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† Background Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal
elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the
regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by
using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been
treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to
understand GA functions in root growth.
† Scope This review addresses research progress on the physiological functions of GA in root growth.
Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant
height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays
a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important
parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for
improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and
some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial
manipulation of GA-mediated growth control.
† Conclusions This paper reviews: (1) the breakthrough dose–response experiments that show that root growth is
regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of
GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA
signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth
regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and
root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender or thick
axial organs.

Key words: Ancymidol, GA receptors, GA sensitivity, gibberellin, GID1, Lactuca sativa, low concentration of
GA, Pisum sativum, root elongation, root thickening, rosette form, shoot-to-root ratio.

INTRODUCTION

Plant growth is regulated by multiple environmental factors
and nutritional supply; however, most of the regulatory
events are mediated by plant hormones. Among these plant
hormones, gibberellin (GA) has been known to control plant
height ever since its discovery in studies of an abnormally
elongating disease of rice seedlings caused by a fungal
infection by Gibberella fujikuroi (Takahashi et al., 1955,
1957, 1991).

Exogenously applied GA strongly promotes the elongation
growth of shoots in many plants, as shown in Fig. 1,
whereas it does not show such clear effects on roots, even in
GA-sensitive pea plants (Fig. 2). Therefore, the question
arises of whether GA is a plant hormone that regulates shoot
growth but does not affect root growth. The answer to this
question is a resounding ‘no’. A GA requirement for root
growth has been elucidated by GA depletion experiments in
GA-deficient mutants and/or treatment with growth retardants.
Some growth retardants were discovered to suppress shoot
elongation by inhibiting endogenous production of GA
(Rademacher, 1991). By using precise concentrations of such

chemical inhibitors of GA biosynthesis in combination with
GA-deficient mutants, GA has been shown to control root
growth at a considerably lower concentration than is necessary
for controlling shoot growth (Tanimoto, 1994). It is now recog-
nized that GA plays an indispensable role in both shoots and
roots in many plants. The next question is how shoot and
root growth is quantitatively regulated by GA in one and the
same plant body.

Since the shoot/root ratio is important for agricultural produc-
tion, practical methods to change the shoot/root ratio have long
been awaited, as demonstrated by ‘the green revolution’ where
partial suppression of shoot growth resulted in more cereal
production (Sasaki et al., 2002; Hedden, 2003). Moreover,
there are diverse plant shapes with different shoot/root ratios
in nature. Extreme examples are liana (climbing) plants, such
as pea and kudzu (Pueraria lobata), which contrast with
rosette plants such as radish and dandelion (Taraxacum offici-
nale), the latter having short stems but well-developed roots. It
is an interesting physiological question as to how stem and
root growth can be separately controlled in these plants.

Although the molecular mechanism of GA-mediated elong-
ation growth itself is still under investigation, molecular events
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of GA signal transduction, including GA receptor molecules,
have been revealed. Additionally, the GA biosynthesis
pathway and its regulation have been investigated to show
the local regulation of active GA production in a plant body,
suggesting the separate regulation of GA production in roots
and shoots.

Inhibitors of GA biosynthesis have been shown to cause
swelling of onion bulb cells and to change their microtubule
and microfibril orientation (Mita and Shibaoka, 1984;
Shibaoka, 1994). In GA depletion experiments, either by
inhibition of GA biosynthesis or using GA-deficient mutants,
remarkable thickening of the root was observed in pea and
lettuce, while slender roots were induced by GA treatment
(Tanimoto, 1987, 1988, 1994).

This short review describes in detail the progress of research
on GA-mediated regulation of root growth, and presents a
recent hypothesis for ‘GA sensitivity’, as well as discussing
possible methods to change the shoot/root ratio by regulating
the GA concentration and GA sensitivity. Brief details of the
materials and methods used in some of the experiments
referred to in this review are given in the Appendix.
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FI G. 1. Typical effect of gibberellin in the enhancement of stem growth. Two
cabbage plants (on the right) were treated with GA3 for 5 months. Stem growth
was strongly enhanced as compared with the control plant (to the left) to which

no GA was applied.
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REGULATION OF ROOT ELONGATION
AND THICKNESS BY GA DEPLETION

AND GA SUPPLEMENTATION

Gibberellin and root elongation

An inhibitor of GA biosynthesis, ancymidol (Coolbaugh and
Hamilton, 1976; Coolbaugh et al., 1978), strongly suppresses
hypocotyl elongation of lettuce seedlings at a relatively low
concentration at which root growth is not correspondingly sup-
pressed (Fig. 3; Tanimoto, 1987). Gibberellin shows clear
stimulation of root elongation under growth-suppressed condi-
tions induced by this inhibitor of GA biosynthesis in lettuce

(Tanimoto, 1987), a tall variety of pea (Tanimoto, 1988) and
in dwarf pea (Fig. 4; Tanimoto, 1994). When the endogenous
GA level is decreased by the GA biosynthesis inhibitor or by
mutation of a GA biosynthesis gene, root growth is stunted
and abnormal thickening is induced. These phenomena are
completely reversed by the exogenous application of GA3 at
a rather low nanomolar concentration (Fig. 4), which is insuf-
ficient to promote shoot elongation. The phenomenon has been
further confirmed by time course experiments using a rhiz-
ometer, in which lettuce seedlings are dipped in hydroponics
containing growth regulators for 2 min at 30 min intervals
during a 4 d experiment (Fig. 5; Tanimoto, 2002). It was
shown that GA3 enhances root elongation but not that of the
hypocotyl at 1 nM, whereas hypocotyl elongation is stimulated
at 1 mM GA3.

By these dose–response examinations, the growth-
regulating function of GA in roots has been elucidated and
the interesting hypothesis has been advanced that root elong-
ation occurs at a lower GA concentration than stem growth,
as shown by Fig. 6, in which dose–response curves of
GA-regulated root and stem growth are indicated with refer-
ence to those of indole-3-acetic acid (IAA)-regulated growth.

Since a specific transporter of GA has not been found, there
may be no regulatory system to distribute GA molecules to
specific tissues in a plant body. How, then, is root elongation
enhanced without causing stem elongation in rosette plants?
The first strategy may involve a local production of GA in
roots at a precisely controlled concentration. The second
strategy may be to provide roots with a high sensitivity to
GA to enable root elongation at very low GA concentrations
that are not sufficient for stem growth. These two methods
are compatible with each other, but the first may be hazardous
for plants, because overproduction of GA in roots may cause
stem elongation under an unfavourable climate. However, it
must be noted that the GA1 and GA4 inactivation system
may well have been developed to prevent an oversupply of
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active GAs, and that externally applied GA3, which is often
used for dose–response experiments, is relatively more
stable than GA1 and GA4. The in planta stability of GA1,
GA4 and GA3 remains a question for further quantitative
investigation.

Gibberellin and root thickness

Ancymidol-enhanced and GA-suppressed thickening of
roots is usually observed in the elongation zone of the root
(Fig. 7) and is mainly caused by the expansion of cortical
cells (Fig. 8) (Tanimoto, 1987, 1988, 1994). Ancymidol-
induced thickening of root is also observed in woody roots
of tea, Camellia sinensis (Fig. 7, right). As reported for
onion bulbs (Mita and Shibaoka, 1984; Shibaoka, 1994), GA
has been shown to limit cell expansion by controlling micro-
tubule orientation and to facilitate the cellulose–microfibril
orientation perpendicular to the longitudinal axis of the root
(Hogetsu and Oshima, 1986), resulting in the elongation of
slender roots. Expansion of cortical cells in the elongation
zone of the root may be caused by a disorder of

GA-mediated microtubule and microfibril orientation due to
GA depletion and/or lack of GA signalling. A similar phenom-
enon was also reported in maize roots (Baluška et al., 1993).
Thickening of root cells by GA depletion is suggested to
occur in radish and other rosette plants.

REGULATION OF THE ACTIVE GA LEVEL
AND GA BIOSYNTHESIS PATHWAY

Gibberellin-sensitive dwarf plants have been investigated in
order to elucidate the biosynthetic pathway and metabolism
of GA. Many dwarfing genes were identified as controlling
the enzyme activity of each biochemical step of the pathway,
some of which were also suppressed by growth retardants
(Hedden and Kamiya, 1997; Tanimoto, 2002; Yamaguchi,
2008). The morphological appearance of dwarf plants affected
by these genes is somewhat complicated, particularly in roots,
where GA is saturated at a low level. The reason for a variable
degree of dwarfism may be ascribed to the redundancy and/or
leaky functions of these genes. For example, the le mutant of
dwarf pea has considerably stunted stems but their roots grow
normally, as shown in Fig. 9. This mutant produces one-tenth
of the normal GA content in the shoot, but the amount of GA
in the roots was comparable with that of the wild type (Yaxley
et al., 2001). However, when the dwarf pea bearing the mutant
na gene (cultivar ‘Little Marvel’) was treated with ancymidol,
roots were severely stunted and thickened, and stems were also
further shortened (Tanimoto, 1994). Ancymidol-suppressed
root growth was recovered at a lower concentration of GA3

than the stem growth (Fig. 4). Thus, these dwarf genes control-
ling GA biosynthesis may be leaky, and a combination of these
genes with the GA biosynthesis inhibitor might cause a more
severe syndrome of GA depletion, i.e. short stems, dark-green
leaves and short and thickened roots.

Gibberellin biosynthesis is controlled by feedback and feed-
forward systems (Hedden and Kamiya, 1997; Hedden, 1999;
Olszewski et al., 2002; Yamaguchi, 2008), and is also regu-
lated by another plant hormone, auxin (Ross et al., 2000,
2002). The major native auxin, IAA, which is transported
from the apical meristem, increases the active GA1 level in
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FI G. 7. Thickening of roots caused by ancymidol and its recovery promoted by GA3. (A) Pea seedlings treated with ancymidol (Ancy.) and/or GA3 (adapted
from Tanimoto, 1988). (B) Tea roots treated by ancymidol with or without GA3, grown in hydroponics.
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stems by two mechanisms (Fig. 9). IAA stimulates the expres-
sion of GA 3-oxidase which converts GA20 to bioactive GA1,
and suppresses the GA 2-oxidase which decreases the GA20

level. Although IAA regulation of the GA1 level has not
been demonstrated in roots, it may be highly possible that it
also participates in the regulation of low GA production in
roots. The role of IAA and GA in root growth was reviewed
by Tanimoto (2005), and cross-talk between IAA and GA
has been demonstrated in the signalling system (Fu and
Harberd, 2003; Gou et al., 2010; Heo et al., 2011). The
IAA–GA cross-talk for lateral root formation has also been
briefly reviewed (Farquharson, 2010).

Local production and translocation of GA are also important
factors for the regulation of shoot and root growth. Unlike IAA

transport, GA has been shown to move relatively freely from
roots to shoots, and vice versa (Prochazka, 1981; Matthysse
and Scott, 1984), although no specific transporter of GA has
been found. For example, shoot- or cotyledon-applied GA3

was found to enhance root elongation in pea plants
(Tanimoto, 1994), and shoot-applied GA4 enhanced root
growth in arabidopsis (Bidadi et al., 2010). Using grafting
experiments between the wild type and either the le mutant
or the nana mutant of pea, the ability of a wild-type rootstock
to restore stem elongation of a GA-deficient scion was shown
to be dependent on the position of the lesion in the GA biosyn-
thesis pathway (Dodd, 2005), i.e. wild-type root stocks
restored stem elongation of nana scions, which are deficient
in an early step of the pathway (the conversion of
ent-kaurenoic acid to GA12 aldehyde) (Proebsting et al.,
1992). In contrast, wild-type rootstocks did not restore stem
elongation of le scions, which are deficient in the conversion
of inactive GA20 to active GA1 (Reid et al., 1983).

Gibberellin also regulates auxin transport by modulating the
turnover of the auxin efflux facilitator, PIN, and thus affects
root gravitropism (Willige et al., 2011). In GA-deficient
plants, auxin transport is reduced in Arabidopsis thaliana,
and this is correlated with a reduction of PIN abundance in
GA-deficient plants, which is restored to the wild-type level
by external GA application. However, since the endogenous
level of auxin is thought to be supraoptimal for many roots,
GA may inhibit root elongation when GA increases the
endogenous auxin level (Kuraishi and Muir, 1962) and/or
when GA increases the tissue sensitivity to auxin, as previ-
ously suggested for stems (Ockerse and Galston, 1967;
Tanimoto et al., 1967).

GA SIGNALLING PATHWAY AND GA
RECEPTORS

The signalling pathway of GA action has been uncovered in
the last decade (Ueguchi-Tanaka et al., 2005, 2007; Hirano
et al., 2008; Murase et al., 2008; Sun, 2010). The pathway is
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initiated by the interaction of GA and the GA receptor protein,
GID1 (Fig. 10). The GA–GID1 conjugate binds to the DELLA
and TVHYNP motifs of the DELLA proteins, a repressor of
GA reactions in the absence of GA. The GA–GID1–
DELLA protein complex is recognized by a polyubiquitination
system, and polyubiquitinated DELLA protein is degraded by
the 26S proteasome machinery. The disappearance of DELLA
protein results in the expression of GA-related genes, leading
to the activation of GA reactions. One of the GA reactions is
the regulation of shoot growth through the functional regula-
tion of DELLA protein, as demonstrated in the ‘green revolu-
tion’ in which semi-dwarf cereals were used (Sasaki et al.,

2002; Hedden, 2003). Participation of DELLA proteins in
the growth regulation of roots was also elucidated (Fu and
Harberd, 2003; Ubeda-Tomas et al., 2008). Although it is
not yet clear to what extent such DELLA regulation is
working in root growth, a quantitative regulation of the GA
signalling process might be a possible site of artificial
control of root and shoot growth in addition to the regulation
of active GA content in situ, as described above.

Evidence for the participation of GA signalling in root
growth and development is accumulating; GA regulates meri-
stem size and growth of roots (Ubeda-Tomás et al., 2008,
2009) and lateral root development (Zimmermann et al., 2010).
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FI G. 10. Model for the activation of GA reactions. GA signalling is initiated by the interaction between the GA molecule and the GA receptor protein GID1 to
form a complex with DELLA proteins, negative regulators of GA reactions. The GA–GID1–DELLA complex is recognized by the SCFGID2/SLY1 complex and
DELLA proteins are polyubiquitinated, resulting in the degradation of DELLA proteins by the 26S proteasome machinery. By GA-initiated degradation of
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nified in B) and its wild-type counterpart (left-hand pot). The GA receptor GID1
was discovered in the study of the gibberellin-insensitive dwarf1 (gid1) mutant,
GIBBERELLIN INSENSITIVE DWARF1, which encodes a nuclear-localized

soluble receptor for GA. (Courtesy of Dr M. Ueguchi-Tanaka.)
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In addition to the control of DELLA protein itself, receptor
molecules of GA are also candidates for the regulation of GA
reactions. The GID1 receptor molecule was discovered in a
study of a GA-insensitive extreme dwarf of rice (Fig. 11;
Ueguchi-Tanaka et al., 2005). The receptor molecule was
named after gibberellin-insensitive dwarf rice 1. The mutant
rice shows the typical GA-deficient symptoms of dark-
green leaves and short and thick stems. Roots look slightly
thickened but not very stunted. The reason for this is not
still clear.

The molecular mechanism of high GA sensitivity of roots is
not clear, but an interesting mechanism has been suggested
recently in the author’s research group with Drs Miyako
Ueguchi-Tanaka and Makoto Matsuoka (Nagoya University).
There are three GA receptors in A. thaliana: AtGID1a,
AtGID1b and AtGID1c (Ueguchi-Tanaka et al., 2007). One
of them, GID1b, has a higher GA affinity, i.e. a lower dissoci-
ation constant for, the GA molecule (Fig. 13; Nakajima et al.,
2006). The knockout strain of AtGID1b became more sensitive
to the GA inhibitor biosynthesis than the other knockout strains,
i.e. the root was stunted more significantly at a low level of
growth retardant application. Furthermore, another laboratory
found that AtGID1b is rather strongly expressed in roots
(Griffiths et al., 2006), and AtGID1b overproduction resulted
in a slight promotion of root growth (Ariizumi et al., 2008).

Genetic manipulation of GID1 molecules has been carried
out and its biochemical and physiological function can be
changed by a partial displacement of the peptide sequence in
the GID1 molecule (Yamamoto et al., 2010). At some point
in the displacement manipulation, the GID1 molecule became
active in GA signalling even in the absence of a GA molecule.
Such a molecular manipulation technique provides a strategy
for GA-mediated growth regulation of roots and shoots.

CONCLUSIONS

By reviewing research on GA function in roots during the last
three decades, the role of GA in root elongation and thickening
has become clear, as follows. (1) Root elongation is regulated
by a significantly lower concentration of GA than stem elong-
ation. (2) Higher GA sensitivity of roots in comparison with
shoots may provide an advantage for rosette plants to have
long roots and short stems when there is a limited production
of GA, in addition to the local regulation of GA production.
Although the molecular mechanism of higher GA sensitivity
is not fully understood, this mechanism may endow plants
with diverse shapes, tall or short, and slender or thick. (3)
Knowledge of the molecular mechanism of higher sensitivity
of roots to GA may also provide a new strategy for regulating
the shoot/root ratio for agricultural purposes.

Possible strategies for selective control of shoot and root
growth are expected to emerge from more precise understand-
ings of the molecular mechanism of GA signal transduction
including the GA receptor and DELLA proteins in roots.
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APPENDIX: PLANT MATERIALS AND
METHODS FOR ROOT GROWTH EXPERIMENTS

Pea seedlings

Pea seeds were sterilized by dipping in diluted sodium hypo-
chlorite solution for 30 min, and germinated on wet filter
paper or a cotton bed in an air-tight box. After selecting ger-
minated seedlings by root length, seedlings were put on a
stainless steel mesh fixed on a 100–200 mL cup containing
hydroponic solution and growth regulators. Hydroponically
cultured seedlings, ten seedlings per cup, are convenient for
measuring root growth over a period of a few weeks.

Lettuce seedlings

Lettuce seeds are layed in rows on a double layer of wet
filter paper after sterilization (dipped in diluted sodium hypo-
chlorite solution for a few minutes after rinsing with ethanol).

The doubled filter paper was vertically attached inside a 100–
200 mL cup containing hydroponic solution. Roots grow verti-
cally downwards in the hydroponic solution containing growth
regulators.

Arabidopsis seedlings

Sterilized seeds were layed on a 1 % agar plate in a square
Petri dish (100 × 140 × 12 mm) and the plate was placed
vertically to allow vertical root elongation on the agar
surface. The Petri dish must be taped with surgical mending
tape to maintain the required level of humidity and aeration.

Growth quantification of roots.

The length of the main root was measured either using a
ruler or by image analysis of photographs (Qui et al., 2007).
For arabidopsis roots, the lengths of the longest roots,
usually the main roots, were measured.

Continuous recording.

For continuous recording of root elongation, image analysis
of photographs, or a rhizometer (TRZ-16) with minimum
mechanical contact with the root tip, are both useful
(Tanimoto and Watanabe, 1986).
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