino-3-nitropyridine cation has two electron-accepting centres, namely the NH2 amino-group and NH+ group in the pyridinium ring (Aakeröy et al., 1998). Therefore, it is possible to utilize the cation of 2- amino-3-nitropyridinium as a nonlinear optical component to assemble potential NLO materials. Though several crystal structures based on the 2-amino-3-nitropyridine cation had been reported (Akriche & Rzaigui, 2009a,b; Toumi Akriche et al., 2010), to the best of our knowledge, the title complex in the present work is the first example of a NLO crystal with an efficiency as large as ten times that of the KDP standard (Kurtz & Perry, 1968). The asymmetric unit contains one anion and one cation that are shown in Fig. 1. Hydrogen bonding interactions, which construct a three-dimensional network, are listed in table 1. The crystal structure is stabilized by several hydrogen-bonding interactions formed within the crystal structure. These interactions link the cations and anions together in a complex spatial geometry, displayed in Fig. 2.

Experimental

The title complex was synthesized from the mixture of 2-amino-3-nitropyridine with stoichiometric 4-hydroxybenzenesulfonic acid in ethanol solution. The reaction mixture was stirred for four hours and slowly heated to 45°C yielding a clear solution. After solvent evaporation at controlled temperature for several days, yellow block-shaped crystals were obtained in 90% yield. For second-harmonic generation (SHG) experiments (Kurtz and Perry, 1968), the polycrystalline samples were ground into powder and sieved using a series of mesh sizes in the range of 74–100 µm, and the SHG intensity was compared with KDP crystal.

Refinement

All the H atoms bound to carbon and nitrogen were placed at idealized positions with respective bond lengths of C—H = 0.93 to 0.97 Å and N—H = 0.89 Å. and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C, N). The O-bound H atom was located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Non-hydrogen atoms are shown with the displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound viewed along the c axis, showing hydrogen-bonding associations as dashed lines.

Crystal data

C5H6N3O2+·C6H5O4S 2-Amino-3-nitropyridine 4-hydroxybenzenesulfonate
Mr = 313.29 Dx = 1.558 Mg m3
Monoclinic, Cc Melting point: 481 K
Hall symbol: C -2yc Mo Kα radiation, λ = 0.71073 Å
a = 9.0683 (19) Å Cell parameters from 1991 reflections
b = 13.5177 (16) Å θ = 3.0–27.5°
c = 10.9203 (17) Å µ = 0.28 mm1
β = 94.042 (14)° T = 293 K
V = 1335.3 (4) Å3 Block, yellow
Z = 4 0.48 × 0.31 × 0.22 mm
F(000) = 648

Data collection

Rigaku Mercury CCD diffractometer 2005 independent reflections
Radiation source: fine-focus sealed tube 1989 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.011
ω and φ scans' θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −10→10
Tmin = 0.879, Tmax = 0.942 k = −16→16
4067 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.3606P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2005 reflections Δρmax = 0.12 e Å3
194 parameters Δρmin = −0.20 e Å3
2 restraints Absolute structure: Flack (1983), 825 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.61553 (5) 0.16714 (3) 0.00229 (4) 0.03441 (13)
O1 0.27111 (18) 0.05257 (12) −0.51298 (15) 0.0525 (4)
O2 0.35055 (19) 0.09208 (11) −0.68818 (14) 0.0566 (4)
O3 1.09361 (18) −0.09220 (13) 0.20630 (15) 0.0517 (4)
O4 0.57072 (19) 0.22726 (11) 0.10356 (14) 0.0554 (5)
O5 0.49921 (15) 0.10255 (11) −0.04791 (14) 0.0475 (4)
O6 0.67629 (17) 0.22667 (11) −0.09397 (13) 0.0468 (4)
N1 0.4364 (2) 0.09853 (13) −0.30840 (16) 0.0513 (5)
H1A 0.4637 0.1008 −0.2314 0.062*
H1B 0.3651 0.0603 −0.3342 0.062*
N2 0.35713 (19) 0.09660 (12) −0.57633 (16) 0.0417 (4)
N3 0.61555 (19) 0.21303 (12) −0.34220 (15) 0.0407 (4)
H3A 0.6404 0.2109 −0.2648 0.049*
C3 0.9047 (3) −0.05629 (15) 0.0470 (2) 0.0453 (5)
H1C 0.9272 −0.1133 0.0045 0.054*
C4 0.9832 (2) −0.03311 (14) 0.15597 (17) 0.0369 (4)
C10 0.6574 (3) 0.28190 (19) −0.5342 (2) 0.0583 (6)
H3B 0.7071 0.3261 −0.5819 0.070*
C6 0.8393 (2) 0.11399 (14) 0.17267 (17) 0.0400 (5)
H4A 0.8172 0.1712 0.2149 0.048*
C11 0.6903 (3) 0.27529 (18) −0.4120 (2) 0.0514 (6)
H5A 0.7657 0.3142 −0.3753 0.062*
C9 0.5476 (3) 0.22104 (17) −0.58661 (19) 0.0485 (5)
H6A 0.5247 0.2231 −0.6709 0.058*
C2 0.7930 (2) 0.00511 (15) 0.00116 (18) 0.0417 (5)
H7A 0.7403 −0.0106 −0.0724 0.050*
C7 0.5037 (2) 0.15357 (14) −0.38655 (17) 0.0356 (4)
C8 0.4725 (2) 0.15784 (13) −0.51561 (17) 0.0348 (4)
C5 0.9519 (2) 0.05312 (16) 0.21828 (18) 0.0451 (5)
H10A 1.0069 0.0697 0.2905 0.054*
C1 0.7585 (2) 0.09035 (13) 0.06404 (17) 0.0303 (4)
H3 1.099 (3) −0.136 (2) 0.164 (3) 0.073 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0370 (3) 0.0340 (2) 0.0317 (2) 0.0036 (2) −0.00145 (17) 0.00220 (19)
O1 0.0457 (9) 0.0554 (9) 0.0561 (10) −0.0104 (7) 0.0020 (8) −0.0067 (8)
O2 0.0704 (12) 0.0594 (9) 0.0378 (8) 0.0024 (8) −0.0123 (8) −0.0111 (7)
O3 0.0527 (10) 0.0561 (9) 0.0451 (8) 0.0195 (7) −0.0039 (7) 0.0041 (7)
O4 0.0701 (12) 0.0529 (9) 0.0430 (9) 0.0280 (8) 0.0026 (8) −0.0038 (7)
O5 0.0361 (8) 0.0538 (8) 0.0510 (9) −0.0047 (6) −0.0078 (7) 0.0087 (7)
O6 0.0572 (10) 0.0455 (8) 0.0361 (8) −0.0100 (7) −0.0073 (7) 0.0109 (6)
N1 0.0538 (11) 0.0628 (11) 0.0362 (9) −0.0152 (9) −0.0041 (8) 0.0116 (8)
N2 0.0412 (10) 0.0407 (9) 0.0418 (10) 0.0083 (7) −0.0063 (8) −0.0073 (7)
N3 0.0378 (10) 0.0541 (9) 0.0295 (8) −0.0040 (7) −0.0038 (7) 0.0022 (7)
C3 0.0538 (14) 0.0403 (10) 0.0411 (11) 0.0096 (9) −0.0008 (10) −0.0083 (9)
C4 0.0339 (11) 0.0417 (9) 0.0350 (10) 0.0063 (8) 0.0006 (8) 0.0049 (8)
C10 0.0507 (14) 0.0799 (16) 0.0439 (13) −0.0221 (12) 0.0014 (10) 0.0151 (11)
C6 0.0438 (12) 0.0407 (10) 0.0345 (10) 0.0071 (8) −0.0045 (9) −0.0081 (8)
C11 0.0420 (12) 0.0671 (14) 0.0444 (12) −0.0167 (11) −0.0025 (10) 0.0023 (10)
C9 0.0490 (13) 0.0655 (14) 0.0304 (11) −0.0046 (11) −0.0022 (10) 0.0068 (10)
C2 0.0472 (12) 0.0412 (10) 0.0352 (10) 0.0068 (8) −0.0081 (9) −0.0083 (8)
C7 0.0335 (11) 0.0386 (9) 0.0341 (10) 0.0037 (7) −0.0020 (8) 0.0016 (8)
C8 0.0303 (11) 0.0424 (9) 0.0312 (9) 0.0028 (7) −0.0017 (8) 0.0002 (7)
C5 0.0461 (13) 0.0551 (11) 0.0326 (10) 0.0060 (9) −0.0067 (9) −0.0069 (9)
C1 0.0305 (10) 0.0322 (8) 0.0281 (9) 0.0021 (7) 0.0019 (7) 0.0017 (7)

Geometric parameters (Å, º)

S1—O5 1.4470 (15) C3—C4 1.379 (3)
S1—O4 1.4532 (15) C3—H1C 0.9300
S1—O6 1.4622 (15) C4—C5 1.389 (3)
S1—C1 1.7580 (19) C10—C11 1.350 (3)
O1—N2 1.232 (2) C10—C9 1.384 (3)
O2—N2 1.220 (2) C10—H3B 0.9300
O3—C4 1.365 (2) C6—C5 1.378 (3)
O3—H3 0.75 (3) C6—C1 1.387 (3)
N1—C7 1.314 (2) C6—H4A 0.9300
N1—H1A 0.8600 C11—H5A 0.9300
N1—H1B 0.8601 C9—C8 1.368 (3)
N2—C8 1.456 (2) C9—H6A 0.9300
N3—C11 1.350 (3) C2—C1 1.388 (3)
N3—C7 1.357 (2) C2—H7A 0.9300
N3—H3A 0.8600 C7—C8 1.419 (3)
C3—C2 1.376 (3) C5—H10A 0.9300
O5—S1—O4 112.97 (10) C5—C6—C1 120.34 (18)
O5—S1—O6 111.18 (8) C5—C6—H4A 119.8
O4—S1—O6 112.28 (8) C1—C6—H4A 119.8
O5—S1—C1 106.70 (8) N3—C11—C10 121.0 (2)
O4—S1—C1 106.05 (9) N3—C11—H5A 119.5
O6—S1—C1 107.19 (9) C10—C11—H5A 119.5
C4—O3—H3 107 (2) C8—C9—C10 120.65 (19)
C7—N1—H1A 120.0 C8—C9—H6A 119.7
C7—N1—H1B 120.0 C10—C9—H6A 119.7
H1A—N1—H1B 120.0 C3—C2—C1 120.45 (17)
O2—N2—O1 123.34 (18) C3—C2—H7A 119.8
O2—N2—C8 117.85 (19) C1—C2—H7A 119.8
O1—N2—C8 118.80 (16) N1—C7—N3 118.24 (16)
C11—N3—C7 124.10 (18) N1—C7—C8 126.78 (17)
C11—N3—H3A 117.9 N3—C7—C8 114.98 (17)
C7—N3—H3A 117.9 C9—C8—C7 121.06 (18)
C2—C3—C4 119.90 (18) C9—C8—N2 117.87 (17)
C2—C3—H1C 120.1 C7—C8—N2 121.05 (17)
C4—C3—H1C 120.1 C6—C5—C4 119.74 (17)
O3—C4—C3 122.25 (18) C6—C5—H10A 120.1
O3—C4—C5 117.58 (18) C4—C5—H10A 120.1
C3—C4—C5 120.17 (17) C6—C1—C2 119.37 (17)
C11—C10—C9 118.2 (2) C6—C1—S1 121.52 (15)
C11—C10—H3B 120.9 C2—C1—S1 119.10 (14)
C9—C10—H3B 120.9
C2—C3—C4—O3 179.0 (2) O2—N2—C8—C7 −168.96 (18)
C2—C3—C4—C5 −1.4 (3) O1—N2—C8—C7 11.4 (3)
C7—N3—C11—C10 −0.3 (4) C1—C6—C5—C4 −1.0 (3)
C9—C10—C11—N3 −1.8 (4) O3—C4—C5—C6 −178.49 (19)
C11—C10—C9—C8 1.6 (4) C3—C4—C5—C6 1.9 (3)
C4—C3—C2—C1 −0.1 (3) C5—C6—C1—C2 −0.5 (3)
C11—N3—C7—N1 −177.9 (2) C5—C6—C1—S1 −179.21 (16)
C11—N3—C7—C8 2.4 (3) C3—C2—C1—C6 1.0 (3)
C10—C9—C8—C7 0.6 (3) C3—C2—C1—S1 179.78 (18)
C10—C9—C8—N2 179.3 (2) O5—S1—C1—C6 −141.59 (17)
N1—C7—C8—C9 177.7 (2) O4—S1—C1—C6 −20.9 (2)
N3—C7—C8—C9 −2.6 (3) O6—S1—C1—C6 99.23 (19)
N1—C7—C8—N2 −0.9 (3) O5—S1—C1—C2 39.69 (19)
N3—C7—C8—N2 178.80 (16) O4—S1—C1—C2 160.38 (17)
O2—N2—C8—C9 12.3 (3) O6—S1—C1—C2 −79.49 (18)
O1—N2—C8—C9 −167.30 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O5 0.86 2.01 2.862 (2) 172
N1—H1B···O1 0.86 2.08 2.674 (2) 126
N3—H3A···O6 0.86 1.88 2.734 (2) 170
N1—H1B···O3i 0.86 2.57 3.125 (3) 123
O3—H3···O4ii 0.75 (3) 1.98 (3) 2.688 (2) 158 (3)

Symmetry codes: (i) x−1, −y, z−1/2; (ii) x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2420).

References

  1. Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. 8, 1385–1389.
  2. Akriche, S. & Rzaigui, M. (2009a). Acta Cryst. E65, o1648. [DOI] [PMC free article] [PubMed]
  3. Akriche, S. & Rzaigui, M. (2009b). Acta Cryst. E65, m123. [DOI] [PMC free article] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Fur, Y. L., Massea, R. & Nicoudb, J.-F. (1998). New J. Chem. pp. 159–163.
  6. Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807–811.
  7. Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813.
  8. Nicoud, J.-F., Masse, R., Bourgognea, C. & Evansa, C. (1997). J. Mater. Chem. 7, 35–39.
  9. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst E66, o300. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812027651/pk2420sup1.cif

e-68-o2169-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027651/pk2420Isup2.hkl

e-68-o2169-Isup2.hkl (98.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812027651/pk2420Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES