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Abstract

Variation in drug response results from a combination of factors that include differences in gender, ethnicity, and
environment, as well as genetic variation that may result in differences in mRNA and protein expression. This
article presents two integrative analytic approaches that make use of both genome-wide SNP and mRNA
expression data available on the same set of subjects: a step-wise integrative approach and a comprehensive
analysis using sparse canonical correlation analysis (SCCA). In addition to applying standard SCCA, we present
a novel modification of SCCA which allows different weighting for the various pair-wise relationships in the
SCCA. These integrative approaches are illustrated with both simulated data and data from a pharmacogenomic
study of the drug gemcitabine. Results from these analyses found little overlap in terms of genes detected,
possibly detecting different biological mechanisms. In addition, we found the proposed weighted SCCA to
outperform its unweighted counterpart in detecting associations between the genomic features and phenotype.
Further research is needed to develop and assess new integrative methods for pharmacogenomic studies, as
these types of analyses may uncover novel insights into the relationship between genomic variation and drug
response.

Introduction

Variation in response to drug therapies is the result
of a combination of many factors, including gene se-

quence variation, ultimately resulting in differences in mRNA
and protein expression. Most of the current methods for an-
alyzing high-dimensional genomic data have focused on an-
alyzing a single data type, or experiment, at a time in a naive
fashion. This naive one-at-a-time analysis approach ignores
known biological information and the interaction between
genes, proteins, and biochemical reactions, which may give
rise to complex drug-related phenotypes. With the wealth of
data being produced by new technologies, the collection of
multiple types of genomic data on a set of samples is be-
coming commonplace.

Recently, multifactor approaches combining different
types of genomic data have been used, in which a multistep
procedure is employed to identify potential key drivers of
complex traits integrating DNA variation and mRNA ex-
pression data (Hauser et al., 2003; Huang et al., 2008; Li et al.,
2008; Schadt et al., 2005). Niu and associates (2010) used a
step-wise integrative approach to find genes related to the

response to radiation therapy. Another set of ‘‘integrative
genomics’’ methods analyze the complete set of data in one
comprehensive analysis, as opposed to a multistep procedure.
One such approach is canonical correlation analysis (CCA;
Hotelling, 1936). CCA focuses on maximizing the correlation
between linear combinations of different sets of variables.
However, when the number of variables far exceeds the
number of subjects, as is the case for large-scale genomic
studies, traditional CCA methods are no longer appropriate.
To overcome this limitation, sparse canonical correlation
analysis (SCCA) has recently been proposed for the analysis
of two or three data sets (Parkhomenko et al., 2009; Waai-
jenborg et al., 2008; Witten and Tibshirani, 2009).

In this article, we compare these integrative analysis ap-
proaches, including the novel weighted SCCA, using data from
a pharmacogenomics study of the cancer agent gemcitabine, in
which genome-wide single-nucleotide polymorphisms (SNP)
and mRNA expression have been collected on the same set of
cell lines (Li et al., 2008, 2009). These methods are also applied
to simulated data in which the ‘‘truth’’ is known. In this article,
we focus on analysis methods that integrate multiple types of
data into one comprehensive analysis, and propose a novel
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weighted SCCA method for analyzing high-dimensional data
in pharmacogenomics studies.

Materials and Methods

Pharmacogenomic study of gemcitabine

To understand the pharmacogenomics of gemcitabine drug
therapy, the Coriell Human Variation Panel (HVP) lympho-
blastic cell lines were utilized, as previously described (Li
et al., 2008, 2009). The HVP contains Epstein-Barr virus (EBV)-
transformed B lymphoblastic cells from 100 Caucasians, 100
African-Americans, and 100 Han Chinese Americans. Cyto-
toxicity assays were performed at various drug doses, fol-
lowed by estimation of the phenotype IC50 (the effective dose
that kills 50% of the cells), using a four-parameter logistic
model (Gallant, 1987). The phenotypic variable IC50 was used
in the univariate and step-wise integrative methods, while the
cytotoxicity values at the eight drug dose levels was used in the
SCCA, which is designed for multiple variables. The cell lines
have been genotyped using the Illumina HumanHap 550K.
Following quality control, a total of 515,039 SNPs remained for
integrative statistical analyses. SNPs were quantified as 0, 1, or
2, based on an additive genetic model in terms of the number of
minor alleles. Genome-wide mRNA expression data were
measured for the cell lines with the Affymetrix U133 Plus 2.0
expression array chip, with 54,613 probe sets available for
analysis. In total, 172 cell lines (60 Caucasian, 53 African-
American, and 59 Han Chinese American) had all three data
types: gemcitabine cytotoxicity measurements, genome-wide
mRNA expression data, and genome-wide SNP data.

Statistical analyses of the cell-line gemcitabine
pharmacogenomic study

Univariate analyses. The expression array data were
normalized on the log scale using guanine cytosine robust
multi-array analysis (GCRMA; Bolstad et al., 2003; Wu et al.,
2004). The normalized expression data on a log scale were then
regressed on gender and race. Residuals from this regression
were then standardized to arrive at a standardized adjusted
expression value. IC50 values were log transformed and ad-
justed in a fashion similar to that described for the basal gene
expression data. Pearson correlation coefficients were then
calculated for the adjusted standardized IC50 and expression
levels, followed by a Wald test of the association ( p < 0.0001).

For all analyses involving SNPs, adjustment for population
stratification was completed as outlined in the works by Li and
colleagues (2009) and Niu and associates (2010). Briefly, we
used a principal component analysis (PCA) approach using
genome-wide SNPs to adjust for population stratification (Price
et al., 2006), in which PCA was completed by race, with the top
five principal components saved. Using these components,
the individual genotypes were adjusted. In a similar manner,
the IC50 values were log transformed and adjusted for gender
and race using the five principal components. The resulting
race-adjusted genotypes and IC50 were then used in the geno-
type-phenotype correlation analysis. The SNP-IC50, and the
SNP-expression analyses, were completed in a similar manner.

Step-wise integrative analysis. Based on the univariate
analysis results, SNPs associated with IC50 were identified
( p < 0.0001). Since SNPs may control mRNA expression in ei-

ther a cis- or a trans-manner, associations between these iden-
tified SNPs and genome-wide expression were completed,
with SNP-expression associations identified ( p < 0.0001). Next,
we determined if the expression probe sets identified to be
associated with an SNP (with the SNP found to be associated
with IC50), were also associated with IC50 ( p < 0.0001). This
resulted in a set of candidate genes that could then be assessed
for possible biological relevance with the drug. This approach is
the same as the one followed by Niu and colleagues (2010).

SCCA integrative methods. CCA is a multivariate sta-
tistical method designed to explore the correlation between
two sets of quantitative variables (Hotelling, 1936), and has
been extended for the analysis of three or more data sets (Via
et al., 2007). Suppose that three data sets X, Y, and Z, are of
dimensions n · p, n · q, and n · r, with p £ n, q £ n, and r £ n
measured on the same set of n subjects. Suppose that the
columns of X, Y, and Z are standardized to have mean 0 and
standard deviation 1. Let u, v, and w be p · 1, q · 1, and r · 1
vectors of weights, and let n = Xu, g = Yv, and h = Zw be the
linear combinations of the variables in data sets X, Y, and Z,
respectively, where n, g, and h are n · 1 vectors. The first ca-
nonical correlation (q) is then computed by maximizing the
following equation:

q¼ corr(n, g)þ corr(n, h)þ corr(g, h)

¼ max (uTXTYvþ uTXTZwþ vTYTZw) [Eq: 1]

subject to uT XT Xu = vT YT Yv = wT ZT Zw = 1.
A limitation of CCA is that when the number of variables far

exceeds the number of subjects, as is the case for large-scale
genomic studies, the method is not applicable. To overcome
this issue, a few important variables are selected using standard
model selection criteria, and the canonical correlation is com-
puted using the selected variables (Parkhomenko et al., 2009;
Witten and Tibshirani, 2009), referred to as sparse canonical
correlation analysis (SCCA). Mathematically, SCCA is per-
formed by maximizing the penalized version of the expression
in [Eq. 1] with penalties P1(u), P2(v), and P3(w), placed on u, v,
and w, respectively. In this article, maximization of [Eq. 1] and
calculation of the loadings were carried out using the method
described in Witten and Tibshirani (2009).

However, a disadvantage of the SCCA method is that it does
not directly control the sparsity of solution, and as a result it is
difficult to achieve effective dimension reduction (Lykou and
Whittaker, 2010). Zhou and He (2008) proposed a two-step
procedure that uses a BIC criterion, balancing the loss in the
correlation and gain in the sparsity of variables. The procedure
is carried out iteratively which is given as follows. The pair-
wise canonical correlation coefficients (rij, rjk, and rik) for the
linear combination of the variables selected from SCCA are
computed, with qd defined as qdm ¼ rijþ rjkþ rik, where qd

ranges from - 3 to + 3. Then the BIC value is estimated using

BIC(dm)¼ n log (q2
max� q2

dm )þ dm log (n) [Eq: 2]

where dm = pm + qm + rm is the total number of parameters at the
mth iteration, n is the sample size, q2

dm is the square of the sum of
the pair-wise correlation coefficients with dm parameters, and
q2

max is the square of the sum of maximum possible correlation
coefficients (e.g., q2

max = 9 for the case involving three pair-wise
correlations). Next, the variable with the smallest loading in
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absolute value is dropped and a new correlation and corre-
sponding BIC value are computed. Thus, the variable filtering
is carried out by dropping the variable with the smallest
loading at each iteration, followed by the re-computation of the
first canonical correlation and the BIC value. The variables
corresponding to the minimum BIC value are then selected.

Another limitation of the current definition of SCCA for
more than two data sets deals with the fact that the maximi-
zation involves the sum of pair-wise correlations of the linear
combination of variables among the three data sets. That is,
all pairs of correlations are given equal weights, which may
not be appropriate in pharmacogenomic studies. In particular,
the component representing the correlation between the
SNP and expression data can dominate the analysis, with SNP
and expression variables being selected that have no rela-
tionship with the phenotypes. Therefore, we propose a novel
weighted SCCA for analysis of three data sets that allows for
weighting of the different pair-wise correlation within the
objective function with

q¼w12corr(n, g)þw13corr(n, h)þw23corr(g, h)

¼ max (w12uTXTYvþw13uTXTZwþw23vTYTZw) [Eq: 3]

subject to uT XT Xu = vT YTYv = wT ZT Zw = 1. For example, in
the SCCA of cytotoxicity, expression, and SNP data, one could
select variables that maximize the sum of the correlation be-
tween the cytotoxicity – expression and cytotoxicity – SNP,
with w12 = w13 = 1, thus removing the component representing

the correlation between SNP and expression (w23 = 0). The BIC
function is then adjusted accordingly for weighted SCCA using

BIC(dm)¼ n log (q2
max� q2

dm )þ dm log (n), [Eq: 4]

where qdm ¼ rijþ rik, ranging from - 2 to + 2, and therefore
q2

max¼ 4:
Finally, since applying SCCA to genome-wide SNP data is

still computationally intensive, the following dimension re-
duction steps were completed prior to SCCA. SNPs were
partitioned into bins based on their correlation using hierar-
chical clustering with a liberal threshold of 0.05 (Rinaldo et al.,
2005), followed by PCA for the SNPs within the bin. The first
principal component for each bin of SNPs was used in the
model as the ‘‘genetic’’ variable, as opposed to the individual
SNP genotypes. A similar PCA approach has often been car-
ried out for SNPs in a candidate gene to capture the variation
of those SNPs within the locus (Gauderman et al., 2007). This
approach resulted in 3135 ‘‘genetic’’ factors to be included in
the analysis. Adjustment of population stratification and
covariates was completed in a similar manner as that outlined
for the univariate analysis, with SCCA based on the residuals.

Results

Gemcitabine pharmacogenomic study

Univariate analysis. Five SNPs (Table 1A) were detected
with p < 10 - 5 (6.14 · 10 - 7 to 8.53 · 10 - 6), and nine loci (regions

Table 1. (A) Univariate SNP-IC50 Associations with p < 10 - 5
from Univariate Analysis of the Gemcitabine

Study. (B) Nine loci (Regions with More Than One SNP with p < 0.0001) associated with IC50

SNP Chromosome Position Nearest gene MAF Correlation p

(A) rs4272382 8 8470898 CLDN23 0.132 - 0.39 6.1E-07
rs3775182 4 87198607 MAPK10 0.109 0.38 9.6E-07
rs2290344 15 53407088 PIGB 0.254 0.36 3.6E-06
rs10761082 9 106555990 NIPSNAP3A 0.36 0.36 4.9E-06
rs2472476 9 106571777 NIPSNAP3B 0.389 0.35 8.5E-06

(B) rs7713001 5 67999371 PIK3R1 0.459 - 0.32 4.5E-05
rs12188464 5 67999705 PIK3R1 0.459 - 0.32 4.5E-05
rs13171512 5 68000787 PIK3R1 0.462 - 0.32 3.9E-05
rs2107331 5 135405248 TGFBI 0.456 - 0.34 1.5E-05
rs2282791 5 135405629 TGFBI 0.477 0.32 4.3E-05
rs7192 6 32519624 HLA-DRA 0.374 0.31 5.7E-05
rs3129890 6 32522251 HLA-DRA 0.342 0.34 1.0E-05
rs2922876 8 6384104 MCPH1; ANGPT2 0.164 - 0.31 7.2E-05
rs1375668 8 6384278 MCPH1; ANGPT2 0.363 - 0.31 9.1E-05
rs4272382 8 8470898 CLDN23 0.132 - 0.39 6.1E-07
rs4595128 8 8471286 CLDN23 0.202 - 0.32 3.2E-05
rs10761082 9 106555990 NIPSNAP3A 0.36 0.36 4.9E-06
rs2472476 9 106571777 NIPSNAP3B 0.389 0.35 8.5E-06
rs12244977 10 58762688 LOC100128586 0.19 - 0.31 9.4E-05
rs12256364 10 58765694 LOC100128586 0.19 - 0.31 9.4E-05
rs12050885 15 53345916 RAB27A 0.379 0.33 2.2E-05
rs11636687 15 53392444 PIGB 0.42 0.32 5.3E-05
rs2290344 15 53407088 PIGB 0.254 0.36 3.6E-06
rs12050587 15 53414820 PIGB 0.45 0.32 5.0E-05
rs8024695 15 53426597 PIGB 0.287 0.34 1.4E-05
rs11639680 16 5500905 NPM1P3 0.193 0.33 2.8E-05
rs4511535 16 5506393 NPM1P3 0.199 0.31 6.0E-05

MAF, minor allele frequency; SNP, single-nucleotide polymorphism; IC50, effective dose that kills 50% of cells.
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with more than one SNP with p < 0.0001) found to be associ-
ated with IC50. These regions corresponded to genes PIK3R1,
TGFBI, HLA-DRA, MCPH1/ANGPT2, CLDN23, NIPSNAP3A/
B, LOC100128586, RAB27A/PIGB, and NPM1P3. Results for
these loci are also presented in Table 1B. Analysis of mRNA
expression and IC50 detected a total of 261 probe sets associ-
ated with IC50 with p < 0.0001. The probe sets with p < 10 - 6 are
listed in Table 2. Multiple probe sets in the genes FKBP5,
VARS, and VAV3 were found to be associated with gemci-
tabine IC50.

Step-wise integration approach. For the step-wise integra-
tion analysis approach, 58 SNPs were found to be associated
with IC50 ( p < 0.0001). For these 58 SNPs, cis- and trans-
associations with gene expression were determined. We
found associations with 468 unique expression probe sets (538
associations with p < 0.0001). In particular, SNP rs922369
(chromosome 10, bp 71020137, 5¢ upstream of the gene
NEUROG3), was associated with 60 unique expression probe
sets, and rs2472476 (chromosome 9, bp 106571777, intronic to
NIPSNAP3B and 3¢ downstream of NIPSNAP3A) was asso-
ciated with 41 probe sets. The SNP rs2472476 was also in a
locus associated with IC50 containing SNP rs10761082.

Subsequently, the association of these 468 probe sets with
IC50 determined 21 probe sets associated with IC50

( p < 0.0001). These results are displayed in Table 3. In addition
to the gene PIGB detected by the SNP-IC50 analyses, and
FKBP5 detected by the expression-IC50 analyses, these two
genes were also detected via the three-way step-wise analysis.
The four SNPs in PIGB associated with IC50 ( p < 0.0001) were
also found to regulate the expression of PIGB, with the most
significant association found between the four SNPs and
mRNA expression (242760_x_at) observed for rs2290344

( p = 2.55 · 10 - 10). This probe set was also found to be associ-
ated with IC50 ( p = 8.98 · 10 - 5), indicating that the SNPs may
be indirectly affecting gemcitabine IC50 through the expres-
sion of PIGB. In addition, Table 3 presents 15 novel candidate
genes detected through a trans mechanism. In particular, SNP

Table 2. Expression Probe Set-IC50 Associations with p < 10 - 6
from Univariate Analysis

of the Gemcitabine Study

Probe set Chromosome Gene Correlation p

202092_s_at 16 ARL2BP - 0.38 2.6E-07
212437_at 20 CENPB - 0.39 8.3E-08
226017_at 3 CMTM7 - 0.36 8.9E-07
211118_x_at 14 ERS2 0.39 6.7E-08
224856_at 6 FKBP5 - 0.41 2.1E-08
204560_at 6 FKBP5 - 0.39 9.6E-08
224840_at 6 FKBP5 - 0.37 5.6E-07
205164_at 22 GCAT - 0.39 9.9E-08
230362_at 10 INPP5F - 0.39 5.9E-08
210644_s_at 19 LAIR1 - 0.38 1.7E-07
203726_s_at 18 LAMA3 - 0.44 1.2E-09
212715_s_at 22 LOC731210; MICAL3 - 0.38 2.3E-07
225391_at 4 LOC93622 - 0.36 9.0E-07
206571_s_at 2 MAP4K4 - 0.37 5.1E-07
204880_at 10 MGMT 0.40 5.4E-08
209853_s_at 17 PSME3 - 0.37 5.5E-07
209815_at 9 PTCH1 0.36 8.8E-07
204759_at 13 RCBTB2 0.37 5.9E-07
205645_at 23 REPS2 - 0.36 8.1E-07
224338_s_at 11 RNF26 - 0.39 1.2E-07
201796_s_at 6 VARS - 0.40 2.5E-08
201797_s_at 6 VARS - 0.37 3.4E-07
218807_at 1 VAV3 - 0.38 1.4E-07
218806_s_at 1 VAV3 - 0.37 5.7E-07

IC50, effective dose that kills 50% of cells.

Table 3. Twenty-One Probe Sets Found

to Be Associated with Gemcitabine IC50 Based

on a Step-Wise Integrative Approach

Probe set Chromosome Gene Correlation p

218812_s_at 7 TMEM142B - 0.29 6.7E-05
219798_s_at 7 BCDIN3 - 0.32 1.6E-05
219822_at 13 MTRF1 0.30 5.8E-05
231406_at 7 — - 0.34 3.6E-06
1569396_at 16 RAB40C 0.30 5.4E-05
1570537_a_at 8 — 0.32 1.1E-05
225086_at 15 FAM98B - 0.35 2.1E-06
204560_at 6 FKBP5 - 0.39 9.6E-08
242760_x_at 15 PIGB - 0.29 8.9E-05
228832_at 4 FLJ20021 0.29 8.1E-05
203099_s_at 6 CDYL - 0.32 1.0E-05
219338_s_at 15 LRRC49 - 0.30 6.1E-05
244276_at 4 KLB 0.30 3.8E-05
231851_at 1 RAVER2 - 0.29 6.6E-05
236170_x_at 7 HERPUD2 - 0.29 6.7E-05
225391_at 4 LOC93622 - 0.36 9.0E-07
203706_s_at 2 FZD7 - 0.30 4.7E-05
213056_at 3 FRMD4B - 0.30 6.3E-05
219098_at 17 MYBBP1A - 0.33 8.3E-06
230908_at 2 — - 0.35 1.8E-06
200988_s_at 17 PSME3 - 0.35 2.6E-06

IC50, effective dose that kills 50% of cells.
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rs922369 (chromosome 10; minor allele frequency [MAF] =
0.25) in NEUROGF3 was associated with IC50 ( p = 4.88 · 10 - 5)
and mRNA expression for genes TMEM142B, MTRF1, and a
cDNA, with the probe sets for these genes also associated with
IC50 through a trans mechanism (Table 4).

SCCA approach. Using the standard (unweighted)
SCCA applied to the SNP, mRNA expression, and cytotox-
icity data sets, resulted in the selection of 182 genetic vari-
ables (defined as the first principal component for the
linkage disequilibrium [LD]-based binned SNPs), 2581

Table 4. Results for rs922369 (NEUROGF3) Observed to be Associated with Gemcitabine Trans-Acting

Manner Through Expression

mRNA expression rs922369 Expression analysis Expression IC50 analysis

Probe set Gene Chromosome Correlation p Correlation p

218812_s_at TMEM142B 7 - 0.28 2.0E-06 - 0.29 6.7E-05
219798_s_at BCDIN3 7 - 0.25 2.2E-05 - 0.32 1.6E-05
219822_at MTRF1 13 0.29 1.0E-06 0.30 5.8E-05
231406_at cDNA 7 - 0.26 1.1E-05 - 0.34 3.6E-06

IC50, effective dose that kills 50% of cells.

Table 5. SCCA Results, Following BIC Filtering, for the Gemcitabine Pharmacogenomic Study

SNP Chromosome Position Gene

(A)
rs3766117a 1 167794480 F5
rs1894701a 1 167797210 F5
rs7545236a 1 167796694 F5
rs6022a 1 167796450 F5
rs6128a 1 167829528 SELP; F5
rs6678795 1 167799890 F5
rs1335532 1 116902480 CD58
rs6427202 1 167795454 F5
rs10924103 1 116838074 LOC148766
rs800292 1 194908856 CFH
rs505102 1 194886125 CFH
rs10802189 1 116858253 CD58
rs10145908 14 62823082 RHOJ
rs4457900 14 60759645 TMEM30B
rs3783814 14 60869673 PRKCH
rs1139130a 14 21037756 TOX4; METTL3
rs2297093a 14 21025196 TOX4
rs933192a 14 21033649 TOX4; METTL3
rs4417466a 14 21042491 TOX4; METTL3
rs6571850a 14 21020676 TOX4; RAB2B
rs719785 14 21048133 METTL3
rs7179423a 15 23471534 ATP10A
rs2930629a 15 23469059 ATP10A
rs7181116a 15 23471769 ATP10A
rs2066711a 15 23474311 ATP10A

(B)
rs12345642 9 137870884 CAMSAP1
rs7852055 9 137835056 CAMSAP1, LOC100131786
rs10116440 9 137896193 CAMSAP1
rs10858179 9 137945755 UBAC1
rs12972385 19 5842052 NDUFA11
rs1678868 19 5843954 NDUFA11
rs8108064 19 5854807 NDUFA11,VMAC
rs1015048 21 32871177 TCP10L,C21orf77
rs1015047 21 32871294 TCP10L,C21orf77
rs2833890 21 32849757 C21orf77
rs2833902 21 32862329 C21orf77,TCP10L

aDetected in both unweighted and weighted SCCA.
SNPs with the highest loadings in the first principal component from selected bins are presented: (A) unweighted SCCA, and (B) weighted

SCCA.
SNP, single-nucleotide polymorphism; SCCA, sparse canonical correlation analysis.
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expression probe sets, and 2 cytotoxicity variables (doses of
10lM and 1000lM) with a SCCA coefficient of 1.0299. The
pair-wise SCCA coefficients were: correlation(genotype, ex-
pression) = 0.734, correlation(genotype, cytotoxicity) = 0.153,
and correlation(expression, cytotoxicity) = 0.143. Applying the
BIC-type variable filtering method resulted in a more sparse
solution, with only five genetic variables, one expression probe
set (215301_at), and one cytotoxicity variable (10 lM) selected.
The selected probe set 215301_at corresponds to genes SYCE1L
and LOC400547, located at chromosome 16 and position
75804375–75809512. This probe set was not significantly asso-
ciated with IC50 in univariate analysis ( p = 0.30). The five se-
lected genetic variables correspond to bins consisting of 106,
220, 7, 9, and 10 SNPs, respectively (a total of 352 SNPs). Three
of these SNPs, rs4074037, rs3811259, and rs2930629, were
among the SNPs obtained from the univariate SNP IC50 ana-
lyses ( p = 0.0098, 0.0053, and 0.0044, respectively). There were
no common SNPs detected from the unweighted SCCA and
step-wise approach. Out of 352 total SNPs, the 25 most ‘‘im-
portant’’ SNPs with largest first principal component loadings,
together with their positions and associated genes, are listed
in Table 5A.

When the weighted SCCA was applied to the gemcita-
bine pharmacogenomic study, 57 genetic variables, 874
expression probe sets, and 2 cytotoxicity variables were
selected. The sparse canonical correlation was 0.3611
(correlations between genotype and cytotoxicity equal to
0.1902, and expression and cytotoxicity equal to 0.1709).
After applying the BIC filter, only 13 genetic variables, 7
expression probe sets, and 1 cytotoxicity (dose 10 lM)
variable were selected. However, these probe sets
(1556404_a_at, 1557921_s_at, 1559336_at, 1565742_at,
1566970_at, 215301_at, and 239006_at) were not signifi-
cantly associated with IC50 in expression-IC50 analyses.
The selected genetic variables correspond to bins consist-
ing of 106, 45, 16, 127, 220, 7, 9, 37, 108, 18, 56, 44, and 10
(total of 803 SNPs). Out of these 803 SNPs, rs9651539,
rs778972, rs739236, and rs1107514, were also detected in
the univariate SNP-IC50 analyses ( p = 0.0005, 0.0009,
0.0009, and 0.0009, respectively). The 25 most important
SNPs with the largest principal component loadings are
listed in Table 5A and B, together with their position and
associated genes.

These novel genes detected from SCCA might represent
additional mechanisms that could contribute to gemcitabine
sensitivity. Therefore, we completed a pathway analysis of
these genes using Ingenuity Pathway Analysis (IPA; In-
genuity Systems, Redwood City, CA, USA). This software
consists of a curated database and several analysis tools to
obtain pathways and networks associated with a set of genes.
Networks are constructed in IPA with a set of genes by first
identifying other molecules in the IPA database that have
evidence of interacting with these genes, and then maximiz-
ing the connectivity of these components. The scores of the
constructed networks indicate how well the network is ‘‘fit’’ to
the set of genes input, and is the log-transformed value of a
right-tailed Fisher’s exact test result. The top network identi-
fied was the TNF pathway (score of 32), and involved 13 of the
16 genes input (Fig. 1). This pathway is extremely important
in the inflammatory response and cancer development.
Therefore, future functional and mechanistic studies would
help to validate this finding.

Comparison of the approaches. The standard SCCA
method selected 5 SNP bins, 1 mRNA expression probe set,
and 1 cytotoxicity variable, while the weighted SCCA method
selected 13 bins of SNPs, 7 mRNA expression probe sets, and 1
cytotoxicity variable. All the variables selected by unweighted
SCCA were also selected by weighted SCCA. Comparing the
SCCA results with the univariate approach, 4 SNPs
(rs9651539, rs778972, rs739236, and rs1107514) from the
weighted SCCA method were found to have a significant
association with IC50 ( p values range from 0.0005 - 0.0009).
However, the SNPs selected from the unweighted SCCA
method were not found to have a significant association with
IC50 (at p < 0.001 level). Also, the mRNA variables selected by
both the unweighted and weighted SCCA methods were not
detected by either the univariate ( p > 0.05) or the step-wise
analyses. The univariate and step-wise analyses identified
several genes in common. The gene PIGB was both detected
by the step-wise model and univariate SNP-IC50 analyses.
Similarly, gene FKBP5 was detected by both the step-wise and
univariate expression-IC50 analyses. In addition, the step-wise
method detected 15 novel candidate genes not detected by
either the univariate SNP-IC50 or expression-IC50 analysis.

Description of simulated data

Simulation of the genotype data was based on the SNPs
within the gemcitabine pathway for the Caucasian HVP cell
lines. SNPs mapped to the gemcitabine pathway, which
passed quality control, were identified resulting in 749 SNPs
in 19 genes. The 19 genes within the pathway were mapped
to chromosomes, and haplotypes were phased using the
program fastPHASE (Scheet and Stephens, 2006). These hap-
lotype frequencies were used as the ‘‘true’’ haplotype fre-
quencies for the underlying population, with haplotypes
simulated using the hapsim library in R (http://cran
.r-project.org/web/packages/hapsim/index.html). These
haplotypes were then assigned in a sequential fashion to the
200 individuals, producing simulated genotypes for SNPs
that mimic realistic LD for the regions in which they lie.

Following the simulation of the genotype data for n = 200
subjects, mRNA gene expression data were simulated, such
that a few SNPs in the pathway were correlated with mRNA
expression levels. The expression data for each individual
were simulated using a multivariate normal distribution
X*MVN(li, SX), for which the mean vector for subject i,
li = Gi · B, is based on the effect matrix B and subject i’s vector
of genotypes Gi. Next, SNPs were selected to be associated
with gene expression, with an effect size k for those SNP-
expression pairs, the effect matrix B is defined as

B¼

k 0 . . . 0
0 0 . . . k

. . . . . . . . . . . .
0 0 k 0

0
BB@

1
CCA [Eq:5]

with the number of rows equal to the number of SNPs and the
number of columns equal to the number of expression vari-
ables. Using the mean vector li, and a covariance matrix (SX)
based on the observed correlation structure between the
mRNA expression values within the gemcitabine path-
way, expression data for individual i were simulated. Three
SNPs, rs2840075, rs3781281, and rs7776847, were chosen
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to be associated with three expression variables 203302_at,
209155_s_at, and 223298_s_at, respectively. The effect size
was varied, with either a small effect (k = 0.3), or a large effect
(k = 0.6).

Finally, the cytotoxicity values for each individual
were generated from a multivariate normal distribution
Y~MVN(xi,SY). The mean of the distribution was based on
the four-parameter logistic function

xi¼ b1þ
b2� b1

1þ expfb4( log (Di)� b3)g [Eq:6]

where the responses at infinite and zero concentration are
represented by b1 and b2, respectively. The parameter b3

represents log(IC50), b4 represents the slope of the dose-
response curve, and Di is one of the eight gemcitabine drug
concentrations. The parameters b1, b2, and b4 in the four-
parameter logistic model were set to 10, 95, and 1.5, respec-
tively. The covariance matrix SY was estimated from the
gemcitabine cytotoxicity data. For simulations with a genetic
effect on the phenotype IC50, b3 was based on the direct effects
of two expression probe sets: direct effect of one SNP, and

indirect effect of an additional SNP. The genes with mRNA
expression affecting the cytotoxicity were NT5C3 and
NT5C1B. The SNPs impacting cytotoxicity were rs11140525
and rs7776847. The simulation scenario is depicted in Figure 2.
For each effect size (k = 0.3 or 0.6), 100 simulations were run
with the aforementioned settings.

Simulation study results

Univariate results. Pearson correlation coefficients were
calculated for all possible pairs of variables, followed by a test
of association using a Wald test with Fisher’s transformation
and Bonferroni correction for multiple testing. To compare the
methods, the proportion of times the true variables were se-
lected (PTTS), and the average number of false-discovery
(AvgFD) were computed. AvgFD was computed by adding
all the false-positive variables across all simulations divided
by the number of simulations. Therefore, a good analysis
method is one with high PTTS and low AvgFD. To adjust for
multiple testing, a Bonferroni correction was applied for
which the significance threshold was set to 0.001 for the
mRNA-IC50 comparisons, 10 - 4 for the SNP-IC50 comparisons,

FIG. 1. Network showing the top network (TNF pathway) detected with Ingenuity Pathway Analysis.
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and 10 - 5 for the SNP-mRNA comparisons due to differing
number of tests in these categories. The results are displayed
in Table 6A.

For the larger effect size (k = 0.6) simulations, all three pairs
of the univariate analysis selected the simulated effects with
good power. In particular, when the number of tests was
smaller (e.g., expression-IC50 analysis), the true variables were
selected by almost every simulation (100% and 91% of simu-
lations for 223298_s_at and 1554368_at, respectively). How-
ever, when the effect size was decreased to 0.3, the PTTS
values were reduced for all three univariate analyses. This
reduction in PTTS was larger for the SNP-expression analyses,
with the maximum reduction being 49% for the association
between rs3781281 and 209155_s_at. The reduction in the
PTTS value was also evident for the SNP rs7776847 in the
SNP-IC50 analysis, which was simulated to have an indirect
effect on IC50 via NT5C3 (probe set 223298_s_at). In addition
to the impact on PTTS, as the effect size decreased the avgFD
also decreased, with changes in avgFD of: (1) 0.05 and 0.12 for
detecting false expression effects from the associations with
SNP and IC50, respectively; and (2) 2.68 and 0.81 for detecting
false SNP effects from associations with expression and IC50,
respectively. For all simulation pairs, the false-positives were
scattered among the remaining pairs, with no pair being de-
tected in more than 8% of simulations.

Step-wise integration approach. For the step-wise inte-
grative approach, SNPs associated with cytotoxicity variables
were selected with p < 10 - 4. Then for these selected SNPs, the
associations with genome-wide mRNA expression variables
was assessed, with mRNA probe sets selected with p < 10 - 5.
Finally, the association of these expression variables with
cytotoxicity was determined with mRNA expression probe
sets selected to be associated with IC50 at the 0.001 significance
level. The focus of the step-wise approach lies in determining
the expression variables associated with IC50, given that an
SNP was associated with IC50 and expression of the gene;
therefore we focused on the proportion of times the NT5C3
gene was selected. The gene NT5C3 (probe set 223298_s_at)
was detected in 46% of simulations when the effect size
was k = 0.6, and 18% of the time when the effect size was
k = 0.3. The AvgFD was 0.23 and 0.12 when k was 0.6 or 0.3,
respectively.

SCCA Approach. Weighted and unweighted SCCA, with
an additional BIC step, were applied to the simulated data,
with results presented in Table 6B. PTTS values were smaller
for the smaller effect size (k = 0.3), with similar results for de-
tecting SNP effects between the weighted and unweighted
SCCA. However, a larger difference was observed for detec-
tion of expression effects between the two SCCA approaches,
with higher PTTS rates observed for the weighted SCCA,
compared to the unweighted SCCA. The AvgFD values for
SNP and mRNA expression analyses were 0.68 (2.24) and
0.26 (0.77), when k = 0.6 (k = 0.30) for the unweighted SCCA.
Similarly, for weighted SCCA, the false-detection rate in-
creased when the effect size decreased. The AvgFD for SNP
and expression were 1.57 (1.69) and 0.55 (0.63), when k = 0.6
(k = 0.30). The selected false variables appeared to be random,
and none of the variables were selected in more than 7% of
simulations.

Comparison of approaches. The simulation study
showed that when the variables are strongly associated with a
large effect size (k = 0.6), and if the number of tests conducted
was relatively small (e.g., expression-IC50 pairs), the univari-
ate approach was able to detect almost all simulated true
variables (223298_s_at 100% and 1554368_at 91%). There were
fewer true variables selected when the number of compari-
sons was increased. The SNP-IC50 correlation had the second
largest number of tests, and the SNP rs11140525 was selected
in 87% of simulations, and SNP rs7776847 was selected in
66%. The SNP expression pair had the largest number of tests,
and the true pairs rs2840075-203302_at, rs3781281-
209155_s_at, and rs7776847-223298_s_at, were detected in
61%, 86%, and 59% of simulations, respectively. However,
when the variables are moderately or even weakly associated
(k = 0.3), and if the number of tests being conducted is large
(e.g., SNP-expression pairs), there was a substantial decrease
in the number of true associations detected (the pairs
rs2840075-203302_at from 61 to 25%, rs3781281-209155_s_at
from 86 to 37%, and rs7776847-223298_s_at from 59 to 31%).
However, the fall in the PTTS was smaller when the number
of comparisons was smaller in expression-IC50 (14% fall in
PTTS for 223298_s_at, and 12% fall in PTTS for 1554368_at). In
particular, the PTTS for SNP rs7776847, which was simulated
to have an indirect effect with IC50, dropped by 48%, even
though the number of tests was moderate.

SNP
(rs2840075)

SNP
(rs3781281)

DCK
(203302_at)

NT5C2
(209155_s_at)

Cytotoxicity NT5C1B
(1554368_at)

SNP1
(rs11140525)

NT5C3
(223298_s_at)

SNP2
(rs7776847)

FIG. 2. Simulation scenario in which the genotype and
expression variables have direct and indirect effects on cy-
totoxicity. Two genes, NT5C3 and NT5C1B, with probe sets
223298_s_at and 1554368_at, have direct effects on cytotox-
icity. SNP rs11140525 has a direct effect and SNP rs7776847
has an indirect effect on cytotoxicity.
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In contrast, as the effect size decreased, there was less of a
drop in the PTTS for the weighted and unweighted SCCA
(compared to the univariate approach). In particular, the
SCCA methods were able to detect the smaller indirect effect
(k = 0.3) better than the univariate method (e.g., rs7776847
PTTS of 40–41% versus 18%). Comparing unweighted and
weighted SCCA methods, the simulation studies show that
the weighted SCCA method is generally better able to detect
the true associations between the genotypic and phenotypic
variables. Since the focus in pharmacogenomics studies is to
determine genomic variables (e.g., SNP and mRNA) associ-
ated with drug response, the novel weighted SCCA method
may reveal more relevant associations.

Discussion and Conclusions

In this article, we have described several integrative anal-
ysis methods that could be applied to pharmacogenomic
studies involving multiple types of genome-wide genomic
data collected on the same set of subjects. Each of these
methods has its benefits and limitations. Univariate analysis
approaches, in which each data type is analyzed individu-
ally for the association with the phenotype, has been widely
used in genome-scale studies. This method allows application
of computationally efficient, standard statistical methods.
However, the interpretation of the results after millions of
tests have been performed for each data type is challenging. In
addition, the univariate analysis approach only considers one
pair of variables at a time, ignoring other variables which
might influence them (i.e., expression quantitative trait loci
[eQTL]). As a result, it is difficult to assess complex relation-
ships between the multiple types of genomic data and the
drug-response phenotype of interest.

The second method described involves a step-wise ap-
proach to integrate SNP and expression data for the selection
of candidate genes associated with drug response. In this
approach, the relationships between genetic variants (e.g.,
SNPs) and the phenotype are assessed individually. Variants
detected from the pair-wise analysis are then carried for-

ward to determine their association with mRNA expression,
followed by the assessment of the significant mRNA probe
sets identified with the phenotype. Therefore, this approach
for the selection of candidate genes integrates both genetic
and mRNA variations. However, the mRNA expression
of genes associated with the phenotype could be missed if
an SNP was not selected in the step-wise procedure to be
associated with the gene’s mRNA expression levels. SCCA
overcomes this limitation of the step-wise approach, in
which a comprehensive integrative analysis is completed to
identify candidate genes associated with the drug-response
phenotypes. Currently, however, application of existing
SCCA methods to high-dimensional data is computationally
intensive.

In terms of choice of the phenotype used for the univariate
and step-wise analyses, we chose the commonly used sum-
mary measure of the dose-response curve, the IC50 (Huang
et al., 2008; Li et al., 2008, 2009; Niu et al., 2010). In their
research, Fridley’s group developed a Bayesian hierarchi-
cal nonlinear model to model the genomic effects within a
pathway on the entire dose-response curve (Fridley et al.,
2009). However, this approach is computationally intensive
and cannot be scaled up to genome-scale data. In contrast to
the univariate analyses, SCCA is designed to be applied to a
set of variables. Therefore, we chose to use all cytotoxicity
values, as opposed to the summary measures of IC50, for
application of SCCA to the gemcitabine study. However, the
SCCA method did not explicitly model the dose-response
relationship between the cytotoxicity values and the drug
dose. Future work is needed to extend the weighted SCCA
to incorporate this dose-response relationship, possibly using
an approach similar to that proposed by Leurgans and col-
leagues (1993).

The application of these analytical approaches to the
pharmacogenomic study of the anti-cancer agent gemcita-
bine, along with their application to simulated data, demon-
strated the utility of each of these approaches. These results
show that for studies with the goal of finding a large to
moderate effect between genomic and phenotypic variables,

Table 6. Results from Univariate (A), and Unweighted and Weighted SCCA (B) Integrative

Analyses of Simulated Data

Analysis approach Variable/associations PTTS % (k = 0.6) PTTS % (k = 0.3)

(A) Univariate analysis rs2840075-203302_at 61 25
rs3781281-209155_s_at 86 37
rs7776847-223298_s_at 59 31
rs11140525-IC50 87 58
rs7776847-IC50 66 18
223298_s_at-IC50 100 86
1554368_at-IC50 91 79

(B) Unweighted SCCA rs11140525 61 53
rs7776847 72 41
223298_s_at 66 57
1554368_at 33 30

Weighted SCCA rs11140525 63 51
rs7776847 77 40
223298_s__at 86 64
1554368_at 77 43

PTTS, proportion of times the true variables were selected; SCCA, sparse canonical correlation analysis.
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the simple univariate analysis may be adequate. However, for
studies with a large number of variables, if the association
between the genomic variables and the phenotype is small to
moderate, the univariate analysis method may be unable to
detect the association, after adjusting for multiple testing. In
contrast, if the true underlying relationship is more complex, a
more comprehensive integrative analysis approach, such as
SCCA, may be more suitable. For such comprehensive stud-
ies, we found that our novel weighted SCCA method out-
performed the standard (non-weighted) SCCA method.
However, the results from the weighted or unweighted SCCA
method do not fully agree with univariate and step-wise
methods. It should be noted that a limitation of our im-
plementation of SCCA here is that we have used PCA to re-
duce the dimensionality of the SNPs, creating bins of SNPs.
This was done since there was no feasible way, computa-
tionally, to complete SCCA on individual SNP data from large
arrays. This may result in loss of information, and therefore
could contribute to the differences seen between the results of
other methods. Further research is required to improve the
performance of the weighted SCCA method, such as enabling
it to handle large numbers of variables, and determining the
optimal values of weights for the maximization function. In
addition, we suggest a sensitivity analysis (i.e., run analyses
with a variety of thresholds and determine the impact of
differing cut-points on the results).

In conclusion, applying integrative analysis methods to
studies involving multiple types of genomic data may lead to
novel hypotheses to be tested in future studies. For example,
applying SCCA to the pharmacogenomic study of gemcita-
bine detected a large number of genes involved in the TNF
pathway, which may contribute to gemcitabine drug re-
sponse, as this pathway is extremely important in the in-
flammatory response and cancer development. Future
functional and mechanistic studies would help to validate this
finding. In addition to following-up novel hypotheses devel-
oped from integrative analysis, further research is needed to
develop powerful integrative methods that are able to detect
complex relationships in pharmacogenomic studies. Appli-
cation of such integrative methods may uncover additional
insights into the relationship between genomic variation and
drug response.
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