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ABSTRACT

In the context of the renewed interest of peptides as
therapeutics, it is important to have an on-line
resource for 3D structure prediction of peptides
with well-defined structures in aqueous solution.
We present an updated version of PEP-FOLD
allowing the treatment of both linear and disulphide
bonded cyclic peptides with 9–36 amino acids. The
server makes possible to define disulphide bonds
and any residue–residue proximity under the
guidance of the biologists. Using a benchmark of
34 cyclic peptides with one, two and three disul-
phide bonds, the best PEP-FOLD models deviate
by an average RMS of 2.75 Å from the full NMR
structures. Using a benchmark of 37 linear
peptides, PEP-FOLD locates lowest-energy con-
formations deviating by 3 Å RMS from the NMR
rigid cores. The evolution of PEP-FOLD comes as
a new on-line service to supersede the previous
server. The server is available at: http://bioserv
.rpbs.univ-paris-diderot.fr/PEP-FOLD.

INTRODUCTION

The recent years have seen a renewal of peptides as can-
didate therapeutics for several reasons. First, recent
advances in peptide chemistry and delivery have
overcome the traditional limitations of peptides as drug
candidates (1). Second, the shift of therapeutic strategies
towards the network of protein interactions, particularly
the search for protein–protein interaction inhibitors, has
pushed forward the limits of small chemical molecules,
whereas advances in protein recombinant technologies

provide evidence that larger therapeutics such as
peptides or peptide derivatives could offer plausible
alternatives (2). Another motivation also comes from the
large reservoir of natural peptides that have diverse and
specific biological activities, and among these, bacterial
small proteins (3) and venom peptides (4) raise more
interest. Finally, peptides are also described as promising
candidates for the treatment of central nervous system
disorders (5).

To assist peptide lead identification and optimization,
robust computational methods are clearly expected to
bring significant contributions (6,7). Recent efforts from
the community of computer scientists have tackled various
aspects including the design of generic databases devoted
to peptide–protein interactions such as PepX (8), the
problem of protein–peptide docking (9), the search for
peptidomimetics (10) and the development of fast
peptide structure prediction methods (e.g. PEP-FOLD,
Bhageerath, PEPstr, Peplook, I-Tasser, Rosetta) (11–16).

In 2009, we introduced the PEP-FOLD service (11) for
de novo peptide structure prediction. Though this first
rapid on-line version has been used by external users for
structural characterization of peptides or protein
fragments (17,18) and peptide or vaccine design (19,20),
the maximal length of 25 amino acids limits the number of
applications. In addition, like the Bhageerath (12) and
PepStr (13) servers, PEP-FOLD was only available for
linear peptides, whereas there are many natural cyclic
peptides with disulfide bonds such as conotoxins or
cyclotides (21) and disulfide bonds increase peptide
stability (22). Recently, the Peplook procedure (not
available on-line) brought some improvements in this
direction (14). Here, we introduce an improved version
of the service open to the community that (i) extends
the length of linear peptides to 36 amino acids and
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(ii) accepts cyclic peptides using disulfide bonds defined by
the user.

MATERIALS AND METHODS

The 3D prediction scheme is very similar to that reported
in (11) and (23). A general overview of the service is pre-
sented in Figure 1. It is based on a Hidden Markov Model
derived Structural Alphabet (SA) (24), i.e. a kind of
generalized secondary structure extending the number of
states from 3 (helix, coil, strand) to 27 in our case. The
core of PEP-FOLD consists in three steps. The first step
predicts SA letters from the amino acid sequence. From
the amino acid sequence, a psi-blast profile is generated
and is used as input of a SVM that returns a probability
profile of each SA letter at each position of the sequence.
This SA profile is then analysed to select some letters at
each position. The second step performs the 3D assembly
of the prototype fragments associated with the letters
selected. It relies on the sOPEP coarse grained force field
(25), which uses a six bead representation (full backbone
except the a-hydrogen and one bead for each side chain).
The 3D generation is achieved by an enhanced greedy
procedure (26) that builds the peptide residue by residue.
It is followed by a Monte-Carlo procedure for final refine-
ment. This build-up procedure works using a rigid
assembly scheme and thus does not explore the full con-
formational space but only a discrete subset. This stochas-
tic procedure is repeated 100 times starting from various
positions in the sequence. The third step generates
all-atom conformations from the coarse grained models
returned by the 100 simulations and performs a clustering
procedure.

Two major improvements have been brought to this
scheme in the new version of the service. First, the selec-
tion of the SA letters from the profile has been revisited so
as to remove the letters with too low probabilities. As a
result, whereas the initial PEP-FOLD version used eight
letters at each position, the new version uses 5.5 letters on
average. We also removed the secondary structure con-
straints predicted by PSI-PRED because the SA profile
contains this information. A second major modification
involves the use of TM scores (27) to cluster the full
generated structures and then the sOPEP energies or the
predicted TMscores of Apollo (28)—an extension of (29)
for the prediction GDT_TS from structural features—to
rank the clusters and the conformations within the
clusters. The first version only used the RMSD between
the models for clustering. Another variation involves the
formulation of sOPEP for S–S bonds. Here, the disulfide
bonds are not simply constrained to a typical bond
distance because we grow the peptide from any position
of the structure and thus all oxidized cysteines are not
known in the early steps of the assembly. Rather, the
interaction between two oxidized cysteines i and j is
described by:

ESSi,j ¼ E0 CðrijÞ
12
� 2CðrijÞ

6
� �

ð1Þ
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denotes the distance between the side-chain centroids,
r0i,j=3.36 Å is the distance where the energy is the lowest
(�15 kcal/mol), R0

ij=2.39 Å is the distance where ESSi,j is
0, and E0 is the energy value for r0i,j. The left side term is
identical to sOPEP former term and the right side results
in a sharper behaviour preventing energy at longer dis-
tances. The same formulation has been generalized to
residue contacts when specified by the user. Finally,
other minor modifications have been brought to the side
chain positioning in the all-atom generation step—it is
now achieved using OSCAR-star (30)—and the disulfide
bond specifications are passed to the quick all-atom mini-
mization based on Gromacs (31).

SERVICE OVERVIEW

As described in Figure 1, the service is now fully
embedded in the Mobyle framework (32), providing auto-
mated form generation, command execution and result
display. The input fields include the primary sequence
(only standard amino acids) and the specification of con-
straints (disulfide bonds, residue proximities). In addition
to building models up to 36 amino acids, it is possible to
treat sequences of 50 amino acids and specify the maximal
36-residue region subjected to 3D modelling. This facility
is useful for peptides where the N- and C-terminal regions
are known to be disordered and the user wishes to focus
on the modelling of the structured core. To this end, our
tests show that the prediction of the SA profile is best
using the complete sequence rather than a truncated
sequence. The output fields have also been modified as aFigure 1. PEP-FOLD 2012 flowchart.
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result of the new clustering procedure. Although our
results suggest that sorting the clusters using sOPEP
remains best, they can also be sorted according to the
predicted TM scores (27) obtained by Apollo (28).
Finally, the use of the Mobyle framework comes with
facilities to visualize the best models using the openastex
(33) or Jmol (34) applets and perform other analyses such
as the secondary structure, side-chain conformations, etc.
This number of analyses is expected to increase
progressively.

RESULTS

Linear peptides with 9–36 amino acids

The modifications brought to PEP-FOLD have a limited
impact on the linear peptides with 9–25 amino acids. A
table of the results on 24 peptides is presented on the
on-line documentation of the service. We see that the
sharper SA letter selection does not prevent PEP-FOLD
to generate near-native conformations, with the best rigid
core (RC) conformations deviating on average by only
1.5 Å from the NMR structures, versus 1.7 Å using the
earlier PEP-FOLD service. Note that the PDB entry
1wz4 is excluded from analysis since its NMR structure
displays a clash between the backbone oxygens of Glu7
and Asp11. The updated PEP-FOLD procedure also gen-
erates lowest-energy conformations deviating on average
by 2.5 Å from the NMR RCs. The results on a set of linear
peptides with 25–36 amino acids are presented in Table 1.
Averaged over the 13 systems, PEP-FOLD returns
lowest-energy conformations deviating from the first
NMR model by 4.8 and 3.4 Å using the full structure
(FS) and the RC. Looking at the five clusters of lowest
energy, the average RMSD is 3.6 Å (FS) and 2.8 Å (RC).
Overall, PEP-FOLD generates near-native conformations
(RC-d< 4 Å) for 11 among 13 structurally diverse proteins

with secondary structure compositions varying from a, a2
(2l0g Figure 2C), b2, ab2, ba, bab to b3. Of particular
interest is the high quality prediction of the bab topology
for the 36-residue 2ki0 protein with a RC-d of 2.0 Å based
on the sOPEP energy (Figure 2E) which is stabilized by
long-range interactions in the amino acid sequence.
Similarly, the updated PEP-FOLD version returns the
native b3 conformation of the 36-residue 1e0n protein
(Figure 2A), while the earlier version, using the 27
amino acids which are not random coil in the NMR struc-
ture, predicted a b-strand packed against two helices (11).
For the 28-residue 1psv and 31-residue 2gdl, the lowest-
energy conformations differ by 7.4 and 4.8 Å RMS from
NMR using the RC. In Figure 2B, the high RMSD for
1psv comes from the b-hairpin. Interestingly, experimental
and computational studies on homologous peptides have
shown that the b-hairpin is only marginally stable (35). In
contrast, for the 2gdl target (Figure 2G) which displays an
a-coil-a topology, the predicted b-strand at the C-terminal
is not compatible with the a-helix structure observed by
NMR.

Disulfide-bonded cyclic peptides

Table 2 presents the results of 34 peptides containing one,
two or three disulfide bonds using the Peplook test set (14)
except the peptides 2p7r, 1qvl and 1foz <8 amino acids,
and the peptide 1ixu free of any disulfide bond in the
NMR structure. For each peptide, we describe the
models of lowest energy and of lowest RMSD (best)
with respect to the NMR structure. We also give the
number of SS bonds formed after the coarse-grained
and the all-atom procedures. On average, the updated
PEP-FOLD generates best models deviating by
only 2.7 and 2.5 Å RMS and lowest-energy models
deviating by 4.2 and 3.7 Å RMS using the FSs and RCs,
respectively. This indicates that sOPEP is not optimal
yet for recognizing near-native from higher RMSd

Table 1. Results obtained for 13 linear peptides with 25–36 residues

PDB id Top L RC sOPEP best5

FS-d RC-d FS-d RC-d Rnk

1by0 a 27 1:23 4.36 1.75 2.94 1.74 1
1yyb a 27 1:20 6.49 1.47 3.4 1.42 1
2kbl b2 29 3:4j6:27 4.68 3.91 4.68 3.91 1
1fsd ab2 28 1:26 4.14 3.88 3.91 3.66 1
1psva ab2 28 2:25 7.19 7.44 4.61 4.6 4
2k76 ba 30 4:29 3.15 2.75 2.1 1.88 1
2gdla aca 31 8:8j10:11j14:15j21:29 7.57 4.84 6.53 4.57 3
2l0ga a2 32 5:32 4.53 3.32 2.1 1.64 1
2bn6 a2 33 4:29 4.49 3.18 3.09 2.14 1
1e0na b3 35 1:25 2.16 2.16 1.68 1.68 2
1wr3 b3 36 5:15 5.72 3.74 4.26 3.5 1
1wr4 b3 36 5:34 4.68 3.26 4.68 3.26 1
2ki0a bab 36 5:11j13:36 3.56 1.99 2.66 2.43 1
Mean 4.8 3.4 3.6 2.8

PDB id, PDB identifier; Top, secondary structure topology (a for helix, b for strand, c for coil); L, peptide length; RC, the
definition of the rigid core (PDB positions start at 1); FS-d (RC-d), full structure (rigid core) RMS deviation (Å) for the model
of lowest energy (sOPEP) and the best model among the five clusters of lowest energy (best5); Rnk, the rank of the cluster
containing the best model.
aThe lowest-energy models for 1e0n, 1psv, 2l0g, 2ki0 and 2gdl are shown on Figure 2.
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conformations. Compared to the results of the earlier
PEP-FOLD version, which did not consider the disulfide
bonds explicitly (11), we reach an improvement of 1.3 Å
RMS. Compared to Peplook performances, the
PEP-FOLD best models are also closer by 1 Å RMS to
the NMR conformations. Whereas the server leads to
good results for peptides containing 1 and 2 disulfide
bonds (Figure 2F and D for 1kwd and 1n0a) with
61.2% of the disulfide bonds formed at the coarse-grained
level (Table 1), the performances are degraded for the nine
peptides with three disulfide bonds (Figure 2H for 1wm8).
For these peptides, the lowest-energy conformations
deviate on average by 5.4 Å RMS from the NMR struc-
tures and a similar behaviour is observed with Peplook
(5.6 Å RMS). This discrepancy between prediction and
experiment comes in part from the non-optimization of
the sOPEP force field for cyclic peptides, but mainly we

observe that the structures with three disulfide bonds are
very constrained, leading to large deviations at the local
level between the conformations observed in the NMR
structures and the structural alphabet conformations pre-
dicted from the sequence free of any disulfide bond con-
straints. Similar results are obtained if we vary the number
of SA letters from 5.5 to 8 during assembly.

DISCUSSION

The update of our PEP-FOLD server had two goals. The
first goal was to extend the length of linear peptides so as
to develop a server able to explore systems with higher
thermodynamic stabilities, and with new topologies such
as the bab and b3 folds. Using a benchmark of 37 peptides
with 9–36 amino acids, and a total of 100 simulations for
each system, the updated PEP-FOLD version fails to
generate the native conformation for only one system,
where a b-strand is preferred over an a-helix at the
C-terminus. Note that our results are reproducible and
do not change if we use 200 simulations. Preliminary simu-
lations also indicate that PEP-FOLD performs well for
sequences upwards of 50 amino acids where the FS is
modelled (data not shown), but opening the service for
this length is under consideration given the computer
resources needed. This increase in peptide size from
25 to 50 amino acids comes from the reduction of
the SA letters considered at each position. The structure
simulations of even larger systems within the framework
of a greedy procedure remain to be evaluated.
The second goal was to provide structural predictions

for cylic peptides with disulfide bonds. For systems with
one and two disulfide bonds, PEP-FOLD performs better
than Peplook. For systems with more disulfide bonds,
such as natural toxins, improvements in the SA letter
prediction and atomistic construction are needed. One
solution for construction, under investigation, is to
enforce disulfide bond formation in the Gromacs proced-
ure and to relax the models by short molecular dynamics
simulations.
In summary, the updated version of PEP-FOLD

provides a fast and convenient on-line approach for the
de novo design of peptides up to 36 residues, and it also
supports the possibility to tackle peptide engineering by
the insertion of disulfide bonds, a classical way to increase
stability. The typical computational time for a 36-residue
peptide is 40min using 40 cores. The server also supports,
using the same formalism as disulfide bonds, the possibil-
ity to specify additional constraints such as residue
proximities. Clearly, our results open the door to further
improvements such as the consideration of other covalent
linking between side-chains and the modelling of riboso-
mal peptides at a genome scale can be considered.
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Medicale UMR-S 973.

Conflict of intertest statement. None declared.

REFERENCES

1. Vlieghe,P., Lisowski,V., Martinez,J. and Khrestchatisky,M. (2010)
Systhetic therapeutic peptides: science and market. Drug Discov.
Today, 15, 40–56.

2. Vanhee,P., van der Sloot,A.M., Verschueren,E., Serrano,L.,
Rousseau,F. and Schymkowitz,J. Computational design of peptide
ligands. Trends Biotechnol., 29, 231–239.

3. Hobbs,E.C., Fontaine,F., Yin,X. and Storz,G. (2011) An expanding
universe of small proteins. Curr. Opin. Microbiol., 14, 167–173.

4. Vetter,I., Davis,J.L., Rash,L.D., Anangi,R., Mobli,M.,
Alewood,P.F., Lewis,R.J. and King,G.F. (2011) Venomics: a new
paradigm for natural products-based drug discovery. Amino
Acids, 40, 15–28.

5. Malavolta,L. and Cabral,F.R. (2011) Peptides: important tools
for the treatment of central nervous system disorders.
Neuropeptides, 45, 309–316.

6. Audie,J. and Boyd,C. (2010) The synergistic use of computation,
chemistry and biology to discover novel peptide-based drugs : the
time is right. Curr. Pharm. Des., 16, 567–582.

7. Deshmukh,R. and Purohit,H.J. (2012) Peptide scaffolds: flexible
molecular structures with diverse therapeutic potentials. Int. J.
Pept. Res. Ther., 18, 125–143.

8. Vanhee,P., Reumers,J., Stricher,F., Baeten,L., Serrano,L.,
Schymkowitz,J. and Rousseau,F. (2010) PepX: a structural
database of non-redundant protein-peptide complexes. Nucleic
Acids Res., 38, D545–D551.

Table 2. Results obtained for 34 cyclic peptides with disulfide bonds

pdb Id L #SS RC sOPEP best

FS-d RC-d CGa AA FS-d RC-d CG AA

1im7 21 1 3:9::15:21 3.9 3.9 100 0 2.5 2.5 100 1
1jbl 16 1 2:14 3.3 3.3 100 1 1.8 1.8 0 0
1n0ab 17 1 7:15 0.7 0.7 0 1 0.4 0.4 0 0
1n0c 24 1 2:11::14:24 2.3 2.3 100 1 0.4 0.4 0 1
1nim 24 1 1:23 3.8 1.8 0 0 3.4 2.8 0 1
1gnb 14 2 2:9::12:14 4.8 4.1 50 1 4 3.8 50 0
1b45 13 2 – 3.6 3.3 100 1 2.3 2.2 0 0
1etl 22 2 – 3.1 3.1 100 1 1.6 1.6 0 0
1hje 19 2 – 3.6 3.6 50 1 2.2 2.2 50 2
1hp9 12 2 2:11 3.5 3.5 50 1 2.2 2.2 50 1
1ien 13 2 – 4.8 4.8 50 0 2.5 2.5 0 0
1im1 14 2 – 1.3 1.2 0 1 1.2 1.2 50 0
1kcn 16 2 – 5.7 5.6 100 0 3.5 2.8 50 1
1kwdb 30 2 3:29 2.9 2.1 100 2 2 1.3 0 1
1mii 11 2 – 1.8 1.8 50 0 1.6 1.6 0 0
1oig 15 2 2:7::11:14 6.5 6.1 50 1 4.8 4.7 50 1
1r8t 24 2 1:22 4.5 3.4 100 1 2.6 2.2 50 1
1rpc 21 2 3:21 6.9 6.3 50 1 4.4 4 0 0
1ter 21 2 – 7 5.9 50 1 3 2.8 50 0
1v6r 26 2 1:23 5.1 5.1 100 2 3.9 3.9 0 0
1wqc 13 2 2:13 1.7 1.3 100 2 1.2 1.1 100 2
1x7k 22 2 1:17 4.2 2.5 0 0 4.2 2.5 0 0
1xgb 16 2 – 3.5 3 0 0 3 3 50 2
2ajw 13 2 – 2.4 0.9 50 2 1.3 1 0 0
2i28 28 2 – 2.1 2.1 100 1 1.5 1.5 0 0
2oq9 24 2 8:24 9.2 4 100 1 3.5 3.3 50 1
2efz 12 3 – 4.2 4.2 0 1 2.1 2.1 66.7 1
2nx7 13 3 2:13 6.9 6.9 33.3 1 4.1 4 33.3 1
1mmc 10 3 – 7.1 6.1 66.7 2 4.6 4.6 33.3 0
1orx 22 3 1:19 4.8 4.8 33.3 1 2.9 2.7 0 0
1sp7 28 3 1:10::12:28 4.5 4.3 66.7 2 2.6 2 33.3 0
1v5a 28 3 – 5 5.1 66.7 1 3.7 3.8 0 0
1wm8b 19 3 6:16 7 7 66.7 2 3.6 3.6 66.7 2
2it7 28 3 2:28 4 4 66.7 1 3.7 3.7 66.7 1
Mean 4.2 3.7 61.2 2.7 2.5 29.5

PDB id, PDB identifier; L, peptide length; SS, number of disulfide bond; RC, the definition of the rigid core (PDB positions start at 1); FS-d (RC-d),
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