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Data processing in proteomics can be a challenging en-
deavor, requiring extensive knowledge of many different
software packages, all with different algorithms, data for-
mat requirements, and user interfaces. In this article we
describe the integration of a number of existing programs
and tools in Taverna Workbench, a scientific workflow
manager currently being developed in the bioinformatics
community. We demonstrate how a workflow manager
provides a single, visually clear and intuitive interface to
complex data analysis tasks in proteomics, from raw
mass spectrometry data to protein identifications and
beyond. Molecular & Cellular Proteomics 11: 10.1074/
mcp.M111.010595, 1–9, 2012.

Scientific workflow managers have become popular in
bioinformatics as they are well-suited for assembling different
specialized software modules or scripts into an overall data
flow, typically a directed acyclic graph, taking the data
through consecutive steps of analysis. Additionally, workflow
managers such as Kepler (1, 2) and Taverna Workbench (3, 4)
provide visualization and a graphical user interface for design-
ing and executing analytical process flows.

Data analysis in mass spectrometry and proteomics is in-
herently a multistep process, typically involving several of the
following steps: m/z calibration, chromatographic time align-
ment, intensity normalization, compound identification by da-
tabase search or de novo interpretation, quantitation, ad-
dressing the protein inference problem, merging and/or
comparing data from different samples or time points, multi-
variate statistics, and mapping of data to Gene Ontology
annotations or biological networks.

Many free (both as in “beer” and as in “speech”) modules
and software for analyzing peptide and protein mass spec-
trometry data already exist. For instance, more than 150
different algorithms and software packages are categorized
and listed on http://en.wikipedia.org/wiki/Mass_spectrometry_

software and http://www.ms-utils.org. Matthiesen has re-
viewed algorithms and software for analysis of mass spec-
trometry data and computational proteomics (5), as well as
freely available software tools (6). In this environment of many
existing, more or less specialized tools, scientific workflow
managers are directly applicable and useful. Here we will
describe a number of ways in which existing and novel pro-
teomics analysis scenarios can be implemented in a scientific
workflow manager.

Theoretical Background

Workflows—A workflow describes a collection of process-
ing units connected to each other through data and control
connections, together constituting a process. In a workflow,
inputs are processed in consecutive steps by processing
units, whereby data flows from one processing unit to another
until all processing units have finished their task and the
output is finalized.

Processing units in a workflow are responsible for generat-
ing, modifying and/or consuming data. They represent con-
ventional software, such as algorithms or binary executables,
as well as software for the retrieval of data from specialized
hardware, e.g. a mass spectrometer. Data that is to be con-
sumed or modified is received through input ports, and gen-
erated or modified data is returned through output ports.

Processing units are bound together by data and/or control
connections. Data connections are responsible for transport-
ing data from the output port of one processing unit to the
input port of another. Despite their seemingly passive task,
they are active entities responsible for adapting or wrapping
data from the output port data format to the format defined by
the input ports. Control connections are connections that
police data and processing flows. Using logical control mech-
anisms, these connections are able to steer the data flow
within a workflow, much like a train switch is able to steer the
direction of a train.

The rationale behind using workflows and flexible data for-
mats for stringing together independent modules is akin to
core aspects of the Unix philosophy expressed by McIlroy (7)
in 1978 as (1) “Make each program do one thing well. To do
a new job, build afresh rather than complicate old programs
by adding new features.” and (2) “Expect the output of every
program to become the input to another, as yet unknown,
program. Don’t clutter output with extraneous information.
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Avoid stringently columnar or binary input formats. Don’t in-
sist on interactive input.”

In the bioinformatics domain, workflows and workflow man-
agement systems, which are computer systems responsible
for the design, execution, and monitoring of a workflow, have
become increasingly popular and are already widely used in
many research groups. Most scientific data analyses are con-
ducted by gathering data followed by a set of data processing
steps, such as filtering, transformation, statistical analysis and
data mining. Workflows enable the user to automate those
steps in a simple, comprehensive, and visual manner.

Additionally, workflows allow for easy recreation, reuse,
verification and augmentation of experiments or analyses by
others. Most workflow managers allow workflows and user-
defined inputs to be stored and loaded, thus each execution
of the workflow on the same data produces the same results,
provided no randomization or modification in processing units
is introduced. Furthermore, workflows promote reuse, be-
cause workflow management systems allow embedding of
workflows. This saves the researcher from having to recreate
a workflow when it only needs to be extended with additional
pre- or postprocessing steps. Embedding of workflows allows
for abstraction as well, (graphically) hiding the details of em-
bedded workflows within the larger workflow. This increases
the understandability of a workflow.

Finally, some scientific workflow managers support meth-
ods and protocols for easy and transparent parallel and re-
mote computing, which may speed up workflow execution
significantly. By using parallel computing, multiple processing
units can do their work without having to share or compete for
processor resources, removing bottlenecks in the analysis.
Supporting remote computing allows processes that require
significant computation time, access to large databases, or
configuration and installation of large software packages to
be run on a remote location, lessening the burden on the local
work station. This enables the utilization of computer clusters
or other specialized hardware, such as a Field Programmable
Gate Array (8), without requiring the workflow user to have
in-depth knowledge of operating such hardware.

Over time, a considerable number of workflow management
systems have been developed for bioinformatics (9), some of
which were recently discussed and compared by Curcin and
Ghanem (10). We have chosen the Taverna Workbench work-
flow management system on the basis of its wide range of
protocol support for both local and remote computing, its
ease of use, and the large shared content provided by its
online community.

Alternatives to Workflows—Workflows are but one of many
means by which analyses can be performed. Depending on
factors such as computer experience, required performance,
professional environment and functional requirements, other
automated analyses methods, i.e., scripting languages or
dedicated packages may also be used. We will briefly discuss
and compare these alternatives with workflows, keeping in

mind that most workflow managers support one or more
scripting languages.

Scripting languages are high-level programming languages
that allow the user to program control over applications and
other functionalities such as in- and output, user interface,
Internet and networking, and operating system. Although
scripting languages resemble conventional programming lan-
guages to a great deal, the main difference between them is
that programming languages are compiled before execution,
whereas scripting languages are interpreted during execution.
This usually makes scripts a little slower in execution, but
gives them greater runtime flexibility. Examples of well-known
scripting languages include AWK (11), JavaScript, Perl (12),
PHP (13), and Python (14).

Dedicated packages are software that assist or guide the
user in a small number of domain-specific tasks. The software
is created to assist users in common tasks within a restricted
knowledge domain, and usually refers to concepts within that
knowledge domain using specific ontologies or jargon. In
proteomics, a well-known specialized software package is the
TPP1 (15), which assists the user in the identification, valida-
tion, and quantification of proteins, as well as interpretation of
results.

When performing analyses or in silico experiments, the
researcher has the choice between using workflows, using
scripts and when available, specialized software. Intrinsically,
this choice is often guided by expertise and personal prefer-
ences. External factors often play a role as well; corporations
and research facilities usually set a standard for experimen-
tation, whereby tools for experimentation and analysis are
often predefined.

When choosing between specialized software, scripting,
or workflows for solving a particular data analysis problem,
there are a number of attributes that are important to keep
in mind, such as user-friendliness, learnability, perfor-
mance, and modifiability. Table I shows a comparison be-
tween the three types of automated analysis with respect to
these attributes.

The user-friendliness of an analysis method is apart from its
complexity also partially dependent on its GUI. Because
scripting languages usually do not offer much more than a
command-line interface, the user-friendliness of scripting lan-
guages is generally poor. User-friendliness of specialized
software ranges between average and good; they usually
come with a GUI, but can be very complex, because of the
potentially great number of options available, Most workflow
management systems have a strong emphasis on a good and
simple GUI, thus user-friendliness is generally good.

Considering learnability, scripting is the most complex of all
three options. Scripting languages are very technical and
mathematical in nature, and mastering scripting languages

1 The abbreviations used are: TPP, Trans-Proteomic Pipeline; GUI,
Graphical user interface; IT, Ion trap; PLF, Piecewise linear function.
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requires a considerable time investment before they are well-
understood. Workflows and workflow managers are easier to
learn, partially because of the better user interface and the
fairly limited amount of basic structures offered. The learn-
ability of specialized systems is generally the best of the three,
because they have reasonably good user interfaces and only
automate a restricted amount of tasks, which are often al-
ready familiar to the users.

With respect to the execution performance, scripts are
often the best choice because of the relatively little overhead.
Most specialized programs and workflows have some graph-
ical feedback or result presentation functionality to promote
user-friendliness at the expense of minor performance losses.

Finally, given a script, saved workflow, or stored experi-
ment, modifiability indicates how well this experiment can be
modified. When the experiment is carried out on another data
set of a similar type, this is usually not a problem. However,
extending an experiment is usually not possible in dedicated
software if the extension is not supported. In contrast, scripts
and workflows can easily be extended for new functionalities
by respectively adding a new command in the script or insert-
ing a new processing unit in the workflow.

Given the lack of poor points combined with good user-
friendliness and modifiability, we perceived workflows as the
good way to perform and explore new concepts for complex
data analysis in proteomics.

Remote and Distributed Computing—Remote computing is
the accessing of one or more computers over a network in
order to perform tasks without having physical access to
those computers. Remote computing can be achieved quite
easily because of the emergence of Web services, software
systems designed to support interoperable machine-to-ma-
chine interaction over a network (16). With Web services,
different forms of remote computing, e.g. remote procedure
calls or service invocations can be done in a standardized way
by using interface standards and data transport standards. The
popularity of Web services is partially caused by their simplicity,
but also due to the wide vendor support, both in service avail-
ability and in development tools, allowing nonexperienced users
and developers to use and develop remote services.

Currently there are two styles of Web services that are
widely supported: nonRESTful services and RESTful services.
The nonRESTful services are Web services that depend on
the Web service Description Language (17) (WSDL) standard
to describe their interfaces, and the Simple Object Access

Protocol (18) (SOAP) standard for communication between
client and server. RESTful services do not rely on these stan-
dards, but are based on representational state transfer (19)
(REST) whereby a document that represents a resource to be
modified or used is passed between client and server.

Related to remote computing is the concept distributed
computing, which is the term for processing a task or program
by using multiple computers that communicate with each
other over a network. Distributed computing is often em-
ployed to speed up computationally intensive tasks by split-
ting those tasks up in multiple, independent subtasks, and
remotely compute those in parallel on different computers.

A popular form of distributed computing is grid computing.
In essence, a computer grid is a collection of computers that
are combined and connected to each other to work together
on one or a few processing tasks. Each computer in the grid
is assigned to work on a part of the program workload until all
processing is done. Over time, a number of open source
software packages have been written for the creation of grids
(20, 21). Within the field of proteomics, several efforts have
been made in grid-based proteomics in data sharing (22) and
mass-parallelism in protein identification (23).

Recently, grid computing technology and Web service
technology have been combined into a new way of computing
called cloud computing. With cloud computing, software
packages themselves no longer just incorporate services, but
are services themselves that can be retrieved over the Internet
from clouds, which are networks of servers managed by a
third party. Cloud computing combines the mass parallelism
of grid computing with the standardized remote access meth-
ods of Web services, allowing clients to deploy and access
that software over the Internet without having to install soft-
ware locally or invest in servers or grids. Currently there are a
number of big corporations that offer public cloud services,
including Amazon Elastic Compute Cloud (EC2) (24) and
IBM’s Smart Cloud (25).

Taverna Workbench—The Taverna Workbench, hereafter
referred to as Taverna, is an open-source and domain inde-
pendent workflow management system created by the myGrid
team. Taverna has a myriad of distinctive features that enable
easy design as well as fast execution of workflows, and in-
corporates support for many remote and parallel computing
protocols. We will discuss the main features below; for a more
extensive list of features supported by Taverna we refer to the
online introduction (26).

TABLE I
Attribute scores for workflows and workflow alternatives. � indicates poor, �� indicates average and ��� indicates good performance

in a certain area

Attributes Dedicated software Scripting Workflows

User-friendliness ��/��� � ���
Learnability ��� � ��
Performance �� ��� ��
Modifiability � ��� ���
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The Taverna interface is easy to understand and use. Work-
flows can be created in a fast and efficient way through
point-and-click or drag-and-drop, and the user can choose
the level of detail in which a workflow is displayed. Apart from
a graphical representation of the workflow, a separate window
displays detailed information on all the workflow elements, i.e.
processing units, connections, input ports, and output ports.
Taverna incorporates a substantial amount of predefined pro-
cesses, which perform basic tasks such as reading or writing
files, executing programs, list handling, and string handling. In
case a more complex local processing unit is needed,
Taverna offers support to modify or create new services
through scripts written in BeanShell, a lightweight scripting
language for the Java programming language (27). With basic
knowledge of Java and BeanShell functional libraries, the user
can easily implement a variety of tasks. However, using work-
flows in Taverna does not require any knowledge of program-
ming or scripting languages.

For remote processing, Taverna provides access to a set of
remote services, such as Biomart (28), Biomoby (29), Soaplab
(30), and Web services hosted by organizations such as EBI
and NCBI. As of Taverna version 2.3.0 these services, as well
as a variety of other life science Web services, are all grouped
in the Service Catalog, a module that lists all the services
available in the BioCatalogue project (31). In addition, Taverna
supports the local or remote execution of RShell code (32,
33), providing access to a variety of statistical functions, both
for general purpose and for bioinformatics, such as those
included in the Bioconductor package (34). The incorporation
of R also benefits performance, as there is a framework for
parallel execution of algorithms in R (35). Beyond the freedom
to design and execute one’s own workflows, Taverna is inte-
grated with an online community called myExperiment (36),
where users can share workflows and other resources.

To illustrate the use of scientific workflow managers in
proteomics, we have implemented a number of existing com-
putational workflows for analysis of mass spectrometry and
proteomics data in Taverna, such as a subset of TPP func-
tionalities, and extended these workflows with additional
analyses steps. To enable existing software modules such as
msalign (37) or recal (38) to function in a Taverna workflow,
minor modifications had to be made to some of these mod-
ules, including the standardization of input and output data
formats. For simplicity and compatibility, we have chosen to
work with open formats such as mzXML (39) for mass spec-
trometry data and pepXML/protXML (15) for peptide/protein
identification and quantitation.

Example Workflows and Results—In this section we will
discuss four workflows for analysis of mass spectrometry and
proteomics data, whereby each succeeding workflow extends
the previous one. The first workflow automates the process of
peptide identification from liquid chromatography-tandem MS
(LC-MS/MS) data in mzXML. The second workflow aligns and
combines an LC-MS/MS data set with an accurate mass

LC-MS data set. The third workflow recalibrates the LC-MS
data set using peptides identified by LC-MS/MS for the best
possible mass measurement accuracy. Finally, the fourth
workflow converts raw FTICR and ion trap (IT) data to the
mzXML standard, and executes Workflow 3 for a user-defined
number of times to optimize recalibration. Note that all the
workflows in the examples perform all processing locally. For
a brief description of methods for incorporating remote proc-
essing of individual workflow services, see the Appendix.

For the reader to use the workflows described below, we
have prepared several tutorials to guide the reader in the instal-
lation and use of Taverna, TPP and the discussed workflows.
Installation of all required applications as well as the workflow
package is described in Tutorial S1. Tutorial S2 provides a basic
overview of Taverna, and demonstrates how users can load and
execute workflows. For those readers that are interested in
creating their own workflows in Taverna, we refer to Tutorial S3.

Workflow 1: From LC-MS/MS Data to Peptide Identifica-
tions—In the first workflow we automate one of the most
frequently performed tasks in proteomics: the identification of
peptides and proteins from LC-MS/MS data. There are a
number of different programs that can perform this kind of
identification, such as SEQUEST (40), Mascot (41), X!Tandem
(42), OMSSA (43), MassMatrix (44), Crux (45), and MS-GFDB
(46), to name only a few. Because X!Tandem is open source
and already comes preinstalled in the TPP, we chose to use
this search engine in the workflows described here. The re-
sulting Workflow 1 is shown in Fig. 1.

This workflow will seem familiar to TPP users, since it
mimics the first steps of a typical protein data analysis in TPP.
The main difference is that in Taverna workflows, user-defined
inputs for all steps of the workflow are provided before exe-
cution, and each subsequent step is performed automatically.

Workflow 1 contains five input ports, namely Tandem_
Param_File, mzXML_File, FASTA_File, Log_File and Prophet_
Pars. The Tandem_Param_File port contains the location of
the file configuration parameters for X!Tandem, which is by
default in BioML (47) format. Similarly, the mzXML_File port
contains the location of the mzXML file used for analysis; the
FASTA_File port contains the file location of the protein da-
tabase in FASTA format, and the Log_File port contains the
location of the log file that keeps a record of all workflow
operations. The Prophet_Pars port contains a string with com-
mand-line parameters for the PeptideProphet service. The
workflow has only one output port, pepXML_Output, which
contains the location of a pepXML file with the statistically
validated peptide and protein identifications.

To demonstrate the extensibility of Taverna workflows we
divided the functionality of Workflow 1 into two parts;
Workflow_1a, which is the embedded workflow, is responsible
for protein identification with X!Tandem in the Tandem service
and the transformation of its results to a standard pepXML
format via Tandem2pepXML. The embedded workflow func-
tionality is extended by statistical validation of identification
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results in PeptideProphet (48). PeptideProphet takes as
input the peptide-spectrum assignments produced by the
embedded workflow, converts the raw database search
scores into a discriminant score and models the two score
distributions of true and false positive matches. These mod-
els, specifically the ratio of the true to the sum of the true
and false distributions at a given discriminant score, are

then used to estimate the probability for a given peptide-
spectrum match being correct. As output, PeptideProphet
returns a pepXML file containing the peptide-spectrum
matches with estimated confidences.

Now we have a basic workflow for searching an LC-MS/MS
data set in mzXML against a FASTA sequence file using
X!Tandem, translating the results to pepXML and estimating

FIG. 1. Protein Identification and for-
mat conversion from LC-MS/MS data.
The workflow contains three processing
elements. The first element is the Tan-
dem component that calls the X!Tandem
executable. When completed, the result-
ing data is forwarded to the second
processing unit, Tandem2XML, which
executes the Tandem2XML tool from the
TPP package. The resulting pepXML file
is then transferred to the PeptideProphet
component. Finally, a statistically vali-
dated pepXML file is returned to the
user.

FIG. 2. Aligning ion trap tandem mass spectrometry and accurate mass data. Workflow 2 aligns ion trap tandem mass spectrometry and
accurate mass data. The alignment proceeds through the pepAlign processing unit, which produces a piecewise linear function representing
the alignment, and passes it on to both pepWarp and msHybrid. The msHybrid processing unit is responsible for creating a new hybrid ion
trap/FTICR mzXML file based on this alignment, whereas the pepWarp component applies the alignment to warp retention times in the pepXML
file resulting from Workflow 1.
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confidences in each peptide-spectrum assignment using
PeptideProphet. We can use this as a module in larger and
more complex analysis workflows.

Workflow 2: Aligning Ion Trap Tandem Mass Spectrometry
and Accurate Mass Data—We have previously described how
LC-MS and LC-MS/MS data sets can be combined through
chromatographic alignment (37, 49). There are at least two
reasons for aligning low resolution ion trap MS/MS data with
accurate, high resolution MS data: to replace the peptide
precursor mass values in the ion trap MS/MS data with
more accurate ones from the MS-only data (37, 49) and
using the high-resolution MS profiles for more precise quan-
titation (50, 51).

In order to align LC-MS/MS data with the accurate MS data
from e.g. a TOF or an FTICR mass spectrometer, we modified
and updated the msalign program. This version, renamed to
pepAlign, linearly aligns MS data with peptide MS/MS data.
New features include alignment using scan numbers or reten-
tion time, a faster genetic algorithm and the option to generate
a gnuplot (52) data file in order to graphically depict and
inspect the alignment. Once the alignment is complete, the
resulting PLF is forwarded to two services, pepWarp and
msHybrid, which are executed in parallel. msHybrid replaces
the precursor m/z for the MS/MS scans with the more accu-
rate values from accurate MS data. Simultaneously, pepWarp

uses the PLF to modify the retention times of peptides in the
pepXML file according to the chromatographic alignment,
linking the two data sets and enabling the use of high-reso-
lution MS data for quantitation (50, 51). Workflow 2 in Fig. 2
shows the process described above.

Workflow 3: Internal Calibration of FTICR Data Using Iden-
tified Peptides—The third workflow, depicted in Fig. 3, intro-
duces the msRecal algorithm for automatic internal calibration
(38, 49) of high-resolution FTICR data. Provided a suitable
recalibration function, this could in principle be any accu-
rate and high-resolution data, for instance from a TOF or
Orbitrap™ instrument.

The msRecal service uses the output of Workflow 2, a set of
identified peptides with their retention times aligned to the
FT_mzXML_File, to individually recalibrate each mass spec-
trum in the FT_mzXML_File using the least-squares minimiza-
tion and outlier removal method previously described (38). As
an output it produces an mzXML file with recalibrated m/z
axes for each spectrum where possible. The Loop_cnt port
enables the workflow to be iterated by a user-specified num-
ber of times.

Workflow 4: From Raw Data Sets to Iterated Recalibration—
Most mass spectrometer vendors use proprietary data for-
mats. Some manufacturers may provide a library for reading
the raw data, but these typically require a commercial soft-

FIG. 3. Internal calibration of FTICR data using identified peptides. Workflow_3 uses the msRecal component for automatic internal
calibration of the high-resolution MS data, here from an FTICR. A set of identified peptides from one or more aligned LC-MS/MS data sets are
used for automatic internal recalibration (38) of the FT_mzXML_File data set.

FIG. 4. Internal calibration of FTICR data using peptides identified by ion trap. The fourth and last workflow contains two instances of
the compassXport service that handle the conversion of raw data to the mzXML standard. The service executes the compassXport program,
after which the output is forwarded to the embedded Workflow_3. Workflow_3 is then iterated for a user-defined amount of times, using the
output values of a previous iteration as inputs for the next. When the number of iterations has been reached, the output is returned to the user.
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ware license. Although some proprietary formats may be easy
to reverse-engineer, this would not provide a forwards-com-
patible solution. Some vendors provide utilities that convert
their proprietary data format to open formats such as mzXML
or mzML. There is also third-party software using the vendor
libraries to convert raw data into mzXML, such as ReAdW (for
Thermo Fisher/Xcalibur data), trapper (Agilent/MassHunter),
massWolf (Waters/MassLynx) and mzWiff (Applied Biosys-
tems/Analyst) (53). The resulting data from all recent Bruker
Daltonics electrospray instruments can be converted to
mzXML or mzML by compassXport (54).

In Workflow 4, illustrated in Fig. 4, there are two instances
of the compassXport service, once for the FTICR raw data,
and once for the directory containing one or multiple raw ion
trap LC-MS/MS data sets. To prevent the user from having to
specify all the individual ion trap data sets, we inserted the
List_Data_Dirs processing unit which, given a directory, finds all
the raw data set subdirectories. Furthermore, the input
Result_Dir contains the user-specified storage location for
files generated during the workflow execution. The embed-
ded workflow Workflow_3 was configured to stop execution
when the user-specified counter Iterations reaches zero, at
which point execution of Workflow 4 ends as well. By using
loops in a workflow, one can easily make iterative refine-
ments to an analysis.

The results of applying Workflow 4 to some real ion trap and
FTICR data sets is shown in Fig. 5.

DISCUSSION

The successful, straightforward implementation of existing
and novel proteomics data processing workflows in Taverna

FIG. 5. Examples of workflow outputs. A pepAlign alignment of a
single ion trap LC-MS/MS data set of an E. coli whole cell lysate with
a high-resolution FTICR data set of a similar sample (A). After align-
ment, the accurate precursor mass information from the FTICR data

set can be combined with the ion trap MS/MS data into a hybrid data
set, resulting in drastically smaller mass measurement errors (B), here
from 410 � 330 ppm in 14,200 peptide-spectrum matches from
LC-MS/MS data from 24 SDS-PAGE fractions of the same E. coli
sample with PeptideProphet p � 0.95 (1.2% estimated FDR) to
�0.24 � 0.46 ppm (if considering only the central error distribution
within �1.3 ppm) of 14,247 matches with p � 0.95. Without a pro-
cedure to relocate the monoisotopic peak, there is often a �1 Da
error. However, many search engines, including Mascot and X!Tandem,
can allow for this when matching measured and theoretical peptide
precursor masses. As would be expected, there is still a small system-
atic (average) error from the externally calibrated FTICR data. This
systematic error can be removed by internally calibrating the FTICR
spectra using peptides identified in the ion trap, reducing the relative
mass measurement error to �0.03 � 0.55 ppm, for 14,011 matches
with p � 0.95 still keeping spectra that could not be recalibrated
because of a lack of acceptable internal calibrants (C). Workflow 4 can
be iterated an arbitrary number of times, although the improvements
after the second hybrid data set with recalibrated FTICR data will be
negligible in most cases. All data was searched against the UniProt
E. coli K12 (MG1655) FASTA sequence database (20080926) containing
4,347 protein sequences, allowing for �0.5 Da and parent isotope error,
0.4 Da fragment monoisotopic mass error, two missed cleavages and
assuming carbamidomethylation of cysteines and proteolytic cleavage
C-terminally of arginine and lysine but not N-terminally of proline.
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demonstrates the applicability and soundness of this ap-
proach to proteomics bioinformatics. Although involving a
short learning curve, workflow managers enable most biolo-
gists to process their data in a systematic and comprehensi-
ble manner. By hiding the details pertaining to data and input/
output formats, the user can focus on the overall information
flow and purpose of the analysis. Finally, and on a more
philosophical note: the divide-and-conquer strategy of de-
constructing a complicated analysis task into small and easily
managed components which are then assembled into task-
specific workflows may be said to take a page from McIlroy’s
first principle. The ambition that each algorithm should be
implemented with the expectation to work with input from
another program and provide output to yet another software
using a standardized but extensible XML-based data formats
even more strikingly follows the second principle: expecting
the output of every program to become the input to another,
avoiding stringently columnar or binary input formats (e.g. by
using XML formats) while not insisting on interactive input.

Although the workflows described here all use X!Tandem,
this search engine could easily be interchanged for any other
that accepts data in mzXML or mzML, and outputs peptide
spectrum assignments in pepXML or mzIdentML. All work-
flows and modules described in this article and the data used
to test them are available on www.ms-utils.org/Taverna.

APPENDIX

In this article we have mentioned several standards for re-
mote and distributed computing, and stated how Taverna in-
corporates facilities for using these in workflows. Although a
thorough treatise of these technologies or a tutorial on the
implementation of remote, distributed versions of workflow ser-
vices is beyond the scope of this article, this appendix provides
a few examples on how we have implemented remote and dis-
tributed services for Taverna in our labs. These methods are
well-tested and are already used in the analysis of large data sets.

Web services can be implemented in different ways. If a
program is a command-line executable such as the tools used
in the workflows presented in this article, the easiest way to
implement a Web service is to wrap the executable in a Web
service layer: On the server side, a Web service is implemented
that makes a system call to run the executable with the param-
eters supplied via the service interface. For example, X!Tandem
can be implemented as a Web service using the Axis2/C plat-
form (55) to call the X!Tandem executable in its installation
directory. An automatic WSDL generator is then used to gen-
erate a WSDL file, which exposes its interface. Finally, the
service is started on the Apache web server (56), after which the
Web service is then ready to be added to Taverna by supplying
its network address. Note that the interface of the Web service
would differ slightly from the local X!Tandem service, because
we can no longer specify locations of files as parameters, but
need to specify the contents of those files, upload them to the
server, or supply the location where they are remotely accessible.

Web service technology is a convenient way to use remote
computing. However, remote computing only increases work-
flow performance if the time saved by remote processing is
greater than the time spent on uploading files and download-
ing the results, and any overhead from splitting data files and
merging results. This is certainly an issue for the X!Tandem
application, where the sizes of the mzXML files are often in the
100 MiB–1 GiB range. Of course, X!Tandem processing time
is not solely a function of data size, but also the search
parameters; if searching against a large sequence database
with relatively unspecific enzyme rules and a wide mass
measurement error tolerance, even a 100 MiB mzXML file can
take several hours to process on a single CPU. Using paral-
lelism to speed up the X!Tandem search can thus save a con-
siderate amount of overall processing time, as was shown ear-
lier by Bjornson et. al (23). When a cluster of machines is
available, the parallel X!!Tandem version can be wrapped in a
Web service, as discussed previously, enabling the access of a
remote, transparently distributed version of Tandem in Taverna.
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