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ABSTRACT
A statistical method for finding the nucleotide positions in tRNA

sequences that correlate with amino acid specificity has been developed. The
procedure involves finding the subset of nucleotide positions and groups of
positions where the marginal density of one amino acid tRNA class does not
overlap that of any other amino acid class. The procedure is an application
of a statistical method known as the Expectation Maximization algorithm.

INTRODUCTION

We are developing computer-assisted methods to search tRNA sequences for

nucleotide positions that correlate with amino acid specificity. Our goal is

to obtain predictive information for laboratory experiments designed to

disclose the nucleotides in tRNA molecules that carry the amino acid

specificity determinants for the aminoacyl-tRNA synthetases. The method

described below makes use of a data set containing a number of isoacceptor

tRNA chains for each amino acid. The method locates the nucleotide positions

and conbinations of positions unique to each amino acid class. This paper

presents a statistical formulation of the problem, followed by development of
an algorithm to obtain a solution. In the algorithm, the subset of

nucleotide positions is found over which the density of one amino acid tRNA

does not overlap the density of any other amino acid class. The density

represents a multivariate histogram of four cells at each variable position in

a tRNA sequence.

RESULTS

Statistical Formulation - Let X i-1,2,...,N denote the vectors, one for

each tRNA sequence. The number of dimensions in each vector corresponds to

1 A Fortran 77 listing of the algorithm will be provided free of charge on
written request to William H. McClain.
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the nunber of residues in the tRNA chain (e.g. 76). Now, let {(X1, Y1),

.'(XN'YN) I be the data set complete with their identifiers, Yj, i-i,...,N.
The Yi's are integers taking values from 1 to M, identifying the class to

which the observation (tRNA sequence) Xi belongs.

Knowledge of the complete sequence vector j gives us the value of the

identifier Yi.0 The question is: are there subsets of variables (positions and

nucleotides in those positions) in vector X which by themselves are sufficient

to assign a tRNA sequence to an amino acid class? The answer will allow us to

precisely identify the tRNA positions that correlate with the 20 amino acid

classes.

Let Xk k ) =Ak,.. .,Xk ) be the subset of variables constructed±kiA00::,ke)th varialesk
by taking ki ,...,ke variables of vector X. Consider the conditional

probability (reference 1) that the identifier of ith observation X is Yie,

given that we have the subset Xi(k k )

1J(klp**,ke)f (Xi(kl,.oo,ke))
(1]P(YiuiIXi(k.1*.,ke ) .

e

J-1,. .. ,M (nunber of groups); i-l,... ,N (number of observations)

where 0h(kl..,k) are the marginal prior probabilities and

fh (4(ki *ke)) are marginal densities of M classes (h=1,2,...,M).
Marginal densities fh(X(k . . k )) are e-variate histograms, constructed by
using the observations, i s, be¶onging to the class h.

Suppose we are equally likely to assign a tRNA sequence to any amino acid

class if we consider only a subset of the variables. Then we initially

take eh(k k) = for h-1,2,...,M.

We have f (xi(k k

i(k1, . ..I,k)(iX)M

h-1 l* e

in1p...,M; i' 1ooo,nh; I nh-N
h-l

Here, we are allocating nh observations of class h to M classes by fractions,

using only the information coming from the subset X(k k) of observation

vectors.
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Next, we aggregate these fractions over the observations coming from a

specific class to obtain the current value h(p+l)

.kPe,k)d'
(p+ 1 nh

n(hh(k,*.. ek) nh i-1 i(k1, ** ,ke) )

where nh is the number of sequences belonging to class h (=1,2,... ,M).

Then, we use the new 0h(k k values in the "allocation" step to

calculate new values for h i(k,e k )(j), and continue the iteration until

convergence. The final value of eh(k k , obtained at the end of

iteration, can be taken as a measure of identifying power of the subset

±(k leeolke) for category h. This statistical algorithm is analogous to the

EM algorithm of Dempster et al. (reference 2), with the "allocation" step

corresponding to the E step (Expectation step) and the "aggregation" step

corresponding to the M step (Maximization step). To select subsets that are

identifiers we consider:

[3] max 0h(k ,0...k

(k1...,ke )eA (1 e)

where A is the set of all possible combinations of variables with

kl<k2<... <ke, e-1,2,... ,L, and L is 76 (or more), and 0 4 0h(k k
If 0h'k ..,k ) = 1 for class h when the subset Xk,...,k lsuse4d thenI1f' e)
the subset X!k k) is a perfect identifier for class h as far as the

given set of observations N is concerned. Therefore, first we try to

ascertain if there are subsets over which

6
il ~~~for j-hJ (k1, * * ,ke to for J th 12...,M

From equation [1] we see that 6h(k ,..,k = 1 is achieved when the density

fh (i(ki **,ke)) is non-overlapping witfi the density fj(4(ki .*O,ke)) for

all J*h, J=1,..., M. That is,

ffh(X(k 1...,k ) ) fi (X(k 1***,ke) ) (k 1 * 0 for h*j.

Computer Algorithm To Find Non-overlapping Subsets - From equations [1] and

[2] we obtain

eh(k, .O..,k)

if 0 for i = 1,***.,n
fh(Xi(k1*,...,k h
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a) b)
Pos5ron number ALA-1 ALA-2

Amino Nucleotide 1 2 3 4 5 1 2 3 4 5
acid 1 2 3 4 5 ALA-1 G G G G G

ALA-1 G G G G G ALA-2 G GG G C

ALA-2 G G G G C ARG-1 S D D D D S DD D S
ARG-2 S D D D D S DD D S

ARG-1 G C A U C ARG-3 S D S D D S DS D S
LEU-1 S D SDD S DSD D

ARG-2 G C A U C LEU-2 S D D S S S DD S D

ARG-3 G C G C C LEU-3 S D D D S S DD D D

LEU-1 G C G A A -posio (21 J2l -
LEU-2 G C C G G One ALA diSCnminotors AllocattosOQuene Tw p t* r(3,4), (3,4Ct)OfLEU-3 G C C C G Ldse criminotorst(35)j t(4,5) j

All ALA dw 2nmintL}J
secuences Tv.O-h ft(,(3,4)) grgto

Ldscnminators ]rgJ

Figure 1. Identification of Discriminators.
(a) The first five nucleotide residues of two alanine tRNAs, three arginine
tRNAs, and two leucine tRNAs. The sequences are arbitrarily labeled (-1, -2,
-3). The sequence LEU-2 is artificial (to help illustrate the method).
(b) Discrimination matricies for the two ALA sequences. D, different
nucleotide. S, same nucleotide. Allocation and aggregation steps are
indicated at the bottom right. Nucleotide positions in the intersection-sets
are given in the last two rows.

when the e-variate histogram of class h over the subset X k) does not

overlap with that of any other amino acid class.

To obtain the non-overlapping subsets, the positions in individual

sequences of one amino acid class are compared with the same positions in

individual sequences belonging to the other 19 amino acid classes. As a

result of these comparisons, we obtain nh matrices of dimension (N-nh)xL,

where L is, again, the length of the sequence. Elements of these

"discrimination matrices" are: (D), when the nucleotide of a sequence at a

certain position is different from the same position of another sequence; and

(S), when the nucleotide is the same. Consider the discrimination matrix for

alanine tRNA-1 (ALA-i) shown in Figure 1. The uninterrupted column of D's in

position 2 shows that this position discriminates ALA-i from sequences

belonging to all other amino acid classes. Position 2 is thus a

discriminating position for sequence ALA-1; note that it is also a

discriminating position for sequence alanine tRNA-2 (ALA-2). Pairs of

positions can also serve as discriminators for a given sequence. ALA-1 is

discriminated from the three arginine tRNAs (ARG-1-ARG-3) and three leucine

tRNAs (LEU-1-LEU-3) sequences by the presence of D's in column 2 or 4;
positions 3 & 5 are also a discriminating pair for ALA-1. Analogously, ALA-2

is discriminated by the pairs of positions 3 & 4 and 4 & 5. Locating the

discriminating positions (single or multiple) for individual sequences (e.g.
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ALA-1) constitutes the allocation step of our application of the EM algorithm

where II.(k k )(h) -1 for sequence i of class h.
1, e

In the subsequent aggregation step we find the discriminating positions

that are common to all isoacceptor sequences of a given amino acid class.

This operation produces the intersection of the non-overlapping subsets

obtained for sequences i-l,... ,nh of class h. The aggregation step

requires H i(k ke)(h) - 1 for i-l,... ,nh to obtain 9h(kli.., ,kerl; thus,

the subset Xk k) is in the intersection-set. Figure lb (bottom) gives

the elements of the intersection-set for the indicated sequences and

discrimination matrices. Position 2 is in the intersection-set of the one-

position discriminators. The pair of positions 3 & 4 is in the intersection-

set of the two-position discriminators. While the pairs 3 & 5 for ALA-1 and 4

& 5 for ALA-2 discriminate individual ALA sequences, they are not in the

intersection-set. There are no other multiple-position discriminators (three

or larger) for the ALA sequences in Figure 1. Though position 2 could combine

with any other (or more) position to give a unique pair (or more), such

combinations are redundant and thus are ignored when the algorithm is used.

DISCUSS ION

The goal of this work is to develop methods that provide insight into and

understanding of the structure of tRNA sequences. What makes a tRNA sequence

interesting as statistical entity is its high specificity and complexity,

including:

high dimensionality -- 76 positions;

a mixture of various tRNA types--20 amino acid classes;

nonhomogeneity--different relationships hold between variables

(positions) in different parts of the measurement vector (tRNA

sequence).

A difficulty with dimensionality is that, as it increases, the data points

become more sparse and spread apart. For example, a histogram that has 4

intervals (as is the case with tRNAs) in each dimension produces 4L cells in L

dimension (e.g. L-76 with tRNA sequences). For even moderate values of L, a

very large data set is needed to obtain a meaningful (i.e., predictive)

histogram.

Some of the features that make tRNAs attractive as statistical entities

have undoubtedly hindered identification of the amino acid information of

these molecules. Traditional biochemical techniques augmented with
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appropriate statistical methods offer a new approach. The method presented

above brings forward salient features of the data, discards the variables that

mask certain aspects via the 'noise' they contribute, and provides for the

analyst informative summaries of that information. It is important to

emphasize that, in practice, the method described performs best with large

data sets containing a number of isoacceptor tRNAs for each amino acid; this

produces variation on nucleotide positions needed to reduce the size of the

intersection-set.

We have applied the algorithm to a set of 65 tRNAs that function in E.

coli and S. typhimurium (unpublished). Five amino acid classes had one-

position discriminators; these can be identified by visual inspection of

aligned tRNA sequences. Use of the computer algorithm to locate the two-

position discriminators was important, however, with about ten million

comparisons needed to obtain this solution. Nineteen amino acid classes had

two-position discriminators; all twenty had three-position discriminators.

Operating on a Digital PDP-11/23 + computer, the altorithm requires 14 min cpu

time to locate nucleotide positions and combinations of positions unique to

each amino acid class. It will be important to assess the predictive value of

these computational results in laboratory experiments.
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