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Purrose. To employ functional manganese-enhanced MRI
(MEMRID) to image layer-specific changes in calcium-dependent
activities in the rat retina during light versus dark adaptation.

MerHoDps. Functional MEMRI at 20 X 20 X 700 um was used to
study light and dark adaptation in the same animals (N =10) in
which one eye was covered and the fellow eye was not. The
activity encoding of the light and dark adaptation was achieved
in awake conditions and imaged under anesthesia. T,-weighted
MRI at 11.7 tesla (T) was performed using two identical
radiofrequency transceiver coils to allow interleaved MRI
acquisitions of the two eyes. An intravascular contrast agent
was also used to verify layer assignments.

Resurts. MEMRI detected contrasts among the inner retina,
outer retina, and choroid. Independent confirmation of the
vascular layers and boundaries between layers was document-
ed with an intravascular contrast agent. The retinal layer
thicknesses agreed with published data. The outer retina had
lower MEMRI activity in light compared with dark adaption (P
< 0.001), consistent with the increased metabolic demand
associated with the “dark current.” The inner retina had higher
MEMRI activity in light compared with dark adaption (P <
0.05). The choroid MEMRI activity was not statistically
different between light and dark adaptation (P > 0.05).

Concrusions. This study demonstrated a high-resolution MEMRI
protocol to image functional activities among different layers of
the retinas in awake animals during light and dark adaptation.
This approach could have potential applications in animal
models of retinal dysfunction. (Invest Ophthalmol Vis Sci.
2012;53:4352-4358) DOI:10.1167/i0vs.11-8826

ight and dark adaptation of the retina remains of significant

interest. Oxygen tension, electrical activity and oxygen and
glucose consumption, and blood flow have been reported
associated with light and dark adaptation (see review!). There
is consensus that the neuronal activity in the outer retina
increases in dark relative to light. Choroid blood flow, which
predominantly supplies the outer retina, does not differ
between light and dark,? although exception has been noted.?
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By contrast, the inner retina activity and retinal blood flow in
light versus dark adaptation are controversial. One of the most
popular noninvasive techniques to study light and dark
adaptation is laser Doppler flowmetry, but it is limited to
either the optic nerve head (ONH), which is dominated by
large retinal vessels (distant from sites of increased neural
activity), or the fovea, which are void of retinal vessels.

MRI, by contrast, offers depth-resolved information with
large field of view. MRI has recently been applied to image
anatomical layers, ¢ relaxation time and diffusion constants,®3
blood-oxygenation level dependent (BOLD) responses to
physiological®> and visual®~'! stimulations, and quantitative
blood flow!?13 of the retinas in animal models. These
approaches have been applied to study retinal degenera-
tion,>'2 diabetic retinopathy,'® and glaucoma'> in animal
models. More recently, feasibility of anatomical,'® BOLD,'”
and blood-flow!®!® MRI of the human retina have also been
demonstrated.

Functional manganese-enhanced MRI (MEMRI)?%-2! has also
been used to study the retina in animal models.?? Manganese
(Mn) is a calcium analog and an MRI contrast agent. Unlike
calcium, once internalized, Mn is trapped intracellularly with a
long (hours) halflife. Thus, MEMRI can be used to image
calcium-dependent activity?>2! in a manner similar to the 2-
deoxyglucose autoradiography technique, but it can be used to
longitudinally study the same animals. Functional MEMRI has
several advantages over other functional imaging techniques in
animals. First, functional encoding can be done under awake
conditions outside the MRI scanner, in contrast to the widely
used BOLD fMRI technique, which generally requires animals
to be under anesthesia. This is because the activity encoding of
functional data can be achieved while the animal is awake and
the trapped Mn can be imaged later under anesthesia. Second,
MEMRI measures changes in calcium activity, independent of
hemodynamic effects, which offers more direct mapping of
neural activity.?! Third, conventional T;-weighted MRI can be
used, in contrast to echo-planar imaging commonly in BOLD
fMRI that is susceptible to image distortion and signal
dropout.?! MEMRI, however, has several limitations. Functional
MEMRI experiments often require experimental and control
groups to be done on different animals because the intracel-
lularly trapped Mn has a long halflife, precluding the use of
repeated or real-time paradigms often employed in conven-
tional BOLD fMRI studies. MEMRI is susceptible to intersubject
variation and thus, normalization with respect to an external or
internal standard is needed for intersubject comparison
(including Mn dosing variations). This is because the T;-
weighted MRI often used in MEMRI is a qualitative measure
although a quantitative T; map can be obtained.?! MEMRI
application is limited to animal models.

In this study, the authors designed a MEMRI protocol to
overcome some of the above mentioned limitations and
employed this protocol to image functional activities among
different layers of the rat retinas during light versus dark
adaptation. Light and dark adaptations were carried out on rats
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in which one eye was covered and the fellow eye was not in
the same animals, avoiding interanimal Mn dosing variation.
The encoding of light or dark adaptation was achieved in
awake conditions and imaged under anesthetized conditions.
Two identical radiofrequency transceiver coils (one for each
eye) were implemented to allow interleaved MRI acquisitions
in the same settings. MEMRI detected contrasts among the
inner retina, outer retina, and choroid. Independent confirma-
tion of the vascular layers and boundaries between layers was
documented with an intravascular contrast agent. MEMRI
detected differential layer-specific calcium-dependent activities
between light and dark adaptation.

MATERIALS AND METHODS

Animal Preparations

Experiments were performed on normal adult Sprague-Dawley rats
(250-350 g, n = 13) with Institutional Animal Care and Use Committee
approval and in accordance with the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research. In group I (n = 3), both
eyes were light adapted. The animal was anesthetized for intravenous
manganese administration (88 mg MnCl, X 4 H,O/kg bodyweight, via
tail vein) an hour. Tail vein infusion was chosen over intraperitoneal
injection because a more consistent effective dosage could be delivered
and the information was encoded over a more defined duration,
although tail vein infusion was comparatively less convenient. The
animal was returned to its cage under ambient room light for 5 hours
for neural activity encoding under awake conditions.

In group II (n = 10), one eye was light adapted and the fellow eye
was dark adapted. The animal was briefly anesthetized with 2%
isoflurane for placement of an eye patch and an Elizabethan collar to
prevent the animal from removing the eye patch. One eye was
randomly chosen to be patched for dark adaptation while the fellow eye
was not patched for ambient light adaptation. The animal was allowed
to recover from anesthesia for 2 hours to ensure dark adaptation before
manganese injection.?3 The animal was re-anesthetized for intravenous
manganese administration over an hour. The animal was returned to its
cage (with one eye remained patched) under ambient room light for 5
hours for Mn activity encoding under awake conditions.

After 5 hours of adaptation, the animals from both groups were
prepared for MRI. The animal was anesthetized, intubated, and
mechanically ventilated (Harvard Ventilator Model 683; Harvard
Apparatus, Holliston, MA) at ~1% isoflurane.!’ In two animals from
group I, the tail vein was catheterized for injection of the contrast
agent, monocrystalline iron oxide nanoparticles (MION, 5 mg Fe/kg),
to confirm peak assignments. After the animal was secured in a MRI-
compatible rat stereotaxic headset, atropine eyedrops were applied
topically to dilate pupils and to prevent ciliary muscle movements.!!
Lubricating eyedrops (Systane Ultra; Alcon, Fort Worth, TX) were also
placed on each eye. For group II, the applications of eyedrops were
applied in dim red light with the eye patch removed. The MRI scanner
room was kept dark during MRI.

Immediately before MRI, pancuronium bromide (4 mg/kg first dose,
followed by 4 mg/kg/hr, IP) was administered to eliminate eye
movement.>1224 End-tidal CO,, rectal temperature, oximetry, and
heart rate were continuously monitored and maintained within normal
physiological ranges during MRIL.

MRI Resonance Imaging

MRI experiments were performed on an 11.7 T/16-cm scanner
(Biospec; Bruker, Billerica, MA), and two identical custom-made
surface coils with inner diameters of ~7 mm were placed on each
eye. Scout images were acquired to plan a single midsagittal slice
bisecting the center of the eye and optic nerve for subsequent imaging
in order to minimize partial-volume effect due to retinal curvature.’
MEMRI were acquired using gradient-echo sequence with repetition
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time = 150 ms, echo time = 5.1 ms, field of view = 7.5 X 7.5 mm, slice
thickness = 0.7 mm, 10 repetitions acquired in time series, acquisition
matrix = 384 X 384, yielding an in-plane resolution of 20 X 20 pum.

Image Data Analysis

Image analysis was performed using custom-written programs in data
analysis software (MATLAB; Math-Works, Natick, MA) as described
previously.>!3 Time-series data were corrected for drift and motion
before offline averaging.>!3 The retinal image was linearized by radially
projecting lines perpendicular to the retina. Intensity profiles were
obtained over posterior pole of the eye (see Fig. 1). Individual animal
intensity profiles were normalized with respect to the vitreous of each
eye to account for slight differences in RF coil sensitivity profiles. The
vitreous regions-of-interest (ROD) used was placed in the homologous
regions of each eye. Full width at half maximum, peak height, and peak
separation were determined for the inner retina, outer retina, and
choroid. The signal-to-noise ratios of the MRI images were evaluated by
taking retina ROIs and a noise region on the images. Reproducibility
within animals was evaluated by taking repeated measurements of the
peak signal intensities from each of the three “layers” across 10
repeated trials in the same animals. Reproducibility across animals was
evaluated by taking standard deviations for each of the three “layers.”
All data were expressed as mean * SD. Statistical analyses were
performed by paired #tests with Bonferroni adjustment to correct Type
I error in multiple comparisons. The significance level was set at P <
0.05.

RESULTS

Figure 1 shows the in vivo MEMRI results of two light-adapted
eyes from the same animal (group I). The signal-to-noise ratios
between the two eyes were overall similar visually. The signal-
to-noise ratios in retina ranged from 18:1 to 24:1. The standard
deviation of repeated measurements of the peak signal
intensities ranged from 2% to 5% across 10 repeated trials in
the same animals. MEMRI images showed layer-specific
contrasts in the retinas, with alternating bright, dark, and
bright bands. The intensity profiles of the bright, dark, and
bright peaks were essentially identical between the two eyes.
Sclera was dark (lower signal-to-noise ratios) because it had
lower water content. The vitreous was dark because its signal
was suppressed.

To help to assign retinal layers, the intravascular contrast
agent MION was injected (Fig. 2). Comparison of intensity
profiles before and after MION showed that peak #1 was
attenuated, peak #2 was not attenuated, and peak #3 was
markedly attenuated. Peak #1 was assigned as the inner retina
(ganglion cell layer [GCL], inner plexiform layer [IPL], inner
nuclear layer [INL], and outer plexiform layer [OPL]), which
includes the embedded retinal vessels; peak #2, the avascular
outer nuclear layer (ONL, inner segment [IS], and outer
segment [OS]); and peak #3, the choroid vascular layer. The
peak assignments were based on the peaks and thickness
observed in previous ex vivo microscopy,?> histology,?> and in
vivo>2° data with confirmation by vascular specific contrast
agent.

Figure 3 shows the functional MEMRI of a dark adapted eye
and a light adapted eye from the same animal (group II). The
intensity profiles of alternating bright, dark, and bright peaks
differed between dark and light adapted eyes. The choroid
peaks under dark and light adaptation had similar intensity. The
outer retina peak in dark had higher intensity relative to light.
The inner retina in dark had slightly lower intensity relative to
light. Both positive and negative contrasts between light and
dark were observed in this animal but not all animals. Figure 4
shows the group-averaged data with normalization to the



4354 De La Garza et al.

(A) Left eyes light adapted

(B)
1.6 -
1.4 -
1.2 -

1 47+
| €<—Vitreous

Signal intensity (a.u.)

0.8

0.6 T T T

10VS, July 2012, Vol. 53, No. 8

Right eyes light adapted

LeftEye
......... Right Eye

) I L] L] L] 1

0 50 100 150 200 250 300 350 400 450
Distance (um)

Ficure 1. (A) MEMRI. (B) Intensity profiles across the retinal thickness of two light-adapted eyes from the same animals at 20 X 20 X 700 pm.
Normalization was applied with respect to the vitreous. The vitreous ROI shows the typical region used for normalization. The retina ROI shows the
typical region where intensity profile is obtained. The dotted lines approximate the posterior pole.

vitreous signals. The choroid peaks were iso-intense between
dark and light (P > 0.05). The outer retina peak under dark
was hyperintense relative to light (P < 0.001), whereas the
inner retina under dark was hypointense relative to light (P <
0.05).

The thickness of the inner retina peak was 109 = 9 pum
(mean * SD), outer retina peak was 65 * 8 um, and the
choroid peak was 44 = 6 pm for the eyes exposed to light. The
thickness of the inner retina peak was 106 = 8 pm, outer
retina peak was 74 = 4 pm, and the choroid peak was 40 = 4
um for the eye exposed to dark. There were no statistical
significances in layer thicknesses between light and dark (P >
0.05).

Di1scussION

This study demonstrates a functional MEMRI protocol for
imaging layer-specific calcium activities of the retina in the
same animals during light and dark adaptation. Layer-specific
functional contrasts in the inner retina, outer retina, and
choroid were resolved in vivo. These layer assignments were
confirmed by using an intravascular contrast agent. The outer
retina had lower MEMRI activity in light compared with dark
adaption, whereas the inner retina had higher MEMRI activity

in light compared with dark adaption. The choroid MEMRI
activity was not statistically different between light and dark
adaption. The retinal layer thicknesses were analyzed with
confirmation of an intravascular contrast agent.

When both eyes were light adapted (Fig. 1), the images of
the two eyes have similar signal-to-noise ratio overall,
confirming similar performance of the two radiofrequency
coils. The normalized intensity profiles were essentially
identical, further confirming the reliability of the approach.
The alternating bright, dark, and bright peaks—assigned as the
inner retina (GCL, IPL, INL, OPL), outer retina (ONL, IS+OS)
and choroid, respectively—were confirmed by using an
intravascular contrast agent which changed the signal intensity
of the retinal vascular layers (retinal vessels permeated the
inner retina) and the choroid bounding the retina, but did not
change the signal intensity of the avascular outer retina in
between as expected (Fig. 2). These layer assignments are
consistent with those reported by Cheng et al.,> that employed
a different intravascular contrast agent. The thicknesses of the
inner retina and outer retina are consistent with those reported
by Cheng et al.> The choroid thickness herein was slightly
thinner than Cheng et al.> (inner, outer, and choroid
thicknesses were 101 = 17, 79 = 11, and 86 * 10 pum,
respectively, at 60 X 60 X 500 um resolution).> This could be
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FIGURE 2.
Normalization was applied with respect to the vitreous.

due to differences in spatial resolution or regions of the retina
analyzed. The study’s neural retinal thickness is also in good
agreement with the total thickness of the rat neural retina
reported using histology,?”-?® ultrasound,? and optical coher-
ence tomography.3©-31

In the outer retina, photoreceptors depolarize in dark and
hyperpolarize in light. Depolarization is characterized by a net
influx of positive ions, which triggers calcium influx into the
intracellular space.?*2! Such a “dark current” in the outer
retina results in a higher metabolic rate in dark than in light.3?
Light adaptation relative to dark adaptation reduced oxygen
consumption by 40%, glucose consumption by 44%, and
lactate formation by 63% in the pig outer retina.>> Similarly,
light adaptation reduced oxygen consumption by 50%,34 in the
cat outer retina.?> There is consensus in the literature that
functional activities in the outer retina, as measured by
different techniques, are higher in the dark than in light.
Calcium-dependent MEMRI activities are thus expected to be
higher in dark (depolarized state) relative to light (hyperpolar-
ized state) (Fig. 3).

In the inner retina, the literature data are controversial. No
change, decrease, and increase activity in light compared with
dark have been reported in the inner retina. Activities of the
ON and OFF bipolar cells could conceivably balance out
irrespectively of light and dark adaptation, potentially resulting
in no net activity difference in the inner retina. Arteriovenous
sampling from an artery and a plexus on the optic nerve which
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(A) MEMRI before. (B) After MION injection. (C) Difference image. (D) Their intensity profiles across the retinal thickness (one animal).

drains blood from the retina showed no significant differences
in glucose and oxygen consumption in the inner retina
between light and dark in pig eyes.3® This method, however,
may not have sufficient sensitivity. Oxygen-electrode studies
also found no changes in inner retina oxygen consumption
between light and dark adaptation.3”-3® Human retinal blood
flow velocity has been reported to be lower in light compared
with dark as measured by laser Doppler velocimetry.>®

There are considerably more studies that reported higher
activities in light compared with dark in the inner retina.
Human retinal blood flow, which is tightly coupled to
increased neural activity in the retinal vessels, has been
reported to increase (~37%) from dark to light.> Fluorescent
microsphere study in rats also showed that retinal BF was
higher in light than in dark®® where the experimental
conditions were essentially identical to the current MEMRI
study except that the fluorescent microsphere study was done
under anesthesia. Oxygen-electrode measurements showed
that, under light-adapted conditions, oxygen uptake in the
inner retina is higher compared with dark-adapted condi-
tions.#! In the current study, MEMRI activity of the inner retina
was found to be higher in light compared with dark. In short,
there is accumulated evidence that neural activity is higher in
light compared to dark. The discrepancies with some studies
could be due to differences in species, experimental condi-
tions, and luminance of light adaptation. It is also possible that
different metrics of “neural” activities (such as calcium activity,
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Ficure 3. MEMRI images. (A) Light-adapted eye. (B) Dark-adapted eye. (C) Their intensity profiles across the retinal thickness from the same animal
at 20 X 20 X 700 um. Normalization was applied with respect to the vitreous.

blood flow, glucose consumption, or oxygen consumption)
may indeed differ as they measure different aspects of
increased functional activities.

In the choroid, no significant difference in MEMRI activities
was found between light and dark adaptation. The entire
choroid layer appeared to be enhanced by Mn. Manganese ions

are likely localized in the intracellular space of the retinal
pigment epithelium and the endothelial cells outlining
choroidal vessels, which are unlikely to differ between light
and dark conditions. Choroid BF is generally unresponsive to
visual stimulation, and light and dark adaptation as detected by
using laser Doppler flowmetry techniques in humans,?
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FiGure 4. (A) MEMRI group-averaged intensity profiles from the dark-
and light-adapted eyes (mean * SEM, n = 10) with normalization to the
vitreous signals. (B) Peak height comparisons of inner retina, outer
retina, and choroid (mean = SEM, n = 10, *P < 0.05, **P < 0.001).

although exception has been noted.> Others have also
suggested that choroid is not regulated by local metabolic
controls. 3 Similarly, functional MRI using a blood-volume
contrast agent also found that choroid blood volume did not
differ significantly during graded luminance, flicker frequency,
and color in rats.!® A recent fluorescent microsphere study
found choroidal blood flow in rats was not statistically different
between light and dark.4® These blood-volume functional MRI
and fluorescent microsphere studies were done under similar
experimental conditions (except under anesthesia) as the
current MEMRI study. There are no direct innervation between
the photoreceptors and choroidal arterioles. Basal choroid BF
is high, which appears sufficient to maintain adequate oxygen
supplies irrespective of light or dark adaptation. High choroid
BF has also been suggested to be necessary to dissipate
heat.##45 In short, the MEMRI findings of the current study are
in good agreement with the predominant literatures that the
choroid does not change significantly due to changing
luminance.

Current study results differed from those of Berkowitz’s
MEMRI findings.?%>4° Berkowitz et al. assigned the outer MEMRI
band of the retina to include the ONL, IS, OS, and choroid, and
they found this band to have higher intensity under dark than
light. The present study overcame methodological challenges
to unambiguously resolve the avascular layer (ONL, IS+OS)
from the choroid. Independent confirmation of the vascular
layers and boundaries between layers was documented with an
intravascular contrast agent. Another difference is that they did
not detect MEMRI activity differences between light and dark
adaptation in the inner retina, in contrast to the current study.
These differences in findings could be due to differences in
image spatial resolution and/or different normalization used.
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Luminance levels, species/strain, and route of Mn administra-
tion (IV versus IP) between the two studies are unlikely to
contribute to these discrepancies.

Other functional imaging techniques of the retina include
intrinsic optical imaging,*” laser Doppler flowmetry,*? laser
speckle imaging, % and depth-resolved functional optical
coherence tomography.>%-3! Intrinsic optical imaging measures
reflectance associated with visual stimulation, albeit without
laminar resolution. Laser Doppler flowmetry and laser speckle
imaging measured blood flow changes associated with visual
stimulation, albeit without laminar resolution. Functional OCT
offers remarkable spatial resolution and it can detect reflec-
tance and blood flow changes associated with visual stimuli
from single vessels and photoreceptors. Comparisons of
different functional imaging techniques of the retina using
identical experimental parameters would help to further
characterize the metabolic and hemodynamic demands associ-
ated with light and dark adaptation.

In conclusion, this study demonstrated high-resolution
MEMRI to image layer-specific, calcium-dependent functional
activities in the inner retina, outer retina, and choroid in vivo
during light and dark adaptation in animal models. This
approach can be used to probe retinal dysfunction in diseased
states. Future studies need to improve MEMRI spatial
resolution to visualize additional major layers of the retina
and apply MEMRI to investigate retinal diseases, such as
diabetic retinopathy, glaucoma and retinal degeneration in
animal models. Improvement in image acquisition speed and
signal-to-noise ratio are expected with phase-array acquisitions
in which both eyes could be imaged simultaneously while
leveraging the highly sensitive small detectors.
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