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† Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major
goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during de-
velopmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our under-
standing of gene expression, post-expression modulations of macromolecules and sub-cellular system
interactions.
† Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and
refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution,
contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of spe-
cimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscop-
ist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern
fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective
conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell struc-
tures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available.

Key words: Four-dimensional imaging, confocal laser scanning microscopy, fluorophores, transmission electron
microscopy, plant cell biology.

INTRODUCTION

Eukaryotic cells consist of multifunctional membrane-bound
compartments and cytoskeletal elements residing in a
complex cytoplasmic matrix surrounded by a plasma mem-
brane and extracellular matrix (ECM). These components are
precisely positioned in the cell’s architectural design. They
interact with each other via precisely co-ordinated signal cas-
cades in response both to internal genetically programmed
prompts and to external stresses. In most plants and other
photosynthetic eukaryotes, this complexity is further heigh-
tened by the presence of plastids used for photosynthesis and
an ECM that consists of a diverse assortment of polysacchar-
ides, proteoglycans, proteins and polyphenolics, i.e. the cell
wall. Since Robert Hooke, Anton van Leeuwenhoek and
other early microscopy pioneers first examined cells with
light microscopes four centuries ago (Chandler and
Roberson, 2009), plant biologists have relied heavily on
microscopy-based technology to resolve the structure, function
and interactions of cells and sub-cellular components. Today,
microscopy is even more valuable than ever. Over the past
century, the introduction of laser-based, vibrational, electron
and X-ray systems coupled with the rapid evolution of
digital image capture and analysis technologies have revolutio-
nized the capabilities and applications of ‘microscopy’.
Coincidentally, new cell preparation techniques that encom-
pass cryotechnology, immunological and genetic probes, espe-
cially when applied to carefully chosen model organisms, have

moved modern microscopy closer to achieving perhaps its ul-
timate goal: resolving the 3-dimensional (3-D) structural and
functional features of cellular life over time, i.e. 4-dimensional
imaging or 4-DI.

4-DI represents the mechanism by which dynamic life pro-
cesses are visualized throughout an organisms’s developmen-
tal cycle or in response to external pressures (i.e.
environmental and/or experimental). Ultimately, 4-DI will
interface seamlessly with data derived from molecular or bio-
chemical studies, thereby facilitating interpretation of an
organism’s gene expression programme and post-expression
modulation events. Modern microscopy though is still
limited by two major ‘reality checks’: (1) light microscopy
(LM) and confocal laser scanning microscopy (CLSM) used
to image dynamic events in live cells are inherently limited
in resolution; and (2) electron microscopy (EM) cannot be
used to view live cells. To address these limitations, combina-
torial strategies employing multiple microscopy-based and/or
other technologies (e.g. molecular and biochemical) are com-
monly used to gather, interpret and synthesize data that lead to
4-DI. Many outstanding reviews are currently available that
describe the theory and practice of specific microscopy-based
technologies and specimen preparation protocols (Inoue, 2006;
Pawley, 2006; Chandler and Roberson, 2009; Frigault et al.,
2009; Fang and Spector, 2010; Chen et al., 2012). This
review will summarize how these diverse technologies may
be integrated and they can be used to provide detailed informa-
tion about the 4-DI of plant cells.
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Current status and the ‘game plan’

Plant biologists today are confronted with a very large as-
sortment of microscopy-based instruments and strategies
from which to choose when designing an experiment
(Fig. 1). The phenotypic characteristics of the plant ‘specimen’
(e.g. cell, tissue, organ or whole plant) often play critical roles
in the choice of a microscopy-based technology. Conversely,
the physical limitations of any type of microscope and asso-
ciated specimen preparation techniques often restrict how a
plant may be manipulated experimentally and what may be ul-
timately visualized. Today, multiple microscopy technologies
are most often combined in order to take advantage of particu-
lar optical benefits (Fig. 2). Subsequent interpretation of the
resulting diverse data, often consisting of high-resolution snap-
shots and short video sequences, are then synthesized to yield
4-D models. While not ideal, these synthetic 4-D models often
provide important insight into the specimen/process being
studied and set the stage for further refinement when new mi-
croscopy technologies emerge. Today, it is essential for any
cell scientist to develop a realistic ‘game plan’ that can satisfac-
torily test hypotheses and integrate all microscopy-generated
data along with data derived from other methodologies. The
main technologies that are available for microscopy-based
analyses are now considered.

‘CONVENTIONAL’ TRANSMITTED LIGHT
MICROSCOPY (LM)

Conventional transmitted LM including commonly used
specialized optical variations such as differential interference
contrast (DIC), polarization and phase contrast, sometimes
partnered with staining with select chromatic dyes, represents
a valuable tool in both overall qualitative screening and
precise assessment of the quantitative characteristics of a
specimen (Shaw, 2006; Wayne, 2009). Data derived from
these more traditional approaches typically provide the foun-
dation for a microscopy-based study and interface quite effect-
ively with other more advanced microscopy technologies.
Additionally, some conventional LM optics, when coupled
with modern high-resolution video or time-lapse imaging, rep-
resent powerful tools for 4-DI of motile phenomena (e.g. cyto-
plasmic steaming or anisotropic growth) and developmental
events of plants. The literature today abounds with many out-
standing examples of plant cell structural and functional
studies where more ‘traditional’ forms of microscopy are the
main or important instruments of analysis, including, for
example, those dealing with cuticle structure and function
(Buda et al., 2009), anisotropic polar growth (Zonia and
Minnik, 2008; McKenna et al., 2009; Suslov et al., 2009;
Aouar et al., 2010; Fayant et al., 2010; Daher and Geitmann,
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FI G. 1. The strategy for 4-DI and subsequent development of models is complex, multifaceted and must consider the limitations of the different microscopy
technologies. In initial planning, choice of specimen, its geometric characteristics and its applicability to various types of microscopy must be considered
when planning experiments. Light microscopy (LM)-based visualization of dynamic processes including the use of fluorescent proteins (FPs) in live and trans-
formed cells is typically balanced with specific labelling methodologies including immunocytochemistry. Images are then acquired with light or confocal laser
scanning microscopy (CLSM) and many new technologies therein such as FRET, FRAP, BiFC and multiphoton microscopy. Electron microscopy (EM) is
employed to acquire high-resolution snapshots not possible with light optics. Here, choices on the best methods for fixing specimens, sectioning and labelling
for transmission electron microscopy (TEM) or specimen processing for scanning electron microscopy (SEM) must be determined. The snapshots are obtained
via EM, and further analyses may be gained through technologies such as electron tomography. The data acquired by both LM and EM are then synthesized to
develop models describing the 4-D features of the specimen. However, a larger combinatorial strategy that also includes molecular and biochemical data and

information derived from atomic force microscopy or FTIR microspectroscopy is incorporated to yield a more complete model.
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2011; Rounds et al., 2011) and cytoplasmic streaming
(Goldstein et al., 2008; Verchot-Lubicz and Goldstein, 2010;
Dodonova and Bulychev, 2011). Additionally, many outstand-
ing reviews and practical guides for general LM analyses are cur-
rently available (e.g. Ruzin, 1999; Chandler and Roberson,
2009).

WIDE FIELD FLUORESCENCE MICROSCOPY
(WFLM)

Fluorescence light microscopy and the development of fluores-
cent labels and probes (i.e. fluorophores) have profoundly
enhanced the capabilities of LM, especially in the study of live
plant cells. Co-labelling with multiple fluorophores has been es-
pecially important in defining the structural organization and
interactions of sub-cellular components. Today, there is a huge
library of fluorescent probes from which to choose. One need
only to examine the Molecular Probes Handbook (http://
www.invitrogen.com/site/us/en/home/References/Molecular-
Probes-The-Handbook.html) to appreciate fully the astounding
variety of fluorescent probes created for identifying specific
sub-cellular components or accommodating the modern fluores-
cence microscope and particular filter sets chosen for any study.
Today, fluorescence-based microscopy may be conveniently

compartmentalized into two areas, WFLM (e.g. epifluorescence
microscopy) and CLSM.

WFLM is a sensitive, convenient method using a relatively
inexpensive instrument for acquisition of fluorophore-labelled
data (Frigault et al., 2009). In fact, for many studies, it may use
a more efficient instrument than CLSM especially in general
screening of multiple specimens/fluorophores, microinjection
studies and basic quantitative assessment of signal. Even for
sensitive fluorescent protein (FP)-based labelling where high-
resolution capture of the fluorescent signal is paramount, the
introduction of new, high-efficiency neutral density filters
that stabilize the fluorescent signal and, powerful deconvolu-
tion software that eliminates or reduces out-of-focus signal
(Chen et al., 2012), make WFLM an important tool for plant
cell studies. Several new variations of WFLM have recently
been developed and are making an impact on biological mi-
croscopy. Total internal reflection fluorescence microscopy
(TIRFM) or evanescent field microscopy captures the evanes-
cent wave that occurs at the interface of two different media
with different refractive indices. This yields superior
signal-to-noise ratios and significantly reduces photobleaching
(i.e. photo-induced alteration of a fluorophore that abolishes
fluorescence) and phototoxicity. TIRFM has been used suc-
cessfully for analyses of exocytosis, endocytosis and tubulin

Time-lapse: high-resolution DIC LM

Immunocytochemistry: live cells

A

T=0

T=10h

2h JIM13 6h 10 h

B

VPSEM

C

Combinatorial strategy

FI G. 2 A combinatorial strategy for 4-DI. Multiple microscopy technologies and protocols are often necessary for studying 4-D features. In this example, a
high-resolution time-lapse imaging of rhizoid formation in the green alga, Spirogyra, is undertaken. In A, each panel represents an image taken 1 h after filament
wounding (total ¼ 10 h). During this process, some specimens are removed and immunolabelled, in this case with the monoclonal antibody, JIM13, specific for
arabinogalactan proteins (AGPs). AGP is first found in the wall at 2 and 6 h, and then in the sheath surrounding the wall at 10 h (B). In order to visualize the
branching pattern and sheath production, variable pressure scanning electron microscopy (VPSEM) is employed. C demonstrates bifurcate branching (upper,
arrow) and sheath production (lower, arrow). These multiple approaches together illustrate the production and release of AGP-like molecules to form a

sheath that allows the rhizoid to attach to a substrate. Scale bars: (A, B) ¼ 20 mm, (C) ¼ 15 mm.
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dynamics in plants (Knopka and Bednarek, 2008; Vizcay-
Barrena et al., 2011). Variable angle epifluorescence micros-
copy (VAEM) uses illumination that penetrates into a sample
and passes through it almost parallel to the cover slip. This
technology yields superior visualization of surface phenomena
and has been valuable in studies of secretory vesicle dynamics
in pollen tubes (Wang et al., 2006), dynamin-related protein
dynamics (Konopka and Bednarek, 2008) and single actin
filament ‘behaviour’ (Blanchoin et al., 2011).

CONFOCAL LASER SCANNING MICROSCOPY
(CLSM)

No other microscopy-based technology has contributed more
recently than CLSM to biological imaging and 4-DI. CLSM
uses laser-generated light along with high-efficiency filters,
precisely tuned and automated z-plane control, precision aper-
tures and advanced software technology to acquire serial
optical sections of a specimen. CLSM allows for the optical
dissection and high-resolution imaging of specific strata of a
specimen, reduction or elimination of interfering out-of-focus
light or glare from the focal plane and the post-imaging con-
struction of 3-D profiles not possible with WFLM (see
Pawley, 2006 for a comprehensive review of this technology).
Most modern CLSM instruments are equipped with an
acousto-optic-tunable filter (AOTF) that allows for superior at-
tenuation of laser-generated light and the ability to turn off the
laser during back-scanning to reduce damage to the specimen
(Frigault et al., 2009). Additionally, specimen chambers and
microscope stages that allow for carefully controlled experi-
mental manipulation of live specimens have significantly
enhanced acquisition of dynamic data. With new CLSM
instruments, up to five different fluorophores can be monitored
in one sample, and new cameras and software platforms have
allowed for ‘time-lapse’ capture of developmental events that
are essential for 4-DI. Today, CLSM is routinely used in
plant cell biology to study the expression, targeting,
co-localization, turnover and associations of diverse proteins
via transformation-based FP technology. It has also been
used to analyse other macromolecules and sub-cellular compo-
nents through immunocytochemistry and a vast arsenal of
organelle-specific fluorophores. Additionally, several newer
CLSM-based technologies and modifications have recently
evolved and contributed to enhanced imaging.

Spinning disc CLSM

In this CLSM ‘variation’, laser-generated light is sent
through a disc containing multiple pinholes or slits and is
coupled with a CCD camera that provides scanning rates as
high as 1000 s21. The displacement of the light is spread
over larger areas of the specimen and phototoxicity is signifi-
cantly reduced. These features make the spinning disc CLSM
an excellent system for real-time observation of live and/or
sensitive specimens as well as for the acquisition of highly
resolved geometries that are not obtainable with a conventional
CLSM. Spinning disc CLSM is commonly used in plant cell
biology today, and examples of its utility may be found in
recent studies estimating the trajectories of proteins, their vel-
ocity as well as their distribution and activity (Held et al.,

2008) and elucidating the dynamic interactions between actin
filaments and microtubules in arabidopsis (Sampathkumar
et al., 2011).

Fluorescence recovery after photobleaching (FRAP)
and fluorescence loss in photobleaching (FLIP)

These two CLSM-based technologies are primarily used for
studying intracellular components through precisely controlled
photobleaching. In FRAP, a fluorescently labelled zone in the
cell is bleached using a precisely focused high-intensity laser.
Then, the displacement of surrounding unbleached fluorescent
molecules into the bleached zone is monitored with low-
intensity laser light. The resulting data that are acquired can
then be used for determining a protein’s diffusion coefficient
especially in relation to its surrounding environment. In
plant cell biology, FRAP has been used extensively for
detailed studies of actin dynamics (Ketelaar et al., 2004;
Smertenko et al., 2010), cellulose synthase-like proteins in
the Golgi bodies (CSLD1 and CSLD4; Wang et al., 2011),
vesicle dynamics at the polar tip of arabidopsis pollen tubes
(Bove et al., 2008), functional analysis of constituitive and al-
ternative pre-mRNA splicing mechanisms (Ali et al., 2008),
the tracking of movement protein of the Tobacco mosaic
virus to plasmodesmata (Wright et al., 2007) and endoplasmic
reticulum (ER) dynamics (Martens et al., 2006; Forner and
Binder, 2007). In FLIP, the photobleaching is repeated
several times in alternating sequences with low-intensity
laser imaging of the whole cell. FLIP has been important in
elucidating cell compartment continuity and spatial features
of immobile cell proteins (Martens et al., 2006; Held et al.,
2008; De Blasio et al., 2010; Sparkes et al., 2011a, b).

Fluorescence or Förster resonance energy transfer (FRET),
fluorescence lifetime imaging microscopy (FLIM) and
bimolecular fluorescence complementation (BiFC)

4-DI entails not only high-resolution imaging of select indi-
vidual sub-cellular components or macromolecules, but also
the structural and temporal interactions between these entities.
A powerful CLSM-based technology that is often used for this
is Förster or fluorescence resonance energy transfer (FRET;
Martens et al., 2006). FRET analyses the interaction of two
fluorescently tagged molecules, a donor and an acceptor mol-
ecule, that are positioned in close proximity to each other (i.e.
specifically within 10 nm). The donor and acceptor molecules
are specifically chosen with the absorption spectrum of the ac-
ceptor overlapping the same wavelength region as the emission
spectrum of the donor. Energy derived from the donor mol-
ecule upon excitation by a specific wavelength of light is trans-
ferred to the adjacent acceptor molecule that, in turn, leads to
an increase in intensity of fluorescence (i.e. sensitized emis-
sion) that can be quantitatively monitored (Held et al., 2008;
DeBlasio et al., 2010). In FRET, the choice of the pair of fluor-
ophores is critical and, recently in plant studies, cyan fluores-
cent protein (CFP)/(yellow fluorescent protein (YFP) and
TSapphire/mOrange have been successfully employed (Bayle
et al., 2008). To avoid interference caused by signal overlap
of the two molecules (or cross-talk), the acceptor may be photo-
bleached and the donor fluorescence subsequently measured
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(Sparkes et al., 2011a). The resolution of the generated signal in
FRET is typically on the order of angstroms (10210 m) and
therefore superior to conventional CLSM. This makes FRET
a type of molecular ruler to measure distances between macro-
molecules or sub-cellular components. The FRET signal may
also be quantitatively measured as the fluorescence decrease
in the lifetime of the donor using fluorescence lifetime
imaging (FLIM). In plant studies, FRET and FLIM have been
valuable as tools providing information about the shape and
dimension of proteins, analysing protein–protein interactions
and tertiary protein complexes (Kwaaitaal et al., 2010),
elucidating cortical ER (Sparkes et al., 2010, 2011b), tracing
endocytosis (Griffing, 2008) and detecting/refining signals
when autofluorescence in the sample is a problem (e.g. chloro-
phyll and phenolic compounds).

Another important innovation in the study of protein–
protein interactions is bimolecular fluorescence complementa-
tion or BiFC (Walter et al., 2004; DeBlasio et al., 2010). Here,
two potentially interacting proteins are each labelled with non-
functional halves of a fluorescent protein such as YFP. Upon
protein–protein interaction, the fluorescent protein reconsti-
tutes and produces a fluorescent signal. The value of this tech-
nology is that it employs smaller fusion tags and therefore
provides better resolution along with more stability over time
than with conventional CLSM. BiFC has recently been used
to analyse multiprotein complexes and membrane protein
topology in plants (Sparkes et al., 2010).

SUB-CELLULAR LABELS FOR LM,
WFLM AND CLSM

Dyes or stains have always been invaluable contrast-enhancing
agents for microscopy-based imaging, and the number of
labels available and their cellular or sub-cellular targets are
indeed large and continue to grow (Krishnamurthy, 1999;
Ruzin, 1999; Johnson, 2006; Tsien et al., 2006; Chen et al.,
2012). These agents may be applied to live cells and/or
fixed, embedded and sectioned specimens. Some of these
labels yield chromatic or fluorescent signals and are derived
from traditional plant histology, while others represent combi-
nations of more recently developed fluorophores with specific
binding agents. These labels continue to represent effective
agents for enhancing microscopy-based imaging of sub-
cellular components/processes/macromolecules/ions. Some of
the more commonly used labels are presented in Table 1.

Over the past several decades though, newly engineered
fluorophores have been developed partly in co-ordination
with the astounding advancements made in light, laser and
filter technologies and partly as a result of the relentless
demand for fluorophores with maximum specificity and
those yielding the highest resolution (e.g. fluorescein and
rhodamine derivatives, Alexa, BODIPY; Bhat et al., 2006;
Chen et al., 2012). Many of these agents have been used as
the fluorophores conjugated to antibodies (immunocytochem-
istry). Immunocytochemistry is a versatile and powerful label-
ling technology that employs vertebrate-generated antibodies
to localize macromolecules (antigens) or their specific sub-
domains (epitopes). Antibodies are produced in response to,
and bind to, architectural features that are relatively unique
to an antigen (Chandler and Roberson, 2009). Monoclonal
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antibodies (mAbs) are epitope specific and are derived from
individual antibody-producing cell lines of the immunized
animal. The monospecificity of mAbs makes them exception-
ally powerful tools for precise identification of macromole-
cules, but this also often limits their utility in cellular studies
(Lipman et al., 2005). That is, minor changes to epitope struc-
ture in a specimen, high sensitivity to specific labelling proto-
cols (e.g. buffer type and pH) and/or fluorophore-linking
preparation techniques may significantly affect mAb applica-
tions. Polyclonal antibodies (pAbs) are comprised of multiple
mAbs with unique specificities to an epitope of a particular
antigen. They are easier/faster to obtain than mAbs and are
more stable during labelling protocols. While mAbs are most
often chosen for immunocytochemistry because of their high
specificity, pAbs are convenient and relatively inexpensive
markers that may be quite satisfactory for general screening
of an antigen. In most applications, indirect immunolabelling
protocols are employed whereby the specimen is first incu-
bated in the primary mAb or pAb with specificity for a particu-
lar epitope or antigen. Then, the specimen is incubated with a
fluorophore-conjugated secondary antibody with binding spe-
cificity toward the animal-specific immunoglobulin of the
primary antibody. This labelling protocol also includes block-
ing to remove unspecific labelling, extensive washings and,
sometimes, the inclusion of detergent, various solvents and/
or wall-degrading enzymes or cryo-based wall fracturing to
enhance permeability of the antibody. Production of a fluores-
cent signal is by the fluorophore attached to the secondary anti-
body attached to the primary antibody that is attached to the
epitope (i.e. multi-’piggybacking’). The indirect labelling
protocol sometimes suffers from high background labelling
and false positives due to cross-reactivity of the secondary
antibody to irrelevant immunoglobulins (i.e. those not contain-
ing the epitope) found in the primary antibody (Brelje et al.,
1993). Direct labelling of a sample with a primary antibody
conjugated to a fluorophore may be employed, but this
method is less sensitive than the indirect approach and may
be interfered with by amines, ammonium ions and some
common buffers typically used in labelling processes. While
immunofluorescence labelling has been successfully used to
identify intracellular proteins and other biochemicals in
many plant studies, the use of fluorescent proteins attached
to intracellular proteins has subsumed a great deal of labelling
(see below). However, immunofluorescence remains a critical
technology for studying cells that have yet to be transformed or
for studying non-protein macromolecules. Perhaps the best
example of this is in studies of plant cell walls (Hervé et al.,
2011; Fig. 3). Today, a large arsenal of mAbs raised against
specific wall epitopes has been generated and are commercial-
ly available (Plant Probes, www.plantprobes.net/; the Complex
Carbohydrate Research Center at the University of Georgia,
www.ccrc.uga.edu/services/index.php; BioSupplies, www.
biosupplies.com.au/). These mAbs have been used for both
live cell and fixed samples, and are often used in combination
with other immunobinding assays such as carbohydrate micro-
arrays (Moller et al., 2007) or traditional biochemical studies.
Correlative studies are also possible because of the adaptability
of antibody labelling to thin sections for electron microscopy
(i.e. immunogold labelling – see later). Recently,
carbohydrate-binding modules or CBMs have been added to

the library of cell wall labels. CBMs are non-catalytic
protein domains found on many carbohydrate-active
enzymes that act on cell walls (Blake et al., 2006; Kljun
et al., 2011). CBMs are specific for the macromolecule to
which they bind and have been developed as recombinant pro-
teins with polyhistidine tags. This, in turn, allows them to be
used like an antibody or as a fusion protein with green fluores-
cent protein (GFP) that allows for direct imaging. CBMs have
great potential for the labelling of cellulose and hemicellulosic
components of the cell wall, and future discovery of CBMs
with specificity for pectins and other polymers offers great
potential for their use in microscopy. Also, lectins, carbohydrate-
binding glycoproteins/proteins, have been employed for charac-
terization of glycan components of plant cells and as important
tools in plant glycomics (Hirabayashi, 2004; Chandler and
Roberson, 2009; Rhiel and Brock, 2012).

FLUORESCENT PROTEINS AND WFLM/CLSM

No other labelling technology in LM has helped revolutio-
nized 4-DI studies as much as the development and use of
FPs. FPs attached to, and expressed with, a gene of choice
(or targeting sequences therein) have revolutionized direct
non-invasive in vivo visualization of live plant cells (Chan
et al., 2011; Chen et al., 2012; Ckurshumova et al., 2011;
Nair and DeBolt, 2011). Here, the genetic sequence for the
FP is spliced onto the cDNA of a gene of choice or a partial
sequence and inserted into a cell. Under the proper conditions,
the FP–gene construct will be expressed, providing a
fluorescence-based emission emanating from where the
protein is localized. The first and most widely used FP is
GFP derived from the jelly fish, Aequorea victoria (Rizzo
et al., 2009). GFP is small (27 kDa), non-toxic and can be
viewed in both live cells or those mildly fixed (DeBlasio
et al., 2010). In plants, the successful expression of GFP was
delayed until the removal of a cryptic intron (Haseloff et al.,
1997). Today, a multitude of new FPs are being employed in
the study of proteins expressed in transformed plant cells.
These have been derived from other marine invertebrates
(e.g. DsRedFP from Discosoma) and from mutagenesis of
GFP (Shaner et al., 2005; Nelson et al., 2007; Geldner
et al., 2009; Mathur et al., 2010). The use of FPs in micros-
copy is predicated on successful transformation of a cell
type and subsequent expression of the FP, feats not especially
common nor easy to accomplish. Large libraries of
FP-expressing transformed lines are presently available for
some model plants (e.g. http://arabidopsis.info/
CollectionInfo?id=126) and major efforts to transform other
organisms successfully make FP imaging technology the
major tool in LM for the future. However, the microscopist
must be aware of several problems that may result in
FP-based experiments. These include low fluorescent signals,
improper maturation of the FP, unusual or incorrect localiza-
tion of the FP, and the FP directly affecting the dynamics of
the cell under study. Ideally, the use of stable transformants
and performing comparative studies of a protein containing
different GFP variants or coral-derived proteins provide the
best results. For more detailed information concerning the
set-up and implementation of an FP study, numerous excellent
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reviews are available (Chalfie and Kain, 2005; Rizzo et al.,
2009; Knapp et al., 2012)

OTHER LM TECHNOLOGIES

New technologies continue to emerge in LM-based optics and
offer new ways to attain images that can be used for 4-DI.

Two- or multiphoton microscopy

In conventional CLSM, intense laser-generated light
focused on a specimen may cause significant bleaching or
damage, especially when using a UV laser to excite a fluoro-
phore. In two- or multiphoton microscopy, wavelengths of
light twice that of the typically used shorter wavelength are
focused on the specimen for short periods of time that are
less than the fluorescence decay time of the fluorophore
being studied (Pawley, 2006). This results in fluorescence

only at the focused zone (Inoue, 2006). The advantages of
this type of instrument include avoidance of potentially dam-
aging UV light and acquisition of the fluorescent signal from
deeper tissues with greater light-gathering efficacy.
Multiphoton microscopy has been successfully used in plant
studies, for example in the visualization of DNA and the
nucleus with 4′,6-diamidino-2-phenylindole (DAPI), Indo-1
labelling of calcium (Ca2+), imaging of ER dynamics and elu-
cidation of pollen tube growth dynamics (Martens et al., 2006;
Broess et al., 2009; Cheung et al., 2010; Wuyts et al., 2010).

Three-dimensional structured illumination microscopy (3D-SIM)

Axial resolution in both WFLM and CLSM is limited by
diffraction of light (e.g. 500 nm in the z-plane for CLSM).
This is above the resolution of many cellular components.
3D-SIM is used to image objects beyond the limit of diffrac-
tion. The specimen is illuminated with multiple interfering

CLSM

Penium- pectin secretion

Live cell immunolabelling
Variable pressure SEM

EM

Time lapse imaging during development

Immunolabelling of
microtubules and F-actin

FeSEM: high resolution

TEM: immunogold labelling

Future

FP-PME and FP-cytoskeletal proteins

anti-tubulin

Rh-phalloidin

JIM7

JIM5

4-D models
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B
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G

H

I

D

E

FI G. 3. 4-DI strategy of an emerging model organism, Penium margaritaceum (A). Penium is currently being used for 4-DI of pectin processing in plant cells.
This alga can be live labelled with monoclonal antibodies specific for epitopes of homogalacturonans (HGs; B, C). JIM7 labels relatively high esterified HG while
JIM5 labels low esterified HG. At the isthmus zone of the cell (C, arrow), the point of pre-cytokinetic wall expansion, high-esterified HG is released in a narrow
band (B, arrow). As this HG is displaced outward toward both poles, it is de-esterified, most probably by the enzyme pectin methyl esterase (PME). Once
de-esterified, Ca2+ binds with the HG to form a distinct lattice as noted by JIM5 labelling. The development of the wall closely corresponds with the cortical
microtubule (D) and F-actin (E) networks at the isthmus. Tubulin was identified with an anti-tubulin antibody and F-actin was localized with rhodamine–phal-
loidin. Labelled cells are placed back in cultures and amounts of new growth can be monitored using CLSM (F, arrows). In order to elucidate further the formation
of pectin, EM is also employed. To capture snapshots of rapidly developing events, cells were rapidly frozen and viewed with VPSEM (G). This allowed for
structural analysis of the pectin lattice (arrow). FeSEM (H) and TEM (I) are also employed to obtain high-resolution images of the developing pectin fibrils
in the isthmus (arrows). This story is only just beginning as transformed cells that are expressing FP–PME or FP–cytoskeletal proteins will yield vital
dynamic information for the generation of 4-D models of pectin secretion. Scale bars: (A, F) ¼ 17 mm, (B) ¼ 3.5 mm, (C) ¼ 4 mm, (D) ¼ 3.1 mm, (E) ¼

14 mm, (G, H) ¼ 250 nm, (I) ¼ 200 nm.
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beams of light transmitted through a series of diffraction grat-
ings that can produce resolution of 200 nm in the z-plane.
Recently, this new technology has been used in plant cell
studies including visualizing plasmodesmata and the viral
movement protein in tobacco (Fitzgibbon et al., 2010) and
Golgi bodies (Schoberer and Strasser, 2011).

Micromanipulation and microinjection

While both these technologies have been around for
decades, they provide a direct means for assessing single cell
systems. That is, one can directly assess the fate of an injected
material in a single cell’s developmental or experimental
history. Microinjection has been very valuable in various
areas of plant cell biology including elucidation of ion gradi-
ents, the cytoskeleton and developmental processes (Du and
Ren, 2011).

Imaging technologies associated with LM

Several technologies that interface LM with spectroscopic
or vibrational optics have made recent impacts in plant cell
studies.

Fourier Transform Infrared microspectroscopy or FTIR micro-
spectroscopy. FTIR microscopy employs LM to focus in on a
specific locus of a sample and spectroscopy to measure the
vibrations of molecular bonds therein. Recently, this technol-
ogy has been valuable for analysis of cell wall polymers and
specifically for high-throughput screening of cell wall
mutants (Mouille et al., 2003, 2006; McCann et al., 2007).

Low-energy X-ray fluorescence microscopy or LEXRF. LEXRF is
a recent technology developed for direct visualization of thick
tissues that yields imaging data with both topographical and
chemical information via X-ray acquisition (Kaulich et al.,
2009). In plant studies, it has been successfully used by
Regvar et al. (2011) in analysis of protein storage vacuoles
in wheat aleurone.

Atomic force microscopy. The atomic force microscope (ATM)
is a type of scanning probe microscope that generates an
‘image’ by measuring changes in the magnititude of the inter-
action between a vibrational probe and the specimen surface,
in effect ‘feeling’ it. The ATM probe or microstylus is
mounted on a cantilever, is run over a specimen and ultimately
provides a direct measurement of the mechanical properties of
that specimen (Yarbrough et al., 2010; Kirby, 2011; Milani
et al., 2011). ATM requires little or no specimen preparation,
but is somewhat limited in that it does not work well for speci-
mens with significant contour (i.e. not flat).

ELECTRON MICROSCOPY (EM) AND
TRANSMISSION ELECTRON MICROSCOPY

(TEM) PREPARATION PROTOCOLS

The highest resolution that can be acquired in biological mi-
croscopy today is via EM. However, due to poor penetrative
powers of electrons and exposure to both high vacuum and
an irradiating electron beam, living things cannot be visualized
with EM. Specimens must be fixed and, in TEM, sectioned

before viewing. These limitations restrict the value of EM to
static imaging. However, the high-resolution ‘snapshots’
obtained by EM (e.g. TEM is 4× better in z-plane resolution
and 100× better in general than the best CLSM; McIntosh
et al., 2004; Staehelin and Kang, 2008) continue to make
EM a profoundly important instrument for 4-DI. As important,
improved cryo-based specimen preparation technology for
TEM and scanning electron microscopy (SEM), immunogold
cytochemistry, the utilization of electron tomography in ren-
dering high resolution 3-D images, the tremendous potential
of new technologies including focused ion beam (FIB) dissec-
tion of cells and the development of EM-specific genetic
markers make EM even more valuable for the future.
However, presently, the microscopist still must deal with
‘fixing’ cells or tissues before viewing, and the choice of
methods available are many.

For either TEM or SEM, cell/tissue preparation techniques
(e.g. fixation) that enhance sub-cellular preservation and min-
imize specimen alteration are essential. In TEM, conventional
chemical fixation employing aldehyde fixatives (e.g. glutaral-
dehyde and formaldehyde) and heavy metals [e.g. osmium tet-
roxide (OsO4)] followed by dehydration in organic solvents
(e.g. ethanol or acetone) and embedding in various plastics
are standard protocols prior to sectioning. These processes typ-
ically require days to complete and may result in artefact pro-
duction, cytoplasmic shrinkage and cellular extractions, or
may compromise antibody binding to its epitope. To combat
these problems, special microwave instrumentation for speci-
men processing (Chebli et al., 2008; Zechmann and Zellnig,
2009) has been used and significantly reduces time afforded
to fixation, dehydration and embedding. Likewise, for the
elimination of OsO4 during fixation, the use of new plastics
and embedding strategies and the introduction of energy-
filtering lenses on many TEMs have significantly enhanced
immunogold labelling and the visualization of low contrast
structures (Zewail and Thomas, 2010). The basis of energy fil-
tering is the selection and use of electrons of specific energies
that, in turn, enhance contrast of the specimen. Additionally,
these filters may be used in the acquisition of electron
energy loss spectra (EELS) that may be exceptionally useful
in determining the elemental composition of a specimen
(Lutz-Meindl, 2007; Eder and Lutz-Meindl, 2008;
Darehshouri and Lutz-Meindl, 2010).

However, cryo-fixation technology has made the greatest
impact in TEM-based specimen preparation today. In many
plant studies, specimens are rapidly frozen in a cryogen (e.g.
liquid propane or ethane) cooled to –1808C or less.
Common methods for ‘introducing’ the specimen to the
cryogen including plunging, slamming and spraying are ad-
equate for many single-celled organisms or for viewing the
surface layers (i.e., the outer few micrometres) of a thicker spe-
cimen. However, these methods produce sufficiently slow
freezing rates that result in damaging ice crystal formation oc-
curring in an internal location of a specimen. Likewise, the
loss of turgor occurring during specimen excision and trim-
ming (i.e. to achieve an acceptable size for freezing) may
also induce the formation of artefacts. High-pressure freezing,
whereby the specimen is rapidly frozen under increased pres-
sure at 2100 atmospheres within 100 ms (high hydrostatic pres-
sure acts as a physical cryoprotectant), has greatly increased
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cryo-based fixation to the depths to as much as 500 mm in a
specimen and is widely used for thick specimens (Mims
et al., 2003; McDonald and Auer, 2006; Donohoe et al.,
2007; Chandler and Roberson, 2009). Once frozen, several
options exist for processing the specimen prior to sectioning
and TEM viewing. Cryo-sectioning and visualization using a
TEM equipped with a special cryo-specimen chamber is the
most direct mode of imaging (Kuo, 2007), but the instrumen-
tation required is extremely expensive. More often, a frozen
specimen is freeze substituted (Staehelin and Kang, 2008;
Takeuchi et al., 2010). Here, the cryo-fixed specimen is
quickly transferred for various periods of time (24 h to 1
week) to an organic solvent cooled to –80 to –908C and con-
taining glutaraldehyde, formaldehyde, OsO4 and/or uranyl
acetate. During this time, the fixatives slowly penetrate and
fix the specimen. The specimen is then washed free of the fixa-
tive with fresh solvent cooled to –40 to –908C. This is fol-
lowed by infiltration and embedding of the specimen with
plastic at low temperatures (–40 to –908C) using UV light
as the polymerizing catalyst. Alternatively, the freeze-
substituted specimen can be warmed slowly to room tempera-
ture, washed with solvent and then infiltrated/embedded in
plastic which is then polymerized by UV light or heat.
Freeze substituion is commonly used today in plant cell
biology and typically offers outstanding fixation quality.

Transmission electron microcopes of 120 kV are the most
commonly used instruments in biology laboratories, and
50–120 nm sections are those that are typically viewed with
these instruments. The thinness of these sections is somewhat
limiting when considering the dimensions of a cell, but they
do afford reasonable views of sub-cellular architecture and
specific location identified via immunogold labelling. Higher
kV transmission electron microcopes accommodate thicker
sections (up to 200 nm at 200 kV or 400 nm sections with
300 kV), but these instruments are considerably more expensive
than the 120 kV transmission electron microcope. Serial section
imaging and 3-D reconstruction using various software pro-
grams are also used for analysing thicker volumes of cells,
but presently resolution afforded here is restricted to 2× the
thickness of the section (e.g. 120–200 nm z-axis resolution
for 60–100 nm sections; Haas and Otegui, 2007). Recently
though, electron tomography (ET) has proven to be an effective
method for generating 3-D imaging or 3-DI. ET uses multiple
2-D projection images of a 3-D object over a wide range of
viewing angles to create a tomogram. Typically, tomograms
are derived from images taken at 18 intervals from 608 to
–608. To create more complete tomograms, dual-axis ET is
used which stitches tomograms and provides information that
is derived from 908 to –908. ET has been of great value in
plant cell biology in the elucidation of the cytokinetic mechan-
ism of higher plants, cell wall development, Golgi vesicle struc-
ture and development, and chloroplast architecture (Shimoni
et al., 2005; Donohoe et al., 2007; Haas and Otega, 2007;
Staehelin and Kang, 2008; Austin and Staehlin, 2011; Otegui,
2011).

TEM-based studies often require the use of contrast-
enhancing staining and/or labelling of a specific location.
Many general staining protocols have been developed to
enhance imaging of specific cellular structures (Kuo, 2007;
Nakakoshi et al., 2011), and immunogold labelling technology

(Takeuchi et al., 2010) is well established in this form of mi-
croscopy. Additionally, newly developing labelling methods
offer great promise especially in correlative microscopy ana-
lyses. Here, a specimen may be viewed at both the LM and
TEM levels, and especially promising are potential genetic
tags to be used in TEM that are analogous to GFP in LM.
These include fluoranogold, metallothionen and the small,
genetically encodable protein module, mini-SOG (Haas and
Otegui, 2007; Lee et al., 2011; Shu et al., 2011).

SCANNING SLECTRON MICROSCOPY (SEM)

Modern technological advancements in SEM have also helped
refine the ultrastructural aspects of the surfaces of plants. SEM
visualizes electrons derived from the surface or sub-surface
layers of a specimen or captures X-rays generated from the in-
terior that are subsequently used to identify elemental compos-
ition or create elemental maps of a specimen. For conventional
SEM imaging, the specimen typically must be fixed, dehy-
drated/dried (e.g. by use of critical point drying or lyophilizer)
and made conductive via sputter coating with a conductive ma-
terial (e.g. gold, platinum or palladium) before viewing. This
type of specimen preparation has been quite adequate for
many plant specimens. However, as with TEM, the potential
for specimen alteration, in this case extractions or morpho-
logical alteration of the surface to be studied, may be of
concern. Recently, environmental SEM (ESEM) and variable
pressure SEM (VPSEM) have emerged as vehicles for
viewing non-fixed and non-conductive samples (Kuo, 2007;
Chandler and Roberson, 2009). Here, the specimen is kept in
a relatively high pressure chamber of the SEM column, the
column vacuum is kept low and the working distance is kept
short. The electron detectors of these instruments are also
capable of working under the presence of water vapour.
Positively charged ions created by interaction of the electron
beam with gases in the column neutralize the negative
charge on the specimen surface. For ESEM and VPSEM, spe-
cimens can be flash frozen, placed directly into the column
using a cooled cryostub or Peltier stage, and viewed directly
after sublimation of ice. Image quality is often comparable
with conventional SEM preparations.

For high-resolution imaging of surfaces, field emission SEM
or FeSEM is often used. FeSEM uses low voltage but high
electron brightness that allows for high magnification, and
high-resolution analyses (i.e. 1–2 nm or 3–6× better than
conventional SEM). FeSEM has been an important imaging
tool especially for cell wall studies dealing with cell wall por-
osity in pollen tubes (Derksen et al., 2011), cell wall extension
(Marga et al., 2005), cellulose microfibril orientation in growth
anisotropy (Baskin et al., 2004), cellulose orientation in rela-
tion to cortical microtubules and cellulose synthase (CESA)
tracks (Chan et al., 2011; Crowell et al., 2011; Fujita et al.,
2011) and development of wall ingrowths (Talbot et al., 2007).

SPECIMEN CHOICES, AND OLD AND NEW
MODEL ORGANISMS

The choice of plant and/or part thereof, its phenotypic charac-
teristics (e.g. size, thickness, location in the whole plant) and
mode of maintenance (e.g. culture conditions) will define the
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limitations on the choice of microscope to be used and the
associated experimental design. For example, a microscopy-
based analysis of a specific cell/tissue type residing deeply
within a large multicellular thallus or organ is often very dif-
ficult to accomplish and, for live cell studies, nearly impossible
to do. While new technologies such as low energy X-ray fluor-
escence microscopy (LEXRF; Regvar et al., 2010) offer
promise for deep tissue imaging of larger specimens, their
large size still creates physical limitations for high-resolution
imaging. Utilization of cell cultures derived from larger speci-
mens via tissue culture methodology may address some of
these limitations, but much care must be taken in interpreting
data from cells/tissues maintained in such highly artificial con-
ditions. However, unicellular plants or single-/thin-layered
plant systems (i.e. organisms whose natural phenotype is uni-
cellular or thin layered) may be conveniently used with great
success in many areas of study of more generalized or ‘univer-
sal’ sub-cellular phenomena. In fact, many of these organisms
are, or have the potential to be, model organisms in plant cell
research. Model organisms represent well-studied and well-
manipulated systems that provide the microscopist with a
rich source of proven experimental and technical protocols
as well as large pools of pre-existing data from which highly
focused hypotheses may be formulated and for which results
may be effectively compared. Additionally, the genomes and
transcriptomes of many of these organisms have been or are
being sequenced and many have been successfully trans-
formed, allowing, in turn, for the incorporation of FP technol-
ogy for live cell labelling. This allows for the critical
integration of microscopy-based data with molecular data.

While several well-known model plants have been used ex-
tensively in microscopy-based studies (e.g. arabidopsis,
tobacco cell culture lines), other taxa are quickly emerging
as potential model organisms that are especially valuable for
4-DI. Though certainly not complete, the following represents
a description of two model systems and one model group that
are or will be especially valuable for 4-DI along with their
unique features that may be used in the study of specific cellu-
lar phenomena:

Pollen tubes: growth anisotropy, endomembrane dynamics
including exocytosis and endocytosis, cytoskeletal dynamics,
cell wall development and ion gradients

When the male gametophyte or pollen of an angiosperm or
gymnosperm germinates, a protuberance called the pollen tube
emerges and grows toward the egg that is embedded in a
female gametophyte and megasporangium (Boavida et al.,
2005). The pollen tube is a spectacular structure ranging in
size from 5 to 15 mm in diameter and achieving lengths of
hundreds of micrometres or even centimetres. The tube
serves as the ‘highway’ for directed transport of the sperm
during fertilization. To attain such lengths, pollen tubes grow
anisotropically at one rapidly expanding polar tip at rates of
hundreds of micrometres to millimetres per hour. The basis
of unipolar expansion is the precise control of wall polymer se-
cretion and modulation at the tube tip. In the cytoplasm of the
growing tip exists a confluence of dynamic sub-cellular activ-
ities including Golgi apparatus-derived production of wall
precursor-carrying vesicles, cytoskeletal system-mediated

membrane trafficking (i.e. exocytosis and endocytosis) and
multiple signal transduction cascades (Samaj et al., 2006;
Wilsen et al., 2006; Cheung and Wu, 2007; Bove et al.,
2008; Lee et al., 2008; Zhang et al., 2010; Konrad et al.,
2011; Kroeger and Geitmann, 2012). Pollen tubes are
popular specimens for cell biology experiments as they are
easily germinated and maintained in laboratory cultures and
adapt well to microscopy and manipulation in microscopy-
based devices (e.g. flow-through growth chambers, silicon iso-
lators and microindentation devices; Cardenas et al., 2008;
Zonia and Munnik, 2008). Pollen tubes may also be studied
live with the application of various labels including antibodies
and FPs (Cheung et al., 2008; Cai et al., 2011) and have
become versatile systems for microinjection of Ca2+ dyes
and ratiometric imaging (Feijo et al., 1999; Lovy-Wheeler
et al., 2006, 2007; Cardenas et al., 2008) as well as mechan-
ophysical studies including microidentation analyses (Parre
and Geitmann, 2005). As a result of all of these attributes
and associated research, detailed models of growth dynamics,
including those incorporating 4-DI, have recently emerged
(Aouar et al., 2010; Geitmann, 2010a, b; Kroeger et al.,
2011) and have made pollen tubes arguably the most well-
studied system in plant biology.

Physcomitrella patens: cell polarity, cytoskeleton
and cell wall development

The moss, Physcomitrella patens, represents an emerging
model organism for molecular and cell-based studies (Cove
et al., 2006). This moss has a simple haploid phase-dominant
life cycle, has an assembled and sequenced genome, and trans-
formed cell lines have been established. It has become an ex-
cellent tool for gene targeting and RNA interference methods
in order to study gene function (Cove et al., 2008). In
microscopy-based studies, the protonemata life cycle phase
of Physcomitrella has been exceptionally important for the
study of fundamental cell and developmental mechanisms as
it can be easily grown and experimentally manipulated. The
protonemata have been used in studies of wall development
(Lee et al., 2005), cytoskeletal dynamics during development
(Vidali et al., 2007, 2009, 2010; Perroud and Quatrano,
2008; Augustine et al., 2011) and developmental responses
to hormones and to environmental inputs (Marella et al.,
2006; Sakata et al., 2010). The rapid accumulation of
microscopy-based and genetic data from this organism make
Physomitrella an important and convenient model in interpret-
ation of basic sub-cellular phenomena in plants.

Charophycean green algae: cell wall development, cell
morphogenesis, pattern development and cytoplasmic streaming

The Charophyceaen green algae or CGA represent the
extant group of green algae that are most closely related and
ancestral to land plants (Becker and Marin, 2009). Unique
phenotypic features of these algae, such as a unicellular
growth habit, large cell size or extraordinary developmental
mechanisms, have launched several taxa as potentially import-
ant models for various types of cell-based research including
4-DI. For example, the unicellular desmid, Micrasterias, is
an exceptional tool for elucidating cellular morphogenesis,
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the role of the cytoskeleton and the effects of environmental
stressors (Affenzeller et al., 2009; Darehshouri and
Lutz-Meindl, 2010). The large intermodal cells and rhizoids
of the Charales, including Chara and Nitella, have served as
outstanding models for studying the cellular phenomena of
cytoplasmic streaming and cell wall growth mechanics
(Shimmen and Yakota, 2004; Proseus and Boyer, 2005,
2006a, b, c; Shimmen, 2007; Wei and Lintilac, 2007;
Goldstein et al., 2008). The plate-like thallus of Coleochaete
has become a highly desirable system for elucidating pattern
development is plant cell development (Dupuy et al., 2010).

A recent surge of research has shown that taxa of the late
divergent CGA possess cell wall polymers remarkably
similar to those of land plants (Popper and Fry, 2003;
Domozych et al., 2007; Eder and Lutz-Meindl, 2008; Eder
et al., 2008; Sørensen et al., 2010, 2011; Popper and Tuohy,
2010; Popper et al., 2011). Additionally, a unicellular
desmid, Penium margaritaceum, has been shown to be a
simple and convenient system for elucidating cell wall dynam-
ics especially those dealing with pectins (Domozych et al.,
2009, 2011). This alga is easily grown and manipulated in
culture, exhibits a well-defined secretory mechanism during
wall development and, most importantly, may be live-labelled
with mAbs that bind to specific wall polymer epitopes.
Labelled cells may then be returned to culture where subse-
quent wall development may be monitored and specific wall
events studied via the addition of specific inhibitors or
wall-altering enzymes. For example, high esterified homoga-
lacturonans are secreted in a simple band in the cell centre.
As these pectins are displaced outward toward both poles,
they are de-esterified, bind to Ca2+ and form a distinct
lattice (Domozych et al., 2009). These events, monitored in
live cells by CLSM, may then be further studied using high-
resolution EM. Figure 3 illustrates the versatility of this alga
in cell wall research and the strategy in place for 4-DI
studies. The next important steps in the study of Penium and
other CGA will be gene sequencing and mapping, as well as
successful stable transformation so that FP-based imaging
may be employed.

CONCLUDING REMARKS

4-DI is of profound importance to our understanding of plant
cell dynamics. When coupled with current efforts in functional
genomics, 4-DI will yield critical insight into the foundations
of plant cell structure, mechanics, developmental modulations
and reactions to stress. These, in turn, may then be used in
interpreting the manifestation of macroscopic phenomena,
help in understanding how plants survive in our changing bio-
sphere and also contribute to the design of plants and derived
products in agriculture, biofuel production and other applied
areas. Today, new and refined microscopy-based technologies
and methods offer unprecedented imaging possibilities, but
careful planning is required to maximize these benefits and
minimize inherent limitations of certain approaches of micro-
scopic investigation. With careful strategy and implementation
of new technologies though, the outlook for 4-DI of plant cells
is very promising indeed.
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