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ABSTRACT

DR_bind is a web server that automatically predicts
DNA-binding residues, given the respective protein
structure based on (i) electrostatics, (ii) evolution
and (iii) geometry. In contrast to machine-learning
methods, DR_bind does not require a training data
set or any parameters. It predicts DNA-binding
residues by detecting a cluster of conserved,
solvent-accessible residues that are electros-
tatically stabilized upon mutation to Asp�/Glu�.
The server requires as input the DNA-binding
protein structure in PDB format and outputs a
downloadable text file of the predicted DNA-
binding residues, a 3D visualization of the predicted
residues highlighted in the given protein structure,
and a downloadable PyMol script for visualization of
the results. Calibration on 83 and 55 non-redundant
DNA-bound and DNA-free protein structures yielded
a DNA-binding residue prediction accuracy/preci-
sion of 90/47% and 88/42%, respectively. Since
DR_bind does not require any training using
protein–DNA complex structures, it may predict
DNA-binding residues in novel structures of
DNA-binding proteins resulting from structural
genomics projects with no conservation data.
The DR_bind server is freely available with no
login requirement at http://dnasite.limlab.ibms
.sinica.edu.tw.

INTRODUCTION

Interactions between proteins and DNA play essential
roles for life. For example, protein–DNA interactions
control gene regulation, cell replication and transcription,

as well as DNA repair. Furthermore, many of these
DNA-binding proteins are involved in human diseases
such as neurological disorders, e.g. TDP-43 (1), and
cancer; e.g. p53 (2). Consequently, identifying the key
amino acid residues involved in DNA recognition is
critical for understanding these important biological
processes. It also guides which residues to mutate in
experimental studies.
Several methods and web servers have been developed

to predict DNA-binding residues from the protein 1D
sequence or 3D structure. Methods that predict DNA-
binding residues using only the protein sequence generally
employ machine-learning algorithms such as a neural
network (3–5), a Naı̈ve Bayes classifier (6), a support
vector machine (7–12), random forest (13,14), or
decision trees (C4.5 algorithm) (15). These algorithms
usually employ amino acid physicochemical properties,
sequence conservation, the local sequence context,
solvent accessibility and/or secondary structure. Publicly
available web servers that implement sequence-based
methods for predicting DNA-binding residues include
DBS-PRED (3), DBS-PSSM (5), DNABindR (6),
DP-Bind (8), DISIS (9), BindN-rf (14), BindN+ (12),
NAPS (15) and MetaDBSite (16). Methods that use the
protein structure, if available, generally improve the
DNA-binding site prediction, as they replace the predicted
solvent accessibility, hydrophobicity and secondary struc-
ture in sequence-based methods with observed ones and
can additionally employ energies or frequencies, computed
from the atomic coordinates, as well as experimental
geometrical features. Structure-based methods for predict-
ing DNA-binding residues employ mostly electrostatic po-
tentials in conjunction with other features such as surface/
solvent accessibility, the protein surface shape, amino acid
conservation, propensity, hydrophobicity and hydrogen-
bonding potential and structural motifs (17–22), or
high-frequency residue fluctuations (23). Servers that
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implement structure-based methods for predicting DNA-
binding residues include PreDs (24), DISPLAR (25),
DBD-Hunter (26) and DNABINDPROT (23).
In our previous work (27), we had developed a

structure-based DNA-binding residue prediction method
based on (i) electrostatics, (ii) conservation and (iii)
geometry with the following rationale: (i) DNA-binding
residues contain electropositive atoms, which would
be in an unfavorable electrostatic environment in the
absence of DNA or water; thus replacing one of these
residues with a negatively charged Asp�/Glu� would alle-
viate the electrostatic repulsion among the electropositive
atoms in the gas phase; (ii) DNA-binding residues and
residues in the vicinity, which form a cluster of spatially
interacting residues, are usually highly conserved within
the same family due to their critical functional roles and
(iii) DNA-binding residues have been observed to be
located on surface patches, as opposed to clefts/cavities
for RNA-binding residues and enzyme substrates. In this
work, we have implemented our DNA-residue prediction
method for public use in a web server, DR_bind (http://
dnasite.limlab.ibms.sinica.edu.tw). Whereas our published
method for predicting DNA-binding sites had been tested
on a non-redundant set of 56 DNA-bound and 23 DNA-
free non-homologous protein structures (27), DR_bind
was tested herein using an updated non-redundant set
of 83 DNA-bound and 55 DNA-free structures (referred
to as Data sets I and II, respectively). DR_bind was
also tested using a protein–DNA docking benchmark con-
taining 47 unbound–bound structures (28) and 15
non-redundant DNA-bound protein structures with no
or insufficient homologous seqeunces to compute conser-
vation scores reliably. In contrast to current DNA-binding
residue prediction servers, DR_bind is based on physical
principles of binding thermodynamics (29) and does not
require training on a set of protein–DNA complexes or
any parameters. Hence, DR_bind would be an opportune
addition since structures of DNA-binding proteins have
been rapidly rising.

METHODS

Data sets used

DR_bind was tested using four data sets: I—83
non-redundant DNA-bound protein structures, II—55
non-redundant DNA-free protein structures, III—47
bound–unbound structures from the protein–DNA bench-
mark version 1.2 (28) and IV—15 non-redundant
DNA-bound protein structures with no, or insufficient
homologs to compute conservation profiles reliably. To
create Data set I, all available X-ray structures of
DNA-bound proteins solved to �3-Å resolution were
obtained from the current Protein Data Bank (PDB)
(30). These protein chains were grouped according to
their Class, Architecture, Topology and Homologous
superfamily (CATH) codes (31). For each group of
protein structures with the same CATH code, the struc-
ture with the best resolution was selected as the represen-
tative one. If any of these representative proteins share
>30% sequence identity, the protein with the longer

sequence was kept, while the others were discarded. This
yielded 83 DNA-bound proteins that are sequentially and
structurally non-homologous with conservation data
(Supplementary Table S1), whereas the remaining 12
proteins had no conservation profiles from the ConSurf-
DB database (http://consurfdb.tau.ac.il/) (32).

Data set II was derived from Data set I by searching
each of the 83 DNA-bound proteins with conservation
data for highly homologous proteins (sharing �90%
sequence identity) with DNA-free structure(s) using the
SAS tool (http://www.ebi.ac.uk/thornton-srv/databases/
sas/); if multiple DNA-free structures were found, the
structure that showed the largest root-mean-square devi-
ation (RMSD) from the DNA-bound structure using
the SSAP program (33) was chosen as the representative
one. This yielded 55 bound–unbound structures with a
wide range of RMSDs (0.3–33 Å). The PDB entries of
the DNA-bound and free protein structures, the
sequence identity between the DNA-bound and the re-
spective free proteins computed using global alignment
with ClustalW1.83 (34) and their RMSD values are
given in Supplementary Table S1.

Data set III is a protein–DNA docking benchmark con-
taining 47 bound–unbound structures, of which 13 were
classified as ‘easy’, 22 as ‘intermediate’ and 12 as ‘difficult’
cases for docking depending on the interface RMSD
values between the DNA-bound and corresponding free
structures. ‘Easy’, ‘intermediate’ and ‘difficult’ structures
were defined by interface RMSD values ranging from 0 to
2 Å, 2 to 5 Å, >5 Å, respectively. Data set III differs from
Data set II in that it includes: (i) protein structures
deposited in the September 2007 RCSB PDB; (ii) structur-
ally homologous proteins with the same CATH code; (iii)
free NMR structures; and (iv) 15 structures without con-
servation data from ConSurf-DB.

To create Data set IV, the 12 proteins excluded from
Data set I and the 15 proteins from the benchmark set,
which lack conservation profiles from ConSurf-DB, were
grouped according to their CATH codes. For each group
of protein structures with the same CATH code, the best
resolution structure was selected as the representative one.
This yielded 15 non-redundant proteins sharing <30%
pairwise sequence identity (Supplementary Table S2).

Definitions

A residue was considered to bind DNA if it contains one
or more non-hydrogen atom within van der Waals contact
or hydrogen-bonding distance to the non-hydrogen atom
of its binding partner directly or indirectly via a bridging
water molecule. HBPLUS (35) was used to compute all
possible hydrogen bonds and van der Waals contacts,
which are defined by a donor atom to an acceptor atom
distance �3.5 and �4.0 Å, respectively. An amino acid X
is considered accessible for interacting with DNA if the
percent ratio of its side chain solvent-accessible surface
area in the protein to that in the tripeptide, –Gly–X–
Gly–, is >5% (17,36). MOLMOL (37) was used to
compute the relative solvent-accessible surface area of
each amino acid from the protein structure using a
solvent probe radius of 1.4 Å.
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Geometry

Since DNA-binding sites are found on a protein surface,
surface patches were generated by defining the Ca atom of
each residue as an origin of a patch and including all
residues whose Ca atoms were within 10 Å of the origin
in the patch. Non-identical patches with more than five
solvent-accessible residues were used in computing the
average electrostatic energy change and conservation
(see below).

Electrostatics

Given a l-residue DNA-binding protein structure, all Asp/
Glu residues were deprotonated, while Arg/Lys residues
were protonated; His residues were protonated or
deprotonated depending on the availability of hydrogen
bond acceptors in the structure. Next, l mutant structures
were generated by replacing Ala, Asn, Asp, Cys, Gly, Ser,
Thr or Val in the wild-type structure to Asp� and the
other residues to Glu�. The side chain replacements
were carried out using SCWRL (38), followed by energy
minimization with heavy constraints on all heavy atoms
using AMBER (39) to relieve any bad contacts. Based on
the wild-type/mutant structures, the gas-phase (e=1)
electrostatic energy of the wild-type (Eelec

wt) or mutant
(Eelec

mut) protein in the ‘folded’ state relative to that in
an ‘extended reference’ state (E0elecwt or E0elecmut) was
computed using AMBER (39) with the all-hydrogen-atom
AMBER force field (40). In this extended reference state,
the residues do not interact with one another; hence, the
electrostatic energy difference between the wild-type
(E0elecwt) or mutant (E0elecmut) ‘unfolded’ protein is equal
to the difference between the electrostatic energies of the
native residue at position i (E0eleci) and the corresponding
mutant Asp�/Glu� (E0elecD/E). The change in the
gas-phase electrostatic energy ��Eelec

i, upon mutation
of residue i to Asp�/Glu� is given by:

��Eelec
i Q ¼ ðEelec

mut,i � Eelec
wt Þ � ðE

0elec
D=E � E0eleci Þ ð1Þ

The average electrostatic energy change <��Eelec>i of
the Naa

i residues comprising surface patch i was computed
from:

< ��Eelec >i¼
X

��Eelec
j =Naa

i ð2Þ

where the summation in Equation (2) is over all residues in
patch i.

Conservation

For a given DNA-binding protein, the conservation score
Ci of residue i was obtained from the ConSurf-DB
database (32) or ConSurf server (41–43). The Ci score is
an integer number, ranging from 1 (for a rapidly evolving,
highly variable residue) to 9 (for a slowly evolving,
conserved residue). The average conservation <C>i of
the Naa

i residues comprising surface patch i was
computed from:

< C >i¼
X

Cj=N
aa
i ð3Þ

DNA-binding residue prediction

To determine the DNA-binding residues in a given
protein, the distinct patches were ranked according to
the <��Eelec>i values so that the top-ranked cluster
had the most favorable (most negative) <��Eelec>i,
whereas the bottom-ranked cluster had the least favorable
<��Eelec>i . Among the top 10% <��Eelec>i-ranked
surface patches, the three patches with the largest <C>i

values were selected and the constituent solvent-accessible
residues were predicted to bind DNA.

Performance measures

To evaluate the performance of DR_bind, the numbers of
correctly predicted binding residues (TP) and non-binding
residues (TN), as well as the numbers of incorrectly pre-
dicted binding residues (FP) and non-binding residues
(FN) were computed and used to determine:

sensitivity ¼ TP=ðTP+FNÞ ð4Þ

specificity ¼ TN=ðFP+TNÞ, ð5Þ

precision ¼ TP=ðTP+FPÞ ð6Þ

accuracy ¼ ðTP+TNÞ=ðTP+FP+TN+FNÞ ð7Þ

Matthew0s correlation coefficient or MCC

¼ ðTP� TNÞ � ðFP� FNÞ=

TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þ½ �
1=2

ð8Þ

DR_bind web server

Input
On the DR_bind web page http://dnasite.limlab.ibms
.sinica.edu.tw/, users are given two options: For option
A, users upload their own file in PDB format and the
evolutionary data for their protein in ConSurf format or
ask DR_bind to retrieve the evolutionary data from
ConSurf. For option B, users enter the PDB code and
chain identifier; if the conservation profile for the sub-
mitted protein structure has not been pre-calculated in
the ConSurf-DB database (32), DR_bind will attempt to
generate the ConSurf data automatically from the
ConSurf server (41–43). If no ConSurf data can be
generated, DR_bind will continue to predict DNA-
binding residues based only on the protein 3D structure
and inform the user of the missing ConSurf data on the
Results page. For multiple submissions, we have provided
a simple form that allows for nine PDB codes with chain
identifiers to be defined. After users click on the ‘submit’
button, the input data is checked for consistency: Residues
in the PDB file that do not correspond to the standard 20
amino acid are removed, as well as multiple alternative
residue positions. If the input data pass these tests, then
the prediction process is started and the user is taken to a
web page where the results for the job(s) and their status
on the DR-bind server can be monitored.

Output
When the DR_bind server has finished the prediction, the
results page is updated with the predicted binding

Nucleic Acids Research, 2012, Vol. 40, Web Server issue W251

http://dnasite.limlab.ibms.sinica.edu.tw/
http://dnasite.limlab.ibms.sinica.edu.tw/


residues. If the user had provided an e-mail address, the
web server will send an e-mail to let the user know that the
prediction has been completed with a link to the results
web page. Users can then access the results page to see the
generated prediction. As shown in Figure 1, the results
page is split into three sections: the first section has links
to downloadable files of (i) the original PDB and ConSurf
files, (ii) the ‘cleaned’ PDB file used by DR_bind, (iii) a
PyMOL script for highlighting the predicted DNA-
binding residues and (iv) a text file of these residues. The
second section lists the predicted DNA-binding residues.
The third section is an interactive embedded 3D represen-
tation of the protein with the entire backbone in ribbon
format with the predicted interaction residues depicted in
stick format in red. This 3D representation is created using
Jmol (http://www.jmol.org/) and can be rotated and
zoomed in/out on the results page itself.

DR_bind currently runs on an Apple Mac Mini
quad-core i7 server and the time taken to yield a predic-
tion depends on the number of residues in the PDB chain.
A prediction takes �5min for 50 residues, �1.5 h for 200
residues, �4.5 h for 350 residues and �10 h for 450
residues. To handle simultaneous requests, the Torque
batch processing software is used to queue jobs. Help
pages with instructions on how to use the server are avail-
able at http://dnasite.limlab.ibms.sinica.edu.tw/examples/
help.html.

RESULTS AND DISCUSSION

Performance and limitations of DR_bind

In our previous works (27), we presented a method for
predicting DNA-binding sites based on electrostatics,

Figure 1. An example of the Results page from DR_bind.
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conservation and geometry given the respective protein
structure and tested it on a set of 56 structurally non-
homologous proteins with DNA-bound structures, as
well as a smaller subset of 23 proteins with both
DNA-bound and free structures. Based on the
DNA-free and DNA-bound protein structures, 83 and
86% of the DNA-binding proteins have statistically sig-
nificant DNA-binding sites, respectively. Thus, the
method was found not to be very sensitive to protein con-
formational changes upon DNA binding (27,44).
However, like all structure-based prediction methods, it
cannot predict binding residues in regions that are dis-
ordered in the free protein structure. Another limitation
of the method is that the predicted residues may be
involved in binding non-DNA ligands such as RNA,
protein, small molecules or metal ions rather than DNA
(27,44).

In this work, we have implemented our DNA-binding
residue prediction method as a free web server called
DR_bind, which requires as input, the protein 3D

structure and yields as output, experimentally testable
residues that are predicted to bind DNA. As more
DNA-binding protein structures have been solved since
validation of our method (27), and some of these may
correspond to novel folds, DR_bind was further tested
using our updated set of 83 DNA-bound and 55 bound–
unbound non-homologous protein structures, as well as
the protein–DNA benchmark version 1.2 containing 47
bound–unbound structures (28). DR_bind yielded 47%
precision, 35% sensitivity, 96% specificity, 90% accuracy
and 35% mcc in predicting DNA-binding residues using
our bound data set, and slightly lower precision (43%)
and mcc (33%) values using our free data set (Table 1),
even though the RMSD of the DNA-free structure from
the respective DNA-bound structure may be as large as
33 Å (Supplementary Table S1). Similar trends were found
for the benchmark data set: DR_bind yielded 56% preci-
sion, 40% sensitivity, 95% specificity, 87% accuracy and
40% mcc using the DNA-bound structures and lower pre-
cision (49%) and mcc (35%) values using the correspond-
ing free structures (Table 1). The sensitivity values are low,
as DR_bind predicts the most likely DNA-binding
residues, rather than all DNA-binding residues at the
protein–DNA interface.
To assess the reliability of the performance values in

Table 1, we randomly chose 40 of the 83 DNA-bound
structures and 25 of the 55 DNA-free protein structures
and computed the various performance measures; this
procedure was repeated 1000 times in order to obtain
the distribution of each performance measure. Figure 2a
and b illustrates the percent frequency of the DR_bind’s
precision values (solid lines) for the bound and free data
sets, respectively. The lower limits of precision, sensitivity,
specificity, accuracy and mcc in predicting DNA-binding
residues using DR_bind for the bound/free data sets are
0.38/0.31, 0.29/0.26, 0.94/0.93, 0.87/0.86 and 0.29/0.24,
whereas the corresponding upper limits are 0.56/0.55,
0.44/0.49, 0.97/0.97, 0.91/0.92 and 0.43/0.44. Notably,
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Figure 2. The percent frequency of a precision value derived from 1000 random choices of (a) 40 DNA-bound structures from Data set I and (b) 25
DNA-free protein structures from Dataset II. The solid, dashed, dotted and dashed–dotted curves correspond to precision values obtained using
DR_bind, BindN+, NAPS and DNABINDPROT, respectively.

Table 1. Comparison of the performance measures of DR_Bind using

our nonredundant data set of 83 DNA-bound and 55 DNA-free

protein structures and the protein–DNA benchmark version 1.2

containing 47 DNA-bound and free protein structures

Data set I (bound) II (free) III (bound) III (free)

No. of structures 83 55 47 47
TP 728 419 468 417
FP 831 566 371 429
TN 18 128 11 596 6486 6435
FN 1,362 792 702 693
Precision 0.47 0.43 0.56 0.49
Sensitivity 0.35 0.35 0.40 0.38
Specificity 0.96 0.95 0.95 0.94
Accuracy 0.90 0.90 0.87 0.86
mcc 0.35 0.33 0.40 0.35
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these limits encompass the precision, sensitivity,
specificity, accuracy and mcc values obtained using the
47 bound–unbound structures from the benchmark
data set.

Comparisons with other servers that predict
DNA-binding residues

Using our bound and free data sets, the performance
of DR_bind was compared with that of three recent
web servers, BINDN+ (http://bioinfo.ggc.org/bindn+/),
NAPS (http://proteomics.bioengr.uic.edu/NAPS) and
DNABINDPROT (http://www.prc.boun.edu.tr/appserv/
prc/dnabindprot/). BINDN+ (12) uses support vector
machines with three biochemical features (hydrophobicity,
side chain pKa and mass of an amino acid residue)
incorporating evolutionary information and position-
specific scoring matrix (PSSM). Instead of support
vector machines, NAPS (15) employs ensemble classifiers
based on C4.5, bootstrap aggregation and a cost-sensitive
learning algorithm with residue charge and PSSM.
Whereas BINDN+ and NAPS are sequence-based
methods, DNABINDPROT (23) is a structure-based
method that identifies high-frequency fluctuating con-
served residues and ranks them according to their
DNA-binding propensity. These web servers were chosen
for comparison with DR_bind because they had been
tested using published data sets and had been shown to
outperform previous methods/web servers: Using the
PDNA-62 data set, the average of sensitivity and specifi-
city obtained by BINDN+ (78.3%) and NAPS (78.5%)
were similar (12,15) and higher than that obtained by
DP-Bind (76.5%) or DBS-PSSM (67.1%). Using a set of
36 DNA-binding proteins with both free and DNA-bound
structures and conservation scores, the precision obtained
by DNABINDPROT using a fast threshold of 0.1,
conservation threshold of 5, and neighboring two

residues (45.3%) was higher than that obtained by
DBD-HUNTER (44.5%), DISPLAR (40%) and
DP-Bind (33.0%) (23).

Using our bound and free data sets, the performance
results of all four servers are summarized in Table 2. Since
DR_Bind does not aim to predict all residues at the
protein–DNA interface, its sensitivity (35%) is lower
than that of BINDN+ (45–48%), which has almost
twice the number of predictions (i.e. TP+FP). Rather
than knowing all residues that comprise the protein–
DNA interface, most biologists would be interested in
testing if the predicted residues do indeed bind DNA
and therefore, a method’s precision, which reflects the
fraction of predicted residues that are correct. Compared
with the other methods, DR_Bind yields a �10% higher
precision for both data sets. To assess if the difference in
precision using DR_Bind and the other three methods is
statistically significant, we randomly chose 40 and 25
protein structures from the bound and free data sets, re-
spectively, and computed the precision obtained by each
of the four servers; this was repeated 1000 times. The pre-
cision values obtained by DR_bind using the DNA-bound
(0.38–0.56) and DNA-free structures (0.31–0.55) are gen-
erally higher than those obtained by the other three
methods, as shown in Figure 2. This is also shown by
the paired t-test, which was used to test the null hypothesis
that DR_Bind does ‘not’ yield higher precision than the
other three methods. The resulting P< 0.00001 for
both bound and free data sets rejected the null
hypothesis (Supplementary Table S3). Hence, an experi-
mentalist would likely find more residues predicted
by DR_bind to bind DNA compared with those
predicted by sequence-based methods, thus saving time
and costs.

Compared with sequence-based methods to predict
DNA-binding residues, the structure-based DR_bind
approach incorporates structural information (that is,
electrostatics and geometry) of the query protein.
Therefore, it would be expected to perform much better
than sequence-based methods when evolutionary informa-
tion for a query protein is not available. To show the im-
portance of additional structural information, we tested
the structure- and sequence-based methods on a set of
15 non-redundant DNA-bound protein structures
with no or unreliable ConSurf conservation profiles.
Note that DNABINDPROT could not be applied to this set
of ‘unique’ DNA-binding proteins because it does
not yield predictions for proteins without ConSurf-DB
conservation data. The performance results of DR_bind,
BINDN+and NAPS in Table 3 show that the difference
in performance between DR_bind and the
two sequence-based methods become more apparent for
proteins without conservation data: the precision
of DR_bind (47%) is nearly twice that of BINDN+
(27%) and NAPS (23%). Thus, for DNA-binding
proteins with no or insufficient homologs, DR_bind
could provide a significantly higher fraction of correctly
predicted DNA-binding residues than sequence-based
methods.

Table 2. Comparison of the performance measures of DR_Bind,

BindN+, NAPS and DNABINDPROT using the same data set of 83

DNA bounda or 55 DNA-free protein structuresb,c

Server DR_Bind BindN+ NAPS DNABINDPROT

TP 728 (419) 1013 (542) 328 (180) 244 (169)

FP 831 (566) 1798 (1129) 733 (459) 1040 (772)

TN 18 128 (11 596) 17 161 (11 033) 18 226 (11 703) 17 919 (11 390)

FN 1362 (792) 1077 (669) 1762 (1031) 1846 (1042)

Precision 0.47 (0.43) 0.36 (0.32) 0.31 (0.28) 0.19 (0.18)

Sensitivity 0.35 (0.35) 0.48 (0.45) 0.16 (0.15) 0.12 (0.14)

Specificity 0.96 (0.95) 0.91 (0.91) 0.96 (0.96) 0.95 (0.94)

Accuracy 0.90 (0.90) 0.86 (0.87) 0.88 (0.89) 0.86 (0.86)

mcc 0.35 (0.33) 0.34 (0.31) 0.16 (0.15) 0.08 (0.09)

aThe PDB entries are listed in Supplementary Table S1; the total
number of residues in the data set is 21 049, out of which 2090
residues are DNA-binding (=TP+FN) and 18 959 residues are non-
DNA-binding (=FP+TN).
bPerformance measures based on the DNA-free protein structures are
in the parentheses.
cThe PDB entries are listed in Supplementary Table S1; the total
number of residues in the dataset is 13 373, out of which 1211
residues are DNA-binding (=TP+FN) and 12 162 residues are non-
DNA-binding (=FP+TN).
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