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Abstract
It takes effort and time to tame one's impulses. Although medial prefrontal cortex (mPFC) is
broadly implicated in effortful control over behavior, the subthalamic nucleus (STN) is
specifically thought to contribute by acting as a brake on cortico-striatal function during decision
conflict, buying time until the right decision can be made. Using the drift diffusion model of
decision making, we found that trial-to-trial increases in mPFC activity (EEG theta power, 4–8
Hz) were related to an increased threshold for evidence accumulation (decision threshold) as a
function of conflict. Deep brain stimulation of the STN in individuals with Parkinson's disease
reversed this relationship, resulting in impulsive choice. In addition, intracranial recordings of the
STN area revealed increased activity (2.5–5 Hz) during these same high-conflict decisions.
Activity in these slow frequency bands may reflect a neural substrate for cortico–basal ganglia
communication regulating decision processes.

It is widely believed that the prefrontal cortex (PFC) facilitates deliberative control over
behavior1,2, but many of the mechanistic details of this influence remain to be defined. Here
we describe how a PFC–basal ganglia system implements slower, more controlled decisions
during difficult choices. The mPFC has been proposed to instantiate control over behavior
based on an evaluation of endogenous or exogenous conflict3,4. When control is needed, the
mPFC communicates with the STN of the basal ganglia, which acts as a brake on the
cortico-striatal system to facilitate a more deliberative response process5,6. The STN
receives direct projections from the mPFC, forming a `hyperdirect' pathway that can rapidly
modulate cortico-striatal processing6–9. This architecture makes the STN ideally suited to
receive input from, and ultimately influence, processing of action selection in mPFC.
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Theories of cortico–basal ganglia functioning predict an interaction between mPFC and the
STN in the online regulation of behavior, particularly when habitual responses are
overridden to make planned and controlled responses. Although the mPFC is involved in
both the facilitation and inhibition of candidate motor actions, the STN is thought to
primarily inhibit the prepotent action10,11. According to this framework, mPFC-STN
communication serves to exert control in conditions in which cortico-striatal signaling
would induce impulsive responding. Although evidence supports this idea of a hyperdirect
pathway, much of it remains correlational (functional magnetic resonance imaging, white
matter tractography and nonhuman primate electrophysiology)7,10–13.

Disrupting STN function through high-frequency deep brain stimulation (DBS) is an
increasingly common treatment for Parkinson's disease, providing an opportunity to
manipulate the STN area while monitoring control over decisions and actions. As might be
expected, DBS can induce impulsivity in affected individuals' dayto-day lives14, and this
effect can be captured in the laboratory. A previous study reported that STN-DBS disrupted
the tendency to adaptively slow down when faced with difficult decisions15. On the basis of
computational modeling of basal ganglia function in decision making, it was proposed that
the mPFC influences processing in STN to modulate the decision threshold during response
conflict5, and that DBS interferes with this function, thereby leading to impulsivity.
Crucially, this abstract measure of decision threshold can be inferred from computational
modeling of response time distributions16. This model-based approach helps to parse
variance between multiple latent processes that have been suggested to be reflected in
accuracy and response time. As yet, however, there are no empirical data that demonstrate
such mPFC-STN interactions during conflict.

Electroencephalograpy (EEG) is commonly used to assess mPFC activities during conflict
and control3,4. Specifically, theta-band power over the mPFC increases following
punishment, error or conflict, and the degree of theta power increase predicts subsequent
response time slowing, suggesting a direct role in adaptive control17–19. Thus, this EEG
feature is a promising candidate for measuring the influence of mPFC on conflict-related
threshold adjustment while manipulating the effective functioning of the STN area via DBS
(see Fig. 1a).

Here we present evidence from two separate studies in which we manipulated or directly
measured activity in the STN area. Healthy participants and individuals with Parkinson's
disease performed a reinforcement learning and choice conflict task while concurrent EEG
was recorded. Affected individuals were tested twice, alternating between DBS ON or OFF
conditions. Response time and model-estimated decision threshold increased as a function of
cortical theta during response conflict, but this link between mPFC theta and decision
threshold was reversed with STN-DBS. Intraoperative recordings of the STN area provided
direct evidence of enhanced activity during these same high-conflict situations. We conclude
that the STN is important for facilitating adaptive cortico–basal ganglia responses in the face
of decision conflict.

RESULTS
Study I: OFF versus ON STN-DBS

Our reinforcement learning and choice conflict task involved multiple interleaved phases of
training, in which stimulus-reinforcement probabilities were learned, and testing, in which
participants were asked to select between novel stimulus combinations involving low (win-
lose) or high (win-win and lose-lose) decision conflict (Fig. 1b). There were no differences
between DBS conditions in learning the reinforcement probabilities or in the optimal
selection between them in the test phases (P values > 0.40), in median response times (P
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values > 0.17), or in response time variability (t values < 1) (Fig. 1c). To test the specificity
of ON and OFF DBS differences on conflict-related adaptation, we computed high-conflict
response times as the percentage change from low conflict and analyzed them as a function
of accuracy. A repeated-measures ANOVA for DBS (ON, OFF) × valence (win-win, lose-
lose) × accuracy (suboptimal, optimal) revealed significant main effects for valence (F1,13 =
18.49, P < 0.001) and accuracy (F1,13 = 5.43, P = 0.036) with a valence × accuracy
interaction (F1,13 = 4.56, P = 0.05). Response times were fastest on win-win trials,
suboptimal choices and the conjunction between the two, suggestive of impulsive
responding in the face of conflict.

Follow-up planned contrasts were computed for ON and OFF sessions separately. We found
main effects for valence (F1,13 = 5.67, P = 0.033) and accuracy (F1,13 = 14.07, P = 0.002) in
affected individuals in ON DBS sessions; they responded faster when making suboptimal
choices than when making optimal choices in both lose-lose (P = 0.009) and win-win (P =
0.012) cases (Fig. 1d). There was a main effect for valence (F1,13 = 17.89, P = 0.001), but
not accuracy (F < 1) in affected individuals in OFF DBS sessions; there were no significant
contrasts (P values > 0.12) between accuracy conditions in affected individuals in OFF DBS
sessions. Thus, high-conflict suboptimal choices appeared to be driven by premature
responding in affected individuals in ON, but not OFF, DBS sessions.

Study I: EEG and performance
Cues and responses elicited a robust increase in theta power and a suppression of beta power
(Fig. 2a), as seen previously in studies of conflict processing and reinforcement
learning17–20. Filtering removed the DBS artifact from the EEG (Online Methods). Notably,
there were no condition-wide effects of DBS on mPFC theta power, enabling us to test trial-
to-trial brain-behavior dynamics in the absence of DBS effects on mPFC itself. Thus, we
sought to determine whether trial-to-trial variations in mPFC theta were predictive of
conflict-related response time adjustment and whether this relationship was altered by STN-
DBS.

Previous studies computed the single trial relationships between error-related EEG theta
power and response time on the subsequent trial17–19. We computed the theta–response time
relationship to responses directly following cues that indicated an easy (low conflict) or
difficult (high conflict) decision. Within-condition estimates were computed as standardized
regression weights (β), with a larger positive weight indicating a stronger positive
correlation between theta power and response time. Note that these individual regression
weight analyses are independent of any general influence of DBS on the EEG recording,
which would be constant across trials.

Cue-related mPFC theta power predicted slower response times during high-conflict trials in
healthy control participants and affected individuals in OFF, but not ON, DBS sessions (Fig.
2b). There was a significant DBS × conflict interaction in the cue-locked regression weights
(F1,13 = 6.43, P = 0.025) with no main effects (Fig. 2c). Simple contrasts revealed a
difference between DBS conditions during high conflict (P = 0.006). There was no
difference between high-conflict valence conditions (win-win versus lose-lose) or when the
EEG data was time-locked to the response (Supplementary Figs. 1 and 2). To determine
whether the brain-behavior patterns seen in OFF DBS sessions are natural features of human
cognitive architecture and not specific to individuals with Parkinson's disease, we explicitly
compared the theta–response time relationships between healthy participants and affected
individuals in ON and OFF DBS sessions (Supplementary Results and Supplementary Fig.
3). Notably, controls did not differ from affected individuals in OFF DBS sessions in their
relationship between mPFC theta and response time adjustment (interaction, P = 0.91; high-
conflict contrast, P = 0.52). In contrast, in ON DBS sessions, this relationship was
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significantly different from controls (interaction, F1,77 = 6.38, P = 0.014), with a significant
contrast for high conflict (P = 0.013). In summary, cue-locked high-conflict mPFC theta
power predicted an increase in response time; STN-DBS abolished this adaptive slowing
and actually revealed an inverse mPFC–response time relationship. These patterns can be
accounted for using a computational model of action selection.

Study I: drift diffusion modeling
Given these EEG and conflict effects on response times, we sought to determine whether the
combined pattern of behavioral results could be accounted for by the hypothesized role of
mPFC-STN interactions on conflict-related adjustments in decision threshold. To this end,
we fit participants' choices with the drift diffusion model (DDM)16, the most widely used
mathematical model of two-alternative forced-choice decision-making tasks. DDM can
simultaneously account for the proportion of correct and error trials (or optimal and
suboptimal trials here) and the full response time distributions for these trials in each task
condition. In this framework, behavioral response time distributions are considered to be
observations that arise as a function of underlying latent parameters of a decision-making
model. Core parameters include the rate of evidence accumulation (drift rate), decision
threshold and non-decision time (capturing stimulus encoding and motor execution). Our
neural models suggest that, on stimulus presentation, the mPFC first generates candidate
actions as a function of their prior probabilities of execution given the stimulus. When there
is response conflict (reflected by similar levels of activation between alternative cortical
responses), the mPFC-STN network increases the decision threshold, buying more time for
the corticostriatal network to evaluate and compare their reward values. This leads to slower,
more dispersed response time distributions and, critically, a relatively lower proportion of
fast errors.

To test this hypothesis, we employed hierarchical Bayesian parameter estimation, which
deduces the posterior probability density of the diffusion model parameters generating the
observed data for the entire group of participants simultaneously, while allowing for
individual differences (see Online Methods). We estimated regression coefficients to
determine the relationship between trial-to-trial variations in mPFC theta power and decision
threshold in low- and high-conflict trials, and whether any such relationship interacted with
DBS status.

For affected individuals in OFF DBS sessions, decision threshold in high-conflict trials
increased in proportion to the degree of mPFC theta in those trials (P = 0.01; Fig. 3a). This
effect was not present in low-conflict trials (P = 0.11). Notably, this effect of theta on high-
conflict decision threshold was reversed when DBS was turned ON (P = 0.045), yet again
there was no effect on low-conflict trials (P = 0.23). This influence of DBS state on the
correlation between mPFC theta-band power and decision threshold under high conflict was
confirmed by a critical DBS × theta interaction under high conflict (P = 0.001), but not low
conflict (P = 0.39). These effects of theta and DBS on decision threshold were found even
after controlling for drift rate effects on trial type. Moreover, the data cannot be explained by
assuming that frontal theta modulates drift rate (which would also alter mean response
times, but have different effects on their distributions and error rates), demonstrating the
specificity of mPFC theta and STN-DBS in altering the latent decision threshold parameter
(see Supplementary Results and Supplementary Tables 1–3).

The relationship between mPFC theta and threshold preferentially applied to high-conflict
relative to low-conflict decisions (theta × conflict interaction; Fig. 3b). A positive interaction
indicated that the effect of mPFC on decision threshold was greater for high-conflict relative
to low-conflict trials. This positive interaction was significant in both the control group (P =
0.04) and in affected individuals in OFF DBS sessions (P = 0.02). Moreover, although
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control and affected individuals in OFF DBS sessions did not differ in the effects of mPFC
and conflict in modulation of decision threshold (P = 0.23), affected individuals in ON DBS
sessions showed the opposite relationship, differing from both control individuals (P = 0.03)
and OFF DBS sessions (P = 0.014).

Finally, we examined how the estimated change in decision threshold translates into
response time distributions (Fig. 3c). Higher theta/threshold was associated with more
dispersed response time distributions and a lower probability of fast suboptimal choices.
These Bayesian DDM parameter fits were corroborated by full DDM (non-hierarchical)
analysis using the fast-dm program21 (Supplementary Results and Supplementary Fig. 4).

Study II: intraoperative direct recording of the STN
With a nearly identical task, we tested individuals with Parkinson's disease during DBS
implantation. The subjects first performed the task 3–5 h before their surgical session, and
again during surgery for DBS implantation when STN area activity was recorded. In the pre-
surgical session, participants performed above chance on the training phase (t7 = 6.74, P =
0.001, mean = 68% accurate, s.d. = 8%), demonstrating that the task was well-learned before
surgery. Participants performed less well during surgery (M = 58% accurate, s.d. = 21%; this
was not significantly different, paired samples t test, P = 0.12), likely as a result of the
distraction and stress of the surgical environment (Supplementary Fig. 5).

Intracranial EEG recordings revealed low-frequency power enhancement and beta power
suppression in the STN area (Fig. 4). High-conflict conditions were specifically
characterized by a rapid diminishment in low-frequency power, followed by greater cue-
locked high-delta power (2.5 to 4 Hz) approximately 750 ms after stimulus presentation in
the dorsal STN electrodes, as well as greater post-response power (3–5 Hz) across all
electrodes. These findings provide evidence that decision conflict is reflected in local STN
area activity during the same period as those observed in mPFC and, notably, with similar
time courses as those observed in monkey single-unit recordings11. Similar effects were
seen in both win-win and lose-lose conditions (Supplementary Fig. 6), and in a post-hoc
analysis of a subgroup of the best performers (Supplementary Fig. 7). Together with the
results of study I, these findings are consistent with the suggestion that mPFC and STN
communicate in low-frequency bands to represent decision conflict and that STN-DBS
interferes with the normal ability of the STN to react to decision conflict (that is, by
modulating decision threshold).

DISCUSSION
Direct manipulation of and recording from the STN yielded electro-physiological evidence
for mPFC-STN interactions during conflict-instantiated control. Cognitive systems involved
in evaluating stimuli and adapting actions are known to be instantiated in cortico-striatal
circuits, including mPFC and STN5,7,10,11,15,17,18,22,23. High-frequency STN-DBS has been
proposed to compromise the dynamic functioning and self-regulation of this system, leading
to impulsive or poorly planned behaviors5,15. Our results identify a potential mechanistic
role of low-frequency band dynamics for instantiating conflict-specific communication in
this network.

In particular, we found that mPFC activity predicted an increase in the decision threshold
during high-conflict trials and that STN-DBS reversed this relationship: high mPFC theta
was associated with a speeding of response times and reduction of decision threshold. This
inverse relationship between conflict and response time resulting from STN-DBS has been
previously described for high-conflict win-win trials in which multiple high-value responses
result in impulsive responding5. Given the hypothesis that mPFC and STN interact to
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unidirectionally increase decision threshold6–9, this finding may seem surprising. However,
an a priori computational explanation15 of the pattern of response time and accuracy
findings that we observed suggests that, by disrupting the mPFC-STN route, DBS may
reveal the influence of parallel cortico-striatal mechanisms for facilitating high-value actions
and reducing decision thresholds23–25.

Simulations with the DDM have shown that, during reinforcement-based decisions,
thresholds are raised as a function of conflict in both neural models of basal ganglia and
healthy human participants (R. Ratcliff and M. Frank, unpublished data). We found that this
effect is related to increases in mPFC theta in both healthy control and affected individuals
in OFF DBS sessions, and that DBS interferes with this relationship. The specificity of
behavioral findings and replication across studies15 suggest that high-conflict suboptimal
choices in affected individuals in ON DBS sessions are likely to result from premature
responses. Our results extend these findings, demonstrating that this effect may be mediated
by mPFC-STN interactions, as formalized in terms of decision threshold. Although field
spread and antidromic stimulation of the cortex are possible side effects of STN-DBS, the
observation that reinforcement conflict is reflected in the STN area partially mitigates this
potential interpretative issue. Monkey electrophysiological recording data also support this
interpretation, in that mPFC and STN unit activity have been associated with behavioral
inhibition during controlled responding with short latencies from mPFC to STN10,11.

Alternatively, it is possible that mPFC-STN interactions are mediated indirectly, via mPFC
effects on the inferior frontal gyrus (IFG), which then inhibits behavior via STN. Indeed,
diffusion tensor imaging studies suggest that both mPFC and IFG project directly to STN7.
Combined transcranial magnetic stimulation and functional connectivity studies imply that,
although mPFC is necessary for behavioral inhibition, its effects are mediated via
projections to IFG and then STN13. Other neuroimaging findings suggest that decision
threshold is modulated by functional connectivity between mPFC and striatum, rather than
by STN23,24. However, these data are not mutually exclusive; although our results suggest
that the STN is involved in dynamically raising the threshold as a function of reinforcement
and decision conflict, other studies have focused on the role of mPFC-striatal
communication in reducing decision threshold in a speed-over-accuracy tradeoff23,24. In
fact, this type of cortico-striatal effect is posited to cause the win-win speeding observed in
affected individuals in ON DBS sessions, which is otherwise counteracted by intact STN
conflict processing15 (also see Supplementary Discussion).

Systems-level neural models of cortical-basal ganglia interactions suggest that both STN and
striatum exert modulatory effects that would be reflected in a change in decision threshold,
with different underlying mechanisms5,25. Some algorithmic models also posit that response
conflict is computed in the STN, and in the simple case of two responses, cortical-basal
ganglia circuitry precisely implements the diffusion decision process22. Although broadly
consistent with the neural models mentioned above and our data, this formulation suggests a
particular form of the function of conflict encoded by the STN, proportional to the sum of
the evidence across responses22. This function implies that STN activity would be greatest
in win-win, lowest in lose-lose and intermediate in our low-conflict win-lose condition.
Instead, our intraoperative recording data suggest that conflict is processed as a function of
similarity of the two response options (see Supplementary Fig. 6). Notably, this parallels an
influential theory of the representation of conflict in mPFC3, especially in regard to EEG
signals4.

Consistent with previous findings, mPFC theta power (4–8 Hz) enhancement was present
during both low-conflict and high-conflict trials, but it was only during high-conflict
situations that it was behaviorally relevant17–19. Activity in these low-frequency bands may
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reflect a neural substrate for cortico–basal ganglia communication during conflict-related
behavioral adjustment. It is notable that decision conflict reflected in the STN area is in the
same broad ~2.5–5-Hz range as is the frequency of Parkinson's tremor and associated
oscillations in the STN26,27. Models also exhibit slow STN oscillatory activity in the
dopamine-depleted state5,28, which are exacerbated with increased cortical conflict5.
Although speculative, this model predicts that higher amplitude tremor may be detectable
when affected individuals are faced with increased decision conflict.

In summary, we found that STN-DBS dynamically altered the coupling between low-
frequency cortical signals and conflict-related behavioral adaptation. Bayesian parameter
estimation using the drift diffusion model confirmed that this is a result of a disruption of an
mPFC-STN network that raises decision threshold following the evaluation of conflict.
Alteration of this network facilitated conflict-induced speeding, suggesting an interactive
cortico–basal ganglia mechanism by which STN-DBS induces impulsivity14. In addition,
intraoperative recordings demonstrated that the STN area is characterized by enhanced low-
frequency activity during learned high conflict situations. We conclude that the STN is
important for buying time for cortico-striatal systems to react and respond to conflict. Thus,
future research on DBS protocols may benefit from an attempt to preserve this low
frequency communication between mPFC and STN, to mitigate cognitive and impulsivity
side effects associated with DBS14,15,29.

ONLINE METHODS
Study I: oFF versus on STn-DBS

Subjects were referred to the study by their healthcare provider based on an assessment of
eligibility. Inclusion criterion included a diagnosis of mild to moderate idiopathic
Parkinson's disease as assessed by their physician, being over 40 years old, being medically
stable for 3 months after DBS surgery and their referring neurologist determining that they
could tolerate a period with the DBS unit turned off in a preliminary screening, absence of a
significant medical history not related directly to Parkinson's disease (for example, stroke,
head injury, clinical dementia, epilepsy, life-threatening concurrent illness such as
schizophrenia or manic depression, documented or suspected history of drug abuse and/or
alcoholism), and the presence of at least two of the following three symptoms: resting
tremor, rigidity and bradykinesia, All of the subjects gave informed consent and were
compensated $25 for their participation. We tested 19 individuals with Parkinson's disease
in both the ON and OFF DBS conditions. The research ethics committee of the University of
Arizona approved these experiments. Two individuals were unable to tolerate the DBS
stimulator being turned off and were sent home before completing the experiment.
Computer problems corrupted the data from another participant. Two participants failed to
learn the task according to criterion described below. The final sample for EEG and
behavioral data were taken from the remaining 14 participants (Supplementary Table 4).
Details of the control group participants can be found in the Supplementary Results.

The task consisted of a series of brief forced-choice training blocks with 16 trials, each
followed by a subsequent testing block with 16 trials (Fig. 1b). There were eight train/test
blocks, with an optional additional two train/test blocks per set that were performed if the
participants agreed. Participants performed these sets twice, once in the ON DBS and once
in the OFF DBS condition, in a randomized counterbalanced order. There was always a 30-
min break between the time that the stimulator was turned on or off and the beginning of
each task. Stimulus pictures were not repeated between blocks during the experiment, and
the association between any specific picture and training block / reward value was
randomized between participants. Most participants completed the maximum ten blocks in
each DBS condition (11 of 14 ON, 13 of 14 OFF); the others completed eight blocks.
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Study I: eeg recording and processing
Scalp voltage was measured using 62 Ag/AgCl electrodes referenced to a site immediately
posterior to Cz using a Synamps2 system (bandpass filter 0.5–100 Hz, 1,000-Hz sampling
rate). During pre-processing, data were low-pass filtered at 50 Hz and eyeblinks were
removed using independent components analysis30. The 50-Hz low-pass temporal filter
effectively removed the majority of the DBS artifact in the ON condition. Epochs were
transformed to current source density31, which acts as a spatial filter by computing the
second spatial derivative of voltage between nearby electrode sites. Data from the FCz
electrode were used for display and analysis.

Time-frequency calculations were computed using custom-written Matlab (MathWorks)
routines17–19. Time-frequency measures were computed by multiplying the fast Fourier
transformed (FFT) power spectrum of single trial EEG data with the FFT power spectrum of
a set of complex Morlet wavelets, and taking the inverse FFT. The wavelet family is defined
as a set of Gaussian-windowed complex sine waves, e−i2πtf e−t2 /(2*σ2), where t is time, f is
frequency (which increased from 2.5 to 50 Hz in 50 logarithmically spaced steps) and σ
defines the width (or number of cycles) of each frequency band, set according to 4.5/(2πf).
The end result of this process is identical to time-domain signal convolution. Power was
defined as Z(t) (power time series: p(t) = real[z(t)]2 + imag[z(t)]2), and was normalized by
conversion to a decibel scale (10 log10[power(t)/power(baseline)]), allowing a direct
comparison of effects across frequency bands. Values for statistical analysis were summed
(to get total area under the curve) over time and frequency (cue-locked, 350–550 ms, 4–8
Hz). For single-trial analyses, power was taken from the Hilbert transform of filtered (4–8
Hz) single-trial EEG. Epochs were baseline corrected for each frequency by the average
power from −300 to −200 ms before the onset of the stimulus.

Study I: statistical analyses and DDM
Two participants were removed from all analyses for failing to learn any blocks during one
of the ON or OFF sessions, set according to a criterion of >50% accuracy in each of the AB
and CD sets by the end of each block. Statistical tests for DBS differences in EEG theta
power were performed on difference scores (high – low conflict) to highlight conflict-
specific EEG events while controlling for global effects resulting from STN-DBS. Statistical
tests of the single-trial relationship between cue-locked theta power and immediate response
time were calculated as individual regression weights.

Estimation of the underlying decision-making process was accomplished by DDM
analysis16 of test phase choices (after learning). The DDM models two-choice decision
making as a noisy process accumulating evidence over time. Although the noisy
accumulation of evidence is most transparently applied in tasks involving noise in the
stimulus, the same process describes noise in neural processing for static stimuli, and in
value-based decision making accounts for dynamic shifts in attention from one option to the
other32. This process approaches one of two boundaries with a certain speed (drift-rate,
influenced by the amount of evidence conveyed by the stimuli). When one of the two
boundaries is crossed, the associated response is executed. The distance between the two
boundaries is called the decision threshold; larger thresholds lead to slower, but more
accurate, responding, as the influence of noise in the accumulation of evidence is reduced,
whereas smaller thresholds lead to faster, more impulsive responding with increased error
probability. Inter-trial variability in drift and non-decision time were estimated as well (see
Supplementary Results); simulations without these variability parameters provided a worse
fit to the data, but led to similar results).
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Hierarchical Bayesian parameter estimation using Markov-chain Monte-Carlo was used to
estimate posterior distributions of the DDM parameters33,34. This Bayesian form of analysis
allows simultaneous estimation of model parameters for the whole group, which constrains
estimation of parameters for each individual participant. There were 30,000 samples
generated from the posteriors; the first 10,000 (burn-in) and every second (thinning) were
discarded. Proper chain convergence was tested by comparing between-chain and inter-
chain variance35.

On the basis of prior theoretical work36, DBS and theta power were predicted to have an
effect on decision threshold while also allowing for different levels of difficulty to influence
drift rate (evidence accumulation). Thus, although all parameters including threshold were
estimated from the DDM likelihood functions translating response time distributions and
error rates to the underlying generative parameters, we also estimated the effects of other
observable variables on this threshold in the same hierarchical framework, threshold = a +
eDBS × DBSstatus + eθ × θ + einteraction × DBSstatus × θ, with a reflecting the intercept,
DBSstatus reflecting ON or OFF, and θ reflecting the single trial–estimated theta-band
activity (the same EEG data used in the individual regression weights in Fig. 2c). The
coefficients eDBS, eθ and einteraction provide weights to test the effect of DBS on decision
threshold (for average θ power), the effect of θ on decision threshold, and the interaction of
θ and DBS on decision threshold. The theta and interaction terms were estimated separately
for low-conflict and high-conflict trials. To ensure these effects were independent of trial-
type effects on drift rate, we estimated drift rates separately. To further test the specificity of
the findings, we constructed alternative models in which drift rate rather than threshold
varied as a function of θ and DBS; these models provided a worse fit to the data and did not
yield significant associations.

Bayesian hypothesis testing was performed by analyzing the probability mass of the
parameter region in question (estimated by the number of samples drawn from the posterior
that fall in this region; for example, percentage of posterior samples smaller than zero). This
leads to a direct probability measure denoted P that can be interpreted in a similar way, but
is not equivalent, to P values as estimated by frequentist methods. Additional analysis using
the Bayes factor and deviance information criterion can be found in the Supplementary
Results.

Study II: intraoperative recording of the STN
Eight participants with Parkinson's disease consented to participate. The research ethics
committee of the University of Arizona approved the study and all participants gave
informed consent. One participant reported here performed both the intraoperative procedure
and the ON/OFF study. Participant demographics are shown in Supplementary Table 5.

The task was very similar to the task used for Study I except that there were always four
train/test blocks, stimuli consisted of simple colored shapes, and there were a total of 34
low-conflict and 68 high-conflict (34 win-win and 34 lose-lose) test trials for each task.
Participants first performed the task in their hospital waiting room 3–5 h before the surgery
to become familiarized with the instructions and response demands. Performance data from
these two sessions (pre-surgery, surgery) are shown in Supplementary Figure 5.

Study II: intracranial EEG recording and processing
Intracranial EEG was recorded from a Medtronic 3387 stimulating electrode in the left STN
using a Synamps2 system (bandpass filter 0.05–500 Hz, 2,000-Hz sampling rate) referenced
to a mastoid site and grounded on the collarbone. Electrode placement was determined by
the surgical staff based on pre-operative stereotaxic planning, the firing pattern from the
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microelectrode recordings, and immediate clinical effectiveness of stimulation. The surgical
team sought to place the quadripolar electrode so that the distal (ventral) contact
corresponded to the ventral boundary of the STN as determined by microelctrode
recordings. The Medtronic electrode included four contacts, which were bipolar referenced
resulting in three separate recordings of STN area activity. These recordings are referred to
by their proximal location to each other: ventral, middle and dorsal, although their exact
location in regard to subnuclei of the STN is unknown.

Time-frequency calculations were identical to those used in study I. Permutation tests were
performed on the voltage difference between high- and low-conflict conditions using
custom-written Matlab routines. This process tests the null hypothesis that the data in the
high and low conflict conditions are interchangeable. First, paired sample t tests were
computed at each time-frequency point (pixel) of the empirical data. These tests were then
re-done 5,000 times with data randomly shuffled between high and low conflict conditions
within each participant. Each permutation used conditions with the same number of epochs
(by randomly selecting from the pool of the larger set) in order to control for unequal
weightings of evidence. Multiple comparison correction was done using weighted cluster-
based thresholding, sometimes known as exceedence mass37. The sum of the t values in
each cluster of significant voxels in the empirical data was thresholded to be larger than
97.5% of permuted significant clusters (separately for positive and negative t value clusters),
providing a two-tailed 5% level of family-wise error control of multiple comparisons. This
method provides a data-driven hypothesis test that identifies where conditions differ over
time-frequency space.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors express their gratitude to T. Norton and his surgical staff for their support during the intraoperative
recording sessions, L. Trujillo for a review of permutation methods, E.J. Wagenmakers for consultation on
Bayesian data analysis, J.J.B. Allen and E.F. Martino for laboratory resources that facilitated some data acquisition
and analyses, and K. Carlisle for help with subject recruitment. This project was funded by a grant from the
Michael J. Fox Foundation to M.J.F.

References
1. Miller EK. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 2000; 1:59–65.

[PubMed: 11252769]

2. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci.
2001; 24:167–202. [PubMed: 11283309]

3. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive
control. Psychol. Rev. 2001; 108:624–652. [PubMed: 11488380]

4. Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the
error-related negativity. Psychol. Rev. 2004; 111:931–959. [PubMed: 15482068]

5. Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision
making. Neural Netw. 2006; 19:1120–1136. [PubMed: 16945502]

6. Nambu A, Tokuno H, Takada M. Functional significance of the corticosubthalamo-pallidal
`hyperdirect' pathway. Neurosci. Res. 2002; 43:111–117. [PubMed: 12067746]

7. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA. Triangulating a cognitive control network
using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci.
2007; 27:3743–3752. [PubMed: 17409238]

Cavanagh et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2012 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



8. Inase M, Tokuno H, Nambu A, Akazawa T, Takada M. Corticostriatal and corticosubthalamic input
zones from the presupplementary motor area in the macaque monkey: comparison with the input
zones from the supplementary motor area. Brain Res. 1999; 833:191–201. [PubMed: 10375694]

9. Takada M, et al. Organization of inputs from cingulate motor areas to basal ganglia in macaque
monkey. Eur. J. Neurosci. 2001; 14:1633–1650. [PubMed: 11860458]

10. Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal
cortex. Nat. Neurosci. 2007; 10:240–248. [PubMed: 17237780]

11. Isoda M, Hikosaka O. Role for subthalamic nucleus neurons in switching from automatic to
controlled eye movement. J. Neurosci. 2008; 28:7209–7218. [PubMed: 18614691]

12. Fleming SM, Thomas CL, Dolan RJ. Overcoming status quo bias in the human brain. Proc. Natl.
Acad. Sci. USA. 2010; 107:6005–6009. [PubMed: 20231462]

13. Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF. Cortical and subcortical interactions
during action reprogramming and their related white matter pathways. Proc. Natl. Acad. Sci. USA.
2010; 107:13240–13245. [PubMed: 20622155]

14. Hälbig TD, et al. Subthalamic deep brain stimulation and impulse control in Parkinson's disease.
Eur. J. Neurol. 2009; 16:493–497. [PubMed: 19236471]

15. Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain
stimulation, and medication in parkinsonism. Science. 2007; 318:1309–1312. [PubMed:
17962524]

16. Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision
tasks. Neural Comput. 2008; 20:873–922. [PubMed: 18085991]

17. Cavanagh JF, Cohen MX, Allen JJ. Prelude to and resolution of an error: EEG phase synchrony
reveals cognitive control dynamics during action monitoring. J. Neurosci. 2009; 29:98–105.
[PubMed: 19129388]

18. Cavanagh JF, Frank MJ, Klein TJ, Allen JJB. Frontal theta links prediction errors to behavioral
adaptation in reinforcement learning. Neuroimage. 2010; 49:3198–3209. [PubMed: 19969093]

19. Cohen MX, Cavanagh JF. Single-trial regression elucidates the role of prefrontal theta oscillations
in response conflict. Front. Psychol. 2011; 2:1–12. [PubMed: 21713130]

20. Hanslmayr S, et al. The electrophysiological dynamics of interference during the Stroop task. J.
Cogn. Neurosci. 2008; 20:215–225. [PubMed: 18275330]

21. Voss A, Voss J. A fast numerical algorithm for the estimation of diffusion-model parameters. J.
Math. Psychol. 2008; 52:1–9.

22. Bogacz R, Gurney K. The basal ganglia and cortex implement optimal decision making between
alternative actions. Neural Comput. 2007; 19:442–477. [PubMed: 17206871]

23. Forstmann BU, et al. Striatum and pre-SMA facilitate decision-making under time pressure. Proc.
Natl. Acad. Sci. USA. 2008; 105:17538–17542. [PubMed: 18981414]

24. Forstmann BU, et al. Cortico-striatal connections predict control over speed and accuracy in
perceptual decision making. Proc. Natl. Acad. Sci. USA. 2010; 107:15916–15920. [PubMed:
20733082]

25. Lo CC, Wang XJ. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time
tasks. Nat. Neurosci. 2006; 9:956–963. [PubMed: 16767089]

26. Hutchison WD, et al. Neurophysiological identification of the subthalamic nucleus in surgery for
Parkinson's disease. Ann. Neurol. 1998; 44:622–628. [PubMed: 9778260]

27. Tass P, et al. The causal relationship between subcortical local field potential oscillations and
Parkinsonian resting tremor. J. Neural Eng. 2010; 7:16009. [PubMed: 20083863]

28. Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of action selection
and oscillatory activity in the basal ganglia. J. Neurosci. 2006; 26:12921–12942. [PubMed:
17167083]

29. Thobois S, et al. STN stimulation alters pallidal-frontal coupling during response selection under
competition. J. Cereb. Blood Flow Metab. 2007; 27:1173–1184. [PubMed: 17119543]

30. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG
dynamics including independent component analysis. J. Neurosci. Methods. 2004; 134:9–21.
[PubMed: 15102499]

Cavanagh et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2012 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



31. Kayser J, Tenke CE. Principal components analysis of Laplacian waveforms as a generic method
for identifying ERP generator patterns. I. Evaluation with auditory oddball tasks. Clin.
Neurophysiol. 2006; 117:348–368. [PubMed: 16356767]

32. Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in
simple choice. Nat. Neurosci. 2010; 13:1292–1298. [PubMed: 20835253]

33. Lee, MD.; Fuss, I.; Navarro, DJ. Advances in Neural Information Processing Systems. Scholkopf,
B.; Platt, J.; Hoffman, T., editors. MIT Press; Cambridge, Massachusetts: 2007. p. 809-815.

34. Vandekerckhove J, Tuerlinckx F, Lee MD. Hierarchical diffusion models for two-choice response
time. Psychol. Methods. 2011; 16:44–62. [PubMed: 21299302]

35. Gelman, A. Bayesian Data Analysis. 2nd edn.. Chapman & Hall/CRC; 2004.

36. Frank MJ, Claus ED. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement
learning, decision making, and reversal. Psychol. Rev. 2006; 113:300–326. [PubMed: 16637763]

37. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer
with examples. Hum. Brain Mapp. 2002; 15:1–25. [PubMed: 11747097]

Cavanagh et al. Page 12

Nat Neurosci. Author manuscript; available in PMC 2012 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Theoretical model, task and performance. (a) Proposed model of mPFC-STN gating of
decision threshold. Action plans are gated in a corticostriatal loop (dashed line). In the
presence of mPFC-detected conflict, the STN inhibits behavioral output by raising the
threshold required for the striatum to gate action plans. This results in conflict-varying
response times (solid lines). DBS to the STN interrupts this process, resulting in a disruption
of the ability of mPFC to regulate control. RT, response time. (b) Task dynamics. During
training, participants learned to choose one item in each pair (termed A/B and C/D) that was
reinforced more often (A/B, 100%/0%; C/D, 75%/25%). In this example, the butterfly might
be A and the piano might be B. During testing, participants had to choose the better
stimulus, leading to high-conflict choices for win-win (A/C) and lose-lose (B/D) as well as
low-conflict choices (A/D, C/B). For example, if the cake was C in training, this would
reflect a high-conflict win-win cue. (c) Study I performance data (mean ± s.e.m.). (d) Study
I conflict adaptation split by accuracy (mean ± s.e.m.). Suboptimal trials were relatively
speeded compared with correct trials ON (but not OFF) DBS (**P < 0.01).
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Figure 2.
DBS ON/OFF study: scalp EEG (FCz electrode) from the test phase split by high and low
conflict. (a) Stimulus presentation and response commission were characterized by notable
beta power suppression and theta power enhancement compared with baseline in both ON
and OFF conditions, which were combined here. (b) Topoplots of the high-low conflict
difference in standardized regression (β) weights for cue-locked theta power and response
time (±0.1 std β). The FCz site is indicated on the control topoplot. (c) Standardized
regression (β) weights (mean ± s.e.m.) for cue-locked theta power and response time,
demonstrating that DBS reversed a natural coupling of theta band power with response time
slowing on high-conflict trials.
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Figure 3.
DBS ON/OFF study: Bayesian posterior densities of decision thresholds estimated from the
drift diffusion model (ordinates) and how they varied as a function of mPFC theta (abcissa).
Peaks of the distributions reflect the most likely value of the parameter. Significance was
assessed by at least 95% of the distribution being to the left or right of zero. (a) Simple
effects of theta. OFF DBS, increased theta was associated with increased decision threshold
for high-conflict trials, but not low-conflict trials. ON DBS, increased theta was associated
with a decreased decision threshold on high-conflict trials, but not low-conflict trials. (b)
Theta × conflict interaction. Increases in theta resulting from high > low conflict were
associated with increases in threshold OFF DBS and in healthy controls. The opposite
pattern was seen ON DBS. (c) These threshold effects are reflected by changes in response
time distributions. These plots show the best fit response time distributions for optimal and
suboptimal choices as a function of low and high mPFC theta/threshold in affected
individuals in OFF DBS sessions. Higher theta power is associated with a reduction in the
density of fast suboptimal choices and greater dispersion of optimal response time
distributions, fitting with an account of increased threshold.

Cavanagh et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2012 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Intracranial EEG from the STN for dorsal, middle and ventral leads. Both beta suppression
and theta enhancement were observed in the STN. The rightmost columns show the
condition-wide differences revealed by permutation testing. High-conflict trials were
characterized by a diminishment of low-frequency power across leads, greater post-cue
activity in the dorsal lead and greater post-response activity across leads. The bottom row
shows intracranial EEG data filtered from 2.5–4.5 Hz.
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