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Breast cancer 1, early onset (BRCA1) hereditary breast
cancer, a type of cancer with defects in the homology-
directed DNA repair pathway, would benefit from the
identification of proteins for diagnosis, which might also
be of potential use as screening, prognostic, or predictive
markers. Sporadic breast cancers with defects in the
BRCA1 pathway might also be diagnosed. We employed
proteomics based on one-dimensional gel electrophore-
sis in combination with nano-LC-MS/MS and spectral
counting to compare the protein profiles of mammary
tumor tissues of genetic mouse models either deficient or
proficient in BRCA1. We identified a total of 3,545 pro-
teins, of which 801 were significantly differentially regu-
lated between the BRCA1-deficient and -proficient breast
tumors. Pathway and protein complex analysis identified
DNA repair and related functions as the major processes
associated with the up-regulated proteins in the BRCA1-
deficient tumors. In addition, by selecting highly con-
nected nodes, we identified a BRCA1 deficiency signature
of 45 proteins that enriches for homology-directed DNA
repair deficiency in human gene expression breast cancer
data sets. This signature also exhibits prognostic power
across multiple data sets, with optimal performance in a
data set enriched in tumors deficient in homology-di-
rected DNA repair. In conclusion, by comparing mouse
proteomes from BRCA1-proficient and -deficient mam-
mary tumors, we were able to identify several markers
associated with BRCA1 deficiency and a prognostic sig-
nature for human breast cancer deficient in homology-
directed DNA repair. Molecular & Cellular Proteomics
11: 10.1074/mcp.M111.013334, 1–19, 2012.

Breast cancer associated with BRCA11 mutations accounts
for 1–2% of breast cancer cases in the Western world. BRCA1
hereditary breast cancer falls into the molecular subtype of
basal-like breast cancer that has a poor prognosis (1). Spo-
radic basal-like breast tumors represent �10–15% of all
breast carcinomas and comprise many tumors that share key
features of BRCA1-associated tumors (2). A major function of
BRCA1 is its role in homology-directed double-strand break
repair, a DNA repair mechanism that uses the sister chromatid
as a template and therefore repairs double-strand breaks in
an error-free manner. Deficiencies in homology-directed DNA
repair cause high levels of genomic instability that increase
the risk of tumorigenesis (3, 4). Nevertheless, BRCA1 pathway
dysfunction may provide an opportunity for therapeutic inter-
vention: preclinical models suggest an increased sensitivity to
ionizing radiation and DNA (repair)-targeting agents (3). In
particular, the use of poly[ADP-ribose] polymerase (PARP)
inhibitors holds great promise for clinical application. First
results from clinical trials support this therapeutic approach
for breast cancer (5). A major clinical challenge remains the
identification of patients that are likely to benefit from DNA
(repair)-targeting therapy. Global analyses of molecular alter-
ations in sporadic or hereditary breast cancer have mainly
used genome and transcriptome profiling methods. These
studies yielded a molecular classification of breast cancer (6).
In addition, genomics and transcriptomics studies yielded a
number of gene signatures that were prognostic for survival,
time to distant metastasis and response to treatment (1,
6–15). Two prognostic signatures, Oncotype DX� (11) and
MammaPrint� (7, 16), have currently been registered for clin-
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retrospective study that a comparative genomic hybridization
BRCA1-like classifier predicts the response to intensive plat-
inum-based chemotherapy in patients with high risk breast
cancer. The classifier also identifies patients with BRCA1 loss
conferred by causes other than mutations. However, the un-
derlying gene products, which would allow for a better under-
standing of tumor biology and a more practical diagnostic
test, remain unknown. To identify patients with BRCA1-like
breast cancer, the analysis of tumor proteins may also be
useful in selecting patients that might benefit from tailored
therapies. Mass spectrometry-based proteomics technolo-
gies have matured to the extent that they can now identify and
quantify thousands of proteins. Applying these approaches to
cancer tissues provides a complementary insight in breast
cancer biology and may identify novel diagnostic and prog-
nostic protein profiles and candidate biomarkers. Protein-
based biomarkers may be of particular advantage in compar-
ison with transcript-based and genomic markers, because
they can be measured in routine assays, e.g. by antibody-based
methods such as immunohistochemistry and ELISA, of which
the latter allow for noninvasive testing. In addition, targeted
multiplex mass spectrometry is emerging as a novel quantitative
strategy for measuring protein signatures in tumor tissues or
blood. Proteomic studies of breast cancer cells and tissues
have already shown the potential for candidate biomarkers dis-
covery (17–22). In a promising pilot study using SELDI-TOF-MS,
serum peptide profiles could distinguish women with BRCA1
mutations who developed breast cancer from those who did not
(carrier), normal volunteers, and women with sporadic breast
cancer with good sensitivity and specificity (23). To date, no
studies employing in depth nano-LC-MS/MS-based proteom-
ics have focused on BRCA1/2-deficient tumor tissues.

In this study, we employed state of the art mass spectrom-
etry-based proteomics to identify proteins associated with
BRCA1-deficient breast tumors. To this end, we made use of
inbred mouse models that display a minimal amount of ge-
netic variability. As a model for human breast cancers defi-
cient in BRCA1, we analyzed mouse mammary tumors har-
boring conditional tissue-specific mutations in BRCA1 and
p53 (24). The majority of these tumors are highly similar to
their human counterpart with respect to histological and mo-
lecular characteristics and show a high level of genomic in-
stability. For comparison, we analyzed two BRCA1-proficient
reference tumor models that are genomically stable (25). We
report a BRCA1 deficiency signature based on 45 proteins
with DNA repair(-associated) functions that can enrich for
homology-directed DNA repair-deficient tumors and identify
breast cancer patients with a poor prognosis in various pub-
licly available breast cancer gene expression data sets.

EXPERIMENTAL PROCEDURES

Materials

All of the chemicals, unless otherwise specified, were obtained
from Sigma-Aldrich. HPLC solvents, LC-MS grade water, acetonitrile,

and formic acid were obtained from Biosolve (Biosolve B.V., Valken-
swaard, The Netherlands). Porcine sequence grade modified trypsin
was obtained from Promega (Promega Benelux B.V., Leiden, The
Netherlands).

Mouse Strains and Tumors

Generation of conditional mutants and K14cre transgenic mice has
been described previously (24, 25). All of the animal experiments were
approved by the Animal Ethics Committee of the Netherlands Cancer
Institute. When grown to a size of �500 mm3, the tumors were
dissected, snap frozen, and stored at �80 °C until use.

Tissue Homogenization and Fractionation Using Gel
Electrophoresis

For homogenization, we cut a piece of �20 mg in a bath of liquid
nitrogen in smaller parts. The proteins in the mammary tumors tissue
samples were solubilized in 800 �l of 1� reducing SDS sample buffer
(containing 62.5 mM Tris-HCl, 2% w/v SDS, 10% v/v glycerol, and
0.0025% bromphenol blue, 100 mM DTT, pH 6.8) using a Pellet
Pestles microgrinder system (Kontes glassware, Vineland, NJ). Sub-
sequently the proteins were denatured by heating at 100 °C for 10
min. Any insoluble debris was removed by centrifuging for 15 min at
maximum speed (16.1 relative centrifugal force) in a benchtop
centrifuge.

The proteins were fractionated using one-dimensional SDS-PAGE.
25 �l of each homogenized sample (containing about 50 �g of pro-
tein) was loaded on a well of a precast NuPAGE 4–12% w/v Bis-Tris
1.5-mm minigel (Invitrogen). The stacking gel contained 4% (w/v)
acrylamide/Bis-Tris. Electrophoresis was carried out at 200 V in Nu-
PAGE MES SDS running buffer (50 mM Tris base, 50 mM MES, 0.1%
w/v SDS, 1 mM EDTA, pH 7.3) until the dye front reached the end of
the gel. Following electrophoresis, the gels were fixed with a solution
of 50% ethanol and 3% phosphoric acid. Staining was carried out in
a solution of 34% methanol, 3% phosphoric acid, 15% ammonium
sulfate, and 0.1% Coomassie Blue G-250 (Bio-Rad) with subsequent
destaining in MilliQ water.

In-gel Digestion and Nano-LC-FT-MS

In-gel Digestion—The gel lanes were cut in 10 bands, and each
band was processed for in-gel digestion according to the method of
Shevchenko et al. (26). Briefly, the bands were washed and dehy-
drated three times in 50 mM ammonium bicarbonate, pH 7.9, 50 mM

ammonium bicarbonate, and 50% ACN. Subsequently, cysteine
bonds were reduced with 10 mM DTT for 1 h at 56 °C and alkylated
with 50 mM iodoacetamide for 45 min at room temperature in the dark.
After two subsequent wash/dehydration cycles, the bands were dried
for 10 min in a vacuum centrifuge and incubated overnight with 0.06
�g/�l trypsin at 25 °C. The peptides were extracted once in 1%
formic acid and subsequently twice in 50% ACN in 5% formic acid.
The volume was reduced to 50 �l in a vacuum centrifuge prior to
LC-MS analysis.

Nano-LC-MS/MS—Peptides were separated by an Ultimate 3000
nano-LC system (Dionex LC-Packings, Amsterdam, The Netherlands)
equipped with a 20-cm � 75-�m inner diameter fused silica column
custom packed with 3-�m 100 Å ReproSil Pur C18 aqua (Dr. Maisch
GMBH, Ammerbuch-Entringen, Germany) as described before (27).
After injection, the peptides were trapped at 30 �l/min on a 0.5-cm �
300-�m inner diameter Pepmap C18 cartridge (Dionex LC-Packings,
Amsterdam, The Netherlands) at 2% buffer B (buffer A, 0.05% formic
acid in MQ; buffer B, 80% ACN and 0.05% formic acid in MQ) and
separated at 300 nl/min in a 10–40% buffer B gradient in 60 min.
Eluting peptides were ionized at 1.7 kV in a Nanomate Triversa
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chip-based nanospray source using a Triversa LC coupler (Advion,
Ithaca, NJ). Intact peptide mass spectra and fragmentation spectra
were acquired on a LTQ-FT hybrid mass spectrometer (Thermo
Fisher, Bremen, Germany). Intact masses were measured at resolu-
tion 50,000 in the ICR cell using a target value of 1 � 106 charges. In
parallel, following an FT prescan, the top five peptide signals (charge
states 2� and higher) were submitted to MS/MS in the linear ion trap
(3-atomic mass unit isolation width, 30-ms activation, 35% normal-
ized activation energy, Q value of 0.25, and a threshold of 5,000
counts). Dynamic exclusion was applied with a repeat count of 1 and
an exclusion time of 30 s.

LC-SRM Analyses

Independent BRCA1-deficient and -proficient mouse breast tu-
mors (n � 5 in each group) were analyzed in triplicate on an Ultimate
3000 RSCL Nanosystem (Dionex) that was hyphenated to an QTRAP�

5500 instrument (AB SCIEX, Foster City, CA) operated in positive
SRM mode and equipped with a nano-electrospray source with ap-
plied voltage of 2.404 kV and a capillary heater temperature of 225 °C.
The nanoflow LC system and QTRAP� 5500 system were both con-
trolled using Analyst 1.5.1 Software. The combined information from
each SRM Information Dependent Acquisition (IDA) experiment was
used to perform Mascot searches against the International Protein
Index (IPI) mouse database v3.65 and MultiQuantTM software version
2.1 (AB SCIEX).

The scheduled SRM mode comprised the following parameters:
SRM detection window of 420 s, target scan time of 3.0 s, curtain gas
of 15, ion source gas 1 of 15, declustering potential of 80, and
entrance potential of 10. Q1 resolution was set to unit, and Q3
resolution was set to unit. Pause between mass ranges was set to 1
ms. Collision cell exit potentials were set to 36 for all transitions. Peak
integration was performed using MultiQuantTM software version 2.1
(AB SCIEX) software and manually reviewed.

Chromatographic separation of peptides was performed by a 68-
min gradient at 300 nl/min. Solvent A (0.05% formic acid water) and
solvent B (0.05% formic acid, 80% acetonitrile) were mixed at 2% B
from 0 to 3 min, 15% B at 4 min, 36% B at 49 min, 99% B from 50 to
54 min, and 2% B at 55 to 68 min. The nano-LC columns were made
in house and consisted of 20-cm � 75-�m inner diameter fused silica
custom packed with 3-�m 100 Å ReproSil Pur C18 aqua (Dr. Maisch
GMBH, Ammerbuch-Entringen, Germany) as described before (27).
After injection, the peptides were trapped at 6 �l/min at 2% buffer B.

SRM Assay Development—An SRM assay for the target proteins
(NCAPD2, SIN3A, BAZ1B, TOP2A, TOP2B, and PARP1) was devel-
oped using the MRMPilotTM software version 2.1 from AB SCIEX. The
software requires an amino acid sequence of the protein of interest
Information Dependent Acquisition (IDA), a starter method containing
the LC conditions, and an empty SRM-IDA experiment. The software
performs an in silico digest of the protein and creates a set of
peptides that would result after full tryptic digestion. For each of these
peptides, it will generate an SRM transition for the calculated m/z of
the precursor ion and an appropriate fragment ion. Assay develop-
ment subsequently entails verification of the peptides and CE opti-
mization of the transitions, both in multiplexed LC-SRM analyses.
During verification, the highest responding peptides/transitions at a
theoretically calculated optimum CE energy are determined, as well
as the identity of the peptide via SRM triggered MS/MS. During CE
optimization, the transitions selected after verification are optimized
during the chromatographic elution of the peptide.

Verification—A mixture of samples previously analyzed using
FT-MS and indicating an abundance of the target candidates was
analyzed in 10 unscheduled SRM analyses to find the highest re-
sponding tryptic peptides from the target proteins, as well as their
elution time during the chromatographic run. For each peptide, 10

theoretically predicted transitions were assessed for detection re-
sponse and identity. Identity was confirmed using MIDAS (MRM
Initiated Detection and Sequencing) with a threshold of 500 counts for
an SRM transition response to trigger two MS/MS spectra of the
peptide to be acquired at rolling collision energy. Each of the 10
verification analyses was set up to detect 289 of all theoretically
predicted transitions and their theoretically predicted optimum colli-
sion energy for all theoretically predicted peptides that can result after
tryptic digestion of the candidate proteins. The total scan time for
each cycle of the instrument during verification was 3.757 s, resulting
in a dwell time of 10 ms for each transition in the unscheduled
verification analyses.

CE Optimization—All of the data of unscheduled analyses were
uploaded to the MRMPilot, which was set to select the five best
detected transitions for each peptide and assign a chromatographic
retention time to each peptide. Subsequently collision energy for each
transition was optimized in 13 LC-SRM analyses, with each analysis
set-up to detect 104 scheduled transitions that resulted from verifi-
cation, at nine different collision energies, centered at 3-V intervals
around the theoretically predicted optimum with a dwell time of 25
ms. All of the data of CE optimization cycles were uploaded to the
MRMPilot, and for each peptide three transitions at the experimentally
found optimum and the experimentally found retention time were
included in the final assay. The final assay contained 129 scheduled
transitions, three for each peptide, with one to five peptides for each
of the seven candidate proteins.

Data Analysis

Protein Identification—MS/MS spectra were searched against the
mouse IPI (International Protein Index) database (56,555 entries) using
Sequest (version 27, revision 12), which is part of the BioWorks 3.3
data analysis package (Thermo Fisher, San Jose, CA). MS/MS spec-
tra were searched with a maximum allowed deviation of 10 ppm for
the precursor mass and 1 atomic mass unit for fragment masses.
Methionine oxidation and cysteine carboxamidomethylation were al-
lowed modifications, two missed cleavages were allowed, and the
minimum number of tryptic termini was 1. After database searching,
the DTA and OUT files were imported into Scaffold 1.07 (Proteome
software, Portland, OR). Scaffold was used to organize the gel band
data and to validate peptide identifications using the Peptide Prophet
algorithm (28, 29). Only identifications with a probability of �95%
were retained. Subsequently, the Protein Prophet algorithm was ap-
plied, and protein identifications with a probability of �99% with two
peptides or more were retained in at least one sample. The false
discovery rate for the detected proteins using this workflow is on
average around 0.5%, and was not calculated again. Proteins that
contained similar peptides and could not be differentiated based on
MS/MS analysis alone were grouped to satisfy the principles of par-
simony. For each protein identified, the total number of MS/MS spec-
tra detected for each protein identified (spectral counts) was exported
to Excel 2003 (Microsoft, Redmond, WA).

Spectral Count Normalization and Statistics—Normalization was
performed as described previously (30, 31). The spectral counts of
each protein were divided by the total spectral counts of all proteins
within a sample. This number was multiplied with a constant equal
to the average of total spectral counts of all samples to obtain a
normalized spectral count value in the same range as the non-
normalized spectral counts. The beta-binomial test (30) was applied
to find proteins that show significant differences in spectral count
numbers between the tumor group and the reference group. Pro-
teins with a p value less than 0.05 were designated as being
significant. Hierarchical clustering was carried out than 0.05 were
designated as being significantusing R. For analysis of reproduc-
ibility, we calculated the average coefficient xof variation (CV) of the
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normalized spectral counts from overlapping proteins for three
technical replicates.

SRM Data Analysis—Technical replicates were removed until CV of
all triplicate analyses was �20%. Subsequently, in each remaining
analysis, the ratio of the Area Under the Curve (AUC) of Transition
1/Transition 2, Transition 2/Transition 3, and Transition 1/Transition 3
was calculated. The two transitions resulting in the lowest CV per-
centage over all analyses were selected for further calculations; the
sum of the Area Under the Curve of these two transitions was deter-
mined in each sample, and a fold change for each peptide between
the groups was determined by the ratio of the summed Area Under
the Curve in each group. The average of the fold changes of peptides
belonging to one protein was determined for each protein. When the
CV percentage of the average of the fold changes of the peptides of
one protein was �10%, the transitions of these peptides were visually
inspected and excluded when co-eluting false positive responses
were observed that had not been detected by Multiquant smoothing
and peak splitting algorithms or in-house developed R-script proc-
essing. The calculated levels for each approved peptide were nor-
malized on the level of Tuba1b in each sample.

Pathway Analysis—The list of identified proteins was uploaded into
the Ingenuity Pathways Analysis (IPA) software (Ingenuity Systems,
Redwood City, CA) as a tab-delimited text file containing International
Protein Index (IPI) accession numbers, p values, and fold changes
calculated with a correction factor (adding 0.5 to the spectral counts
of all proteins before normalization). The proteins were uploaded and
mapped to corresponding “gene objects” in the Ingenuity Pathways
knowledge base. Functional analysis was performed to identify the
high level biological functions that were most significantly associated
to the differentially regulated proteins in the data set. Significantly
regulated proteins within the high level functions are displayed graph-
ically as nodes (proteins/gene objects) and edges (the biological
relationships between the nodes). All of the edges are supported by at
least one reference from the literature, textbook, or canonical infor-
mation stored in the Ingenuity knowledge base. Ingenuity Pathways
Analysis computes one or more p values for each specific function
within a high level function according to the fit of the user’s set of
significant proteins. The significance of functional enrichment is com-
puted by a Fisher’s exact test. Finally, the Path Designer feature was
used to create graphically rich network images. In addition, we
used the COFECO tool for the mapping of significantly differentially
regulated proteins to protein complexes (32). The obtained com-
plexes were further visualized using STRING (33) and Cytoscape,
respectively.

Human Gene Expression Data Sets

Identifier Mapping of Mouse Protein Symbols to Human Gene
Symbols of Public Gene Expression Data Sets—To explore the diag-
nostic and prognostic value of the protein expression data from the
mouse models, we made use of publicly available human gene ex-
pression data sets. To map the up-regulated mouse BRCA1 defi-
ciency proteins to public data sets of human arrays, we first matched
mouse gene symbols to human gene symbols using the BioMart
website (http://www.biomart.org). We used layout documentation
files for the various microarray platforms from Gene Expression Om-
nibus (http://www.ncbi.nlm.nih.gov/geo), MIAMExpress (http://www.
ebi.ac.uk/miamexpress/), or Rosetta Inpharmatics (http://bioinformatics.
nki.nl/data.php) to retrieve the matching gene symbols on each plat-
form. The following human breast cancer data sets were used: (i) van
de Vijver data set (12). A validation study of a prognostic gene
expression signature (MammaPrint�), which included 295 young pa-
tients with early stage breast cancer, of which 151 were lymph node
negative, 226 were estrogen receptor-positive, and 110 had received
adjuvant chemotherapy. We were also able to retrieve p53 mutational

status for 204 tumors in this data set (data not shown). (ii) van’t Veer
data set (1). In this discovery study for a prognostic signature (Mam-
maPrint�), the authors also analyzed 18 BRCA1 and 2 BRCA2 sam-
ples on the same platform used for the van de Vijver data set (12). (iii)
E-UCON-1 data set (10) (subsequently referred to as the Naderi data
set). This data set was used for discovery of a prognosis profile in a
set of women with early stage breast cancer representative of breast
cancer demographics. Of the 132 breast cancer tissues, we used a
subset of 120 patients for survival analysis that had the same orien-
tation in dye labeling concerning the reference and tumor samples
and that also had associated survival data. (iv) GSE2034 data set (34)
(subsequently referred to as Wang data set). This was a discovery and
validation analysis of a gene signature for the prediction of breast
cancer patient outcomes. It consists of 286 lymph node-negative
breast cancer patients who never received adjuvant chemotherapy
and of which 209 were estrogen receptor-positive. We logged the
normalized intensity values and performed zero mean and unit vari-
ance normalization. (v) GSE22133 data set (8) (subsequently referred
to as the Jönsson data set). This discovery data set consists of 359
breast tumors including 186 familial, of which 22 were BRCA1-mu-
tated and 32 were BRCA2-mutated. (vi) GSE19177 data set (14)
(subsequently referred to as the Waddell data set). This data set
contains familial tumors only. Nineteen had a BRCA1 mutation, 30
had a BRCA2 mutation, whereas 25 did not have an identifiable
mutation. One tumor was excluded from analysis because it had
unknown mutational status. For all of the data sets, we used the
normalized log ratios in the analyses, unless specified otherwise
above.

Centroid Classification and Survival Analysis

We used a nearest centroid classifier to test the diagnostic and
prognostic power of the mapped protein/gene signature on the public
human gene expression data sets in combination with leave-one-out
cross-validation. First, the signature protein/genes in the validation
sets were identified. We used a centroid classification scheme to
assess BRCA1 and homology-directed DNA repair deficiency,
whereby centroids were built by taking the average expression value
for each signature gene in the diagnostic groups, excluding the leave-
out sample. The leave-out samples were then classified into different
diagnostic groups using the nearest correlation criterion. For classi-
fication with a centroid on external data sets, genes were collapsed
by taking the median across all probes. This centroid classification
scheme was also used for classifications in the Kaplan-Meier survival
analysis. In all data sets, patients who survived 5 years or more
constituted the good prognosis group (centroid), whereas patients
who survived less than 5 years were used for the poor prognosis
group (centroid) (10, 12, 34). The average expression value for each
signature gene in the good and poor prognosis centroid was com-
puted without the leave-out sample. The leave-out samples were then
classified into good or poor prognostic groups using the nearest
correlation criterion. To see whether a gene list performed better than
random, both in the diagnostic and in the survival analysis, we also
ran analysis with 1,000 random gene lists of the same size using the
same scheme. We only included probes on the arrays that were
annotated with a gene symbol. The same scheme was applied for the
prognostics mRNA-based signatures used as a comparison.

RESULTS

Protein Regulations in BRCA1-deficient versus Proficient
Mouse Mammary Tumors—For comparative protein profiling,
we employed a label-free workflow based on protein fraction-
ation by gel electrophoresis coupled to nano-LC-MS/MS of
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in-gel digested proteins and spectral counting. Before em-
barking on a differential analysis, we assessed the reproduc-
ibility of our discovery workflow by analyzing three aliquots of
a pooled mammary tumor lysate by gel LC-MS/MS (see sup-
plemental Fig. 1A for gel images). In this analysis, 2,220 of
2,473 proteins (90%, see supplemental Fig. 1B for Venn dia-
gram) were identified in all three replicates with an average CV
of 24% of the normalized spectral counts, indicating a very
good reproducibility for the entire discovery workflow.

To identify proteins associated with BRCA1-deficient mam-
mary tumors, we compared the protein expression profiles in
five BRCA1-deficient mammary tumors (p53�/�; BRCA1�/�,
carcinoma histology) with five BRCA1-proficient tumors (two
p53�/� and three p53�/�; CDH1�/� tumors, all carcinosar-
comas). Whereas the carcinomas have an epithelial pheno-
type, the carcinosarcomas have a mesenchymal phenotype
characterized by spindle cell morphology. The protein band
patterns obtained after gel electrophoresis of the 10 tumor
lysates and Coomassie staining were similar in terms of over-
all pattern and intensity (see supplemental Fig. 2A). A total of
3,545 proteins were identified across all 10 samples (see
supplemental Table 1 for all identifications and spectral count
data). The number of proteins identified in the BRCA1-defi-
cient tumor samples was 3,409, with 1,894 proteins identified
in all five mammary tumors (see supplemental Fig. 2B), indi-
cating acceptable reproducibility of protein identification and
quantification across different biological samples. Similar val-
ues were obtained for the five BRCA1-proficient tumors (see
supplemental Fig. 2C).

To obtain a global overview of the data set, we performed
unsupervised hierarchical clustering using the normalized

spectral count data from all 3,545 identified proteins. The
BRCA1-deficient and proficient tumors clustered in separate
groups (Fig. 1, left panel). The two different BRCA1-proficient
tumor types (p53�/� and p53�/�; CDH1�/�) did not form two
separate groups but were intermingled, indicating that BRCA1
status and/or histology type were the predominant factors
separating the samples. Overlap analysis showed that 338
proteins were uniquely identified in the BRCA1-deficient sam-
ples, and 136 were uniquely identified in the BRCA1-proficient
tumors. Statistical testing (30) revealed 801 proteins with sig-
nificantly altered abundance in the BRCA1-deficient and -pro-
ficient groups (p � 0.05) of which 417 were up-regulated in
the BRCA1-deficient tumors, whereas 384 were down-regu-
lated. As expected, supervised hierarchical clustering using
the 801 differential proteins (Fig. 1B) clearly showed two
different groups that clustered according to BRCA1/cell type
status. See supplemental Table 2 for all differential proteins.
For integration with transcriptomics, we employed the data
set of Liu et al. (24) containing gene expression data for the
same BRCA1-proficient and -deficient mouse models as used
in this study, with the exception that most of the tumors in the
discovery set were mammary carcinomas. Of the 801 differ-
ential proteins, we were able to retrieve mRNA expression
data for 565 proteins, of which 429 (76%) had the same
direction of differential expression with 201 of these mRNAs
(36%) being significantly differentially expressed (see supple-
mental Table 2).

In summary, a large proportion (23%) of the mammary
tumor tissue proteome is regulated in BRCA1-deficient tu-
mors as compared with proficient tumors. Because a large
fraction of proteins showed co-regulation with a transcriptom-

FIG. 1. Heat map and cluster analysis using protein expression data from breast tumors of genetic mouse models. A, BRCA1-deficient
and -proficient tumors are clustered in separate groups using unsupervised clustering. B, supervised clustering clearly separates the
BRCA1-deficient tumors from the proficient ones and shows a distinct heat map pattern for up- and down-regulated proteins.
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ics data set that only used BRCA1-deficient carcinomas ver-
sus BRCA1-proficient carcinomas, we conclude that the dif-
ferential proteins are related mainly to BRCA1 status and only
partially to cell type.

Identification of Known Markers of Human BRCA1-deficient
Breast Cancer—Because BRCA1-deficient breast tumors of-
ten belong to the highly proliferative basal-like subtype, we
examined the abundance of protein markers known in basal-
like breast cancer in our data set. In addition, we looked for
known markers of human BRCA1 deficiency. Two basal cy-
tokeratin markers (Krt14 and Krt6b) were significantly up-
regulated in the BRCA1-deficient mouse tumors (Table I). The
third cytokeratin (Krt5) was up-regulated (p value � 0.066)
with a fold-change of 3.2. ALDH1, a cancer stem cell marker,
was exclusively detected in BRCA1-deficient mouse tumors,
in accordance with previous findings (35). PCNA and KI67,
two well known proliferation markers (36), were also signifi-
cantly up-regulated in the BRCA1-deficient mouse tumors.
These confirmatory findings underscore the value of these
genetic mouse tumor models and the validity of our proteom-
ics approach to identifying proteins associated with BRCA1-
related or basal-like breast cancers in patients.

DNA Repair Pathways and Protein Complexes Are Associ-
ated with Proteins Up-regulated in BRCA1-deficient Mam-
mary Tumors—To associate biological functions with the dif-
ferentially expressed BRCA1 deficiency proteins of the mouse
mammary tumors, we used the software tool Ingenuity Path-
way Analysis. The molecular and cellular functions associated
with the up-regulated proteins in BRCA1-deficient mammary
tumors are listed in Table II, with the number one function
identified as DNA replication, recombination, and repair (61
proteins). See Fig. 2 for a visualization of the protein network
using Ingenuity. The network contains a number of highly
connected nodes (i.e., proteins), among which several are well
established drug targets (i.e., TOP1, TOP2A, PARP1, and
SRC). The top molecular and cellular function associated with
the down-regulated proteins was cellular movement (Table II).
The 61 DNA repair proteins up-regulated in BRCA1-deficient
mammary tumors were involved in subfunctions like excision
repair, chromatin remodeling and modification, double-strand
DNA repair, and DNA damage response, among others.
Moreover, canonical pathways associated with the up-regu-
lated proteins in BRCA1-deficient tumors were involved in

DNA repair, including ATM signaling, p53 signaling, and role
of BRCA1 in DNA damage response (data not shown).

To identify protein complexes underlying the differential
proteins and to further dissect the DNA repair pathways,
we employed the COFECO tool (32). The up-regulated pro-
teins were linked to 53 significant protein complexes (cor-
rected p value �0.05, see supplemental Table 3A), of which
44 have a DNA repair(-associated) function (see supplemen-
tal Table 3A, highlighted rows). After removing the redundant
protein complexes where all members were present in one of
the other significant complexes, 29 DNA repair(-associated)
complexes were obtained (see supplemental Table 3B). The
DNA repair complexes were involved in chromosome con-
densation, chromosome cohesion, chromosome remodeling,
RNA processing, histone methylation, histone acetylation, and
the topoisomerase complex, among others. We identified also
five complexes that we could not readily link to a physiological
process involved in DNA repair. These non-nuclear complexes
were involved in integrin cell surface interactions with laminins

TABLE I
Known BRCA1/basal-like and proliferation markers associated with BRCA1 deficiency

Gene name Basal, proliferation, and stem cell markers Fold change p value Marker type

Aldh1a1 Retinal dehydrogenase 1 a 0.000471 Stem cell
Krt14 Keratin, type I cytoskeletal 14 6.5 0.023115 Basal
Krt5 Keratin, type II cytoskeletal 5 3.7 0.065672 Basal
Krt6b Keratin, type II cytoskeletal 6B a 0.016174 Basal
Pcna Proliferating cell nuclear antigen 1.8 0.001747 Proliferation
Mki67 Ki-67 protein 79.8 1.18E-05 Proliferation

a Unique detection in BRCA1-deficient tumors.

TABLE II
Molecular and cellular functions associated with proteins regulated in

BRCA1-deficient breast tumors

IPA was used to associate functions to the up- and down-regulated
proteins of the BRCA1-deficient mouse tumors. IPA analysis of the
up-regulated proteins identified DNA replication, recombination, and
repair as the most significant up-regulated molecular and cellular
function. Pathway analysis of the down-regulated proteins identified
cellular movement as the most significant up-regulated molecular and
cellular function.

Name p value No. of
proteins

Up-regulated proteins
DNA replication, recombination,

and repair
1.07E-10–1.08E-02 61

Cell cycle 1.19E-09–1.08E-02 73
Gene expression 8.25E-07–1.08E-02 73
Cellular growth and proliferation 1.90E-06–1.08E-02 115
Cellular development 3.77E-06–1.05E-02 39

Down-regulated proteins
Cellular movement 4.49E-21–1.63E-03 104
Cell morphology 3.92E-20–1.63E-03 85
Cell-to-cell signaling and

interaction
6.47E-15–1.63E-03 82

Cellular development 2.26E-13–1.70E-03 88
Cellular function and

maintenance
2.43E-12–1.63E-03 69
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and collagens. Although these complexes have been implicated
in evading apoptosis after DNA damage (37), we did not con-
sider these non-nuclear complexes for further analysis. The
down-regulated proteins in BRCA1-deficient tumors were not
associated with any DNA repair protein complex in a COFECO
analysis but instead revealed complexes involved in integrin
signaling, cytoskeleton regulation, and extracellular matrix sig-
naling among others (see supplemental Table 3C).

We focused in subsequent analyses on the proteins up-
regulated in BRCA1-deficienct tumors with a link to DNA
repair because we hypothesized that the up-regulation of
DNA repair proteins and pathways is linked to BRCA1 status
and reflects a compensatory response to the loss of BRCA1
DNA repair function. The 29 nonredundant DNA repair protein
complexes associated with the up-regulated proteins in the
BRCA1-deficient tumors are visualized in Fig. 3 using Cyto-

scape. It is apparent that many protein complexes have mul-
tiple up-regulated members. Examples of DNA repair(-asso-
ciated) complexes include the BRCA1-associated complex
(BASC) involved in double-stranded DNA repair (38) and the
condensin I-PARP1-XRCC1 complex with established func-
tions in single-strand DNA repair (39). In addition, five of seven
members of the toposome complex including the drug targets
TOP1 and TOP2A were significantly up-regulated (40). More-
over, many chromatin remodeling complexes, with a wide
involvement in different types of DNA repair processes (41),
were highly prevalent in our data set. Examples included the
WINAC complex, the PBAF complex, the SWI/SNF complex,
the GCN5-TRRAP histone acetyl-transferase complex, and
the DNMT3B histone methylation complex (see supplemen-
tal Table 3). Together, the analyses pinpoint a major up-
regulation of a broad range of DNA repair/chromatin remod-

FIG. 2. Protein network of significantly up-regulated proteins in BRCA1-deficient tumors that are associated with the top molecular
and cellular function DNA replication, recombination, and repair. The nodes represent proteins, and the lines between them represent
interactions. The dashed lines represent indirect interactions. Color intensity indicates fold change, which is also stated below the nodes.

Discovery of BRCA1-associated Proteins Using Mouse Models

Molecular & Cellular Proteomics 11.7 10.1074/mcp.M111.013334–7

http://www.mcponline.org/cgi/content/full/M111.013334/DC1
http://www.mcponline.org/cgi/content/full/M111.013334/DC1
http://www.mcponline.org/cgi/content/full/M111.013334/DC1


FIG. 3. Nonredundant up-regulated DNA repair protein complexes identified by COFECO and visualized using STRING in Cytoscape.
The nodes represent proteins, and the lines indicate their association as identified in the STRING database. Color intensity is representative
of the degree of up-regulation in BRCA1-deficient proteins. Arrows indicate the most connected nodes.
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TABLE III
List of 45 proteins in BRCA1 deficiency signature

Protein description
Mouse IPI
identifier

Human
gene

symbol

Fold
change

p value
Regulation

comparison mRNA
and proteina

Transformation/transcription domain-associated protein IPI00330902 TRRAP 8.4 �0.001 c

Bromodomain adjacent to zinc finger domain protein 1B IPI00130597 BAZ1B 4.0 �0.001 d

Structural maintenance of chromosomes protein 3 IPI00132122 SMC3 2.4 �0.001 c

Isoform 2 of condensin complex subunit 1 IPI00172226 NCAPD2 4.5 �0.001 d

Replication protein A 70-kDa DNA-binding subunit IPI00124520 RPA1 6.3 �0.001 c

Isoform 1 of paired amphipathic helix protein Sin3a IPI00117932 SIN3A 20.0 �0.001 d

Pold1 DNA polymerase IPI00313515 POLD1 8.5 �0.001 c

Activating signal cointegrator 1 complex subunit 3-like 1 IPI00420329 SNRNP200 1.6 0.001 NAe

Structural maintenance of chromosomes protein 1A IPI00123870 SMC1A 3.2 0.001 c

DNA topoisomerase 2� IPI00122223 TOP2A 4.0 0.001 NA
SWI/SNF-related matrix-associated actin-dependent

regulator of chromatin subfamily C member 1
IPI00125662 SMARCC1 3.0 0.001 f

DNA topoisomerase 2� IPI00135443 TOP2B 2.1 0.001 d

Host cell factor C1 IPI00828490 HCFC1 3.5 0.002 c

Proliferating cell nuclear antigen IPI00113870 PCNA 1.8 0.002 d

Rsf1 hepatitis B virus � associated protein IPI00122845 RSF1 b 0.002 c

Casein kinase II � subunit IPI00408176 CSNK2A1 2.4 0.002 NA
Cell division cycle 5-related protein IPI00284444 CDC5L 3.1 0.002 NA
DNA topoisomerase 1 IPI00109764 TOP1 2.2 0.003 c

Isoform 1 of UDP-N-acetylglucosamine-peptide
N-acetylglucosaminyltransferase 110-kDa subunit

IPI00420870 OGT 3.8 0.004 d

Isoform 2 of E1A-binding protein p400 IPI00229659 EP400 9.7 0.004 d

MutS homolog 6 IPI00310173 MSH6 7.1 0.006 d

Isoform 1 of transcription intermediary factor 1� IPI00312128 TRIM28 1.9 0.008 c

Isoform 1 of splicing factor, arginine/serine-rich 1 IPI00420807 SFRS1 1.4 0.008 NA
Snf2-related CBP activator protein IPI00620743 SRCAP b 0.008 NA
Poly(ADP-ribose) polymerase) 1 IPI00139168 PARP1 3.1 0.008 c

SWI/SNF-related, matrix-associated, actin-dependent
regulator of chromatin, subfamily a, member 4

IPI00460668 SMARCA4 2.3 0.009 c

CREB-binding protein IPI00463549 CREBBP 5.5 0.010 d

Serine-protein kinase ATM IPI00124810 ATM 6.0 0.010 c

Double-strand-break repair protein Rad21 homolog IPI00329840 RAD21 3.1 0.014 d

Pre-mRNA-processing splicing factor 8 IPI00121596 PRPF8 1.5 0.014 c

MRG (MORF4-related gene)-binding protein IPI00720110 C20ORF20 b 0.019 d

Cleavage stimulation factor 50-kDa subunit IPI00116747 CSTF1 b 0.020 c

Metastasis-associated 1 IPI00776055 MTA1 b 0.020 c

DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 IPI00652987 DDX21 2.3 0.020 c

Isoform 1 of heterogeneous nuclear ribonucleoprotein F IPI00226073 HNRNPF 1.4 0.022 NA
Nuclear cap-binding protein subunit 1 IPI00458056 NCBP1 1.9 0.028 NA
SWI/SNF-related matrix-associated actin-dependent

regulator of chromatin subfamily A member 5
IPI00396739 SMARCA5 1.4 0.030 c

DNA mismatch repair protein Msh2 IPI00118158 MSH2 3.0 0.031 d

Isoform long of splicing factor, arginine/serine-rich 3 IPI00129323 SFRS3 1.4 0.035 d

DEAH (Asp-Glu-Ala-His) box polypeptide 9 IPI00339468 DHX9 1.3 0.037 c

FACT complex subunit SPT16 IPI00120344 SUPT16H 2.1 0.045 d

Cleavage stimulation factor 77-kDa subunit IPI00116929 CSTF3 6.4 0.046 d

Isoform 2 of FACT complex subunit SSRP1 IPI00407571 SSRP1 3.1 0.047 d

Structural maintenance of chromosome protein 4 IPI00229397 SMC4 2.4 0.049 d

AT rich interactive domain 1A IPI00648459 ARID1A 3.8 0.049 d

a For mRNA regulation.
b Unique detection in BRCA1-deficient tumors.
c Significantly up-regulated mRNA.
d No significant regulation mRNA.
e NA indicates no mRNA probe on microarray.
f Significant opposite regulation mRNA.
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eling pathways and protein complexes in BRCA1-deficient
mammary tumors.

Identification of a BRCA1 Deficiency DNA Repair Signa-
ture—To identify a protein signature with biological relevance
for BRCA1-deficient breast tumors, we reasoned that this
signature should represent the range of up-regulated DNA
repair processes in these tumors and therefore contain se-
lected up-regulated members of each of the 29 nonredundant
protein complexes described above. To this end, we selected
the most connected up-regulated node in each of the 29 DNA
repair protein complexes (Fig. 3). This strategy may yield
multiple proteins per protein complex, because some nodes
show the same level of connectivity. Using this strategy, a
BRCA1 deficiency signature of 45 proteins was obtained (Ta-
ble III). The signature includes PARP1, involved in single-
strand base repair; TRRAP, a large adaptor protein involved in
histone acetylation; TOP2A, a topoisomerase; SMC1A and
SMC4, involved in chromatid cohesion and condensation;
BAZ1B and ATM, involved in phosphorylation of H2AX upon
DNA damage; and MSH2 and MSH6, involved in mismatch
repair.

Up-regulated Proteins Mapped to Human Transcripts Iden-
tify Human BRCA1/2-deficient Tumors—To investigate the
power of the 45 protein BRCA1 deficiency signature in sep-
arating BRCA1-deficient and -proficient breast cancers in
humans in comparison with all up-regulated proteins, we
performed in silico analysis using publicly available gene ex-
pression data sets (Table IV). We also evaluated the specificity
for BRCA2, a gene involved in the same pathway as BRCA1,
to examine the ability to identify deficiency in homology-
directed DNA repair in general (4). This is important because
of the recent availability of drugs targeting this particular
deficiency (43).

We first focused on the Jönsson data set containing 22
BRCA1-mutated and 32 BRCA2-mutated tumors and other
familial and sporadic tumors (Table IV), because this whole
genome gene expression data set contained the largest num-

ber of BRCA1/2-mutated tumors. Hierarchical clustering us-
ing all up-regulated proteins showed that the majority of
BRCA1-mutated tumors were clustered within one branch of
the dendrogram, which coincides, as expected, with the bas-
al-like tumors (Fig. 4A). The BRCA2 samples were also clus-
tered largely together within the middle branch of the dendro-
gram. Fig. 4B depicts a clustering using the BRCA1 deficiency
signature. Here, a large proportion of the BRCA1 and BRCA2
falls within one branch of the dendrogram, making up approx-
imately one-third of the tumors. Thus, the cluster analysis
indicates that the 45-protein BRCA1 deficiency signature
shows specificity, not only for BRCA1-mutated tumors but
also for BRCA2-mutated tumors.

The nearest centroid classification method was employed
to characterize more precisely the sensitivity and specificity of
the mouse BRCA1 deficiency signature for BRCA1- and
BRCA2-mutated tumors, as well as for the list of all up-
regulated proteins. Table V reports the classification results
on the Jönsson data set with leave-one-out cross-validation.
The sensitivities for BRCA1-mutated tumors were 77 and
82% for the 417 up-regulated proteins and the BRCA1 defi-
ciency signature, respectively. Classification for the combina-
tion of BRCA1- and BRCA2-mutated tumors yielded a similar
performance: 83% sensitivity for all up-regulated proteins and
81% for the BRCA1 deficiency signature. We also assessed
the performance of 1,000 sets of genes randomly sampled
from the whole genome and, in a more stringent approach,
from the list of DNA replication, recombination and repair,
genes as defined by IPA (Table V). Although both all up-
regulated proteins and the BRCA1 deficiency signature
achieved similar sensitivities in classifying BRCA1/2 mutated
tumors, this was only significantly better compared with ran-
dom gene lists, when using all up-regulated proteins. Never-
theless, the BRCA1 deficiency signature compared favorably
with both random gene lists sampled from all genes and from
random DNA repair lists, showing confidence that the classi-
fication accuracies were not obtained by chance.

TABLE IV
Description of relevant information of human breast cancer gene expression data sets used for in silico validation

No. of
patients

Patient characteristics
Clinical

end point
Source

van de Vijver et al. 315 295 sporadic patients Survival http://www.rii.com/publications/
van ’t Veer et al. 20 18 BRCA1 and 2 BRCA2 mutation

carriers
NA http://www.rii.com/publications/

Wang et al. 286 286 sporadic patients Time to distant
metastasis

GEO accession GSE2034:
http://www.ncbi.nlm.nih.gov/projects/geo/

Naderi et al. 134 134 sporadic patients (120 with
survival data)

Survival Array express accession E-UCON-1: http://
www.ebi.ac.uk/arrayexpress/

Jönsson et al. 359 22 BRCA1, 32 BRCA2, 173
sporadic and 132 non-BRCA1/2
familial patients

Survival GEO accession GSE22133:
http://www.ncbi.nlm.nih.gov/projects/geo/

Waddell et al. 75 19 BRCA1, 30 BRCA2, 1
unknown, and 25 non-BRCA1/2
familial patients

NA GEO accession GSE22133:
http://www.ncbi.nlm.nih.gov/projects/geo/
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In addition to leave-one-out cross-validation, we performed
completely independent validation using the two other data
sets containing samples with BRCA1/2 mutation status (the
combined van de Vijver and van ’t Veer cohorts and the
Waddell cohort; Table IV). The centroids constructed from
the Jönsson et al. data set can classify BRCA1/2 samples in

the van de Vijver/van ’t Veer cohorts with a very high sensi-
tivity of 95% for both the up-regulated proteins and the
BRCA1 deficiency signature (Table V). A large portion of spo-
radic samples were assigned to the BRCA1/2 class. Because
the sporadic samples were not tested for BRCA1/2 dysfunc-
tion or inactivation of other components of the homologous

FIG. 4. Hierarchical clustering of proteins mapped to gene transcripts for the Jönsson data set. A, cluster analysis using the 417
up-regulated mapped proteins. The majority of the BRCA1 patients cluster together within the basal cluster in one branch of the dendrogram.
The adjacent cluster contains the majority of the BRCA2 patients. B, cluster analysis using the 45-protein BRCA1 deficiency signature. The
BRCA1 and BRCA2 samples are now adjacent to each other in one cluster containing approximately one-third of all patients.
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recombination pathway, part of these mismatching predic-
tions reported here might reflect a true deficiency in the
BRCA1/2 pathway, i.e., a BRCAness phenotype (44). For the
Waddell cohort, we obtained sensitivity of 79 and 68% for
BRCA1 patients by the up-regulated proteins and BRCA1
deficiency signature, respectively (Table V), which is compa-
rable with the result of 74% sensitivity reported by the authors
of the data set. Our result is significant, given that the test data
is completely independent from the training data, whereas
internal validation was used in Waddell et al. (14).

These data show that the 417 up-regulated proteins in
BRCA1-deficient mouse tumors, as well as the BRCA1 defi-

ciency signature of 45 proteins, can classify human BRCA1-
deficient breast tumors when mapped to human transcrip-
tomics data sets. Importantly, the classification results for the
mapped mouse BRCA1 deficiency protein signature were
better than the results that we obtained with the published
mouse transcriptome data (24) from which we also con-
structed a signature using the same network-based in silico
approach (data not shown). For example, sensitivities of the
protein signature for selecting BRCA1-deficient tumors were
81.8, 94.4, and 68.4% in the Jonsson data set and the com-
bined Vijver and van ’t Veer and Waddell data set, whereas
these values were 63.6, 50.0, and 57.9% for the transcriptome

TABLE V
Performance of all 417 up-regulated proteins and the 45-protein BRCA1 deficiency signature in human gene expression data sets

The performance for classifying BRCA1/2 patients using all 417 up-regulated proteins and the BRCA1 deficiency signature in the Jönsson
et al. data set was evaluated. The performance of the expression centroids created for the 417 up-regulated protein and BRCA1 deficiency
signature in the Jönsson et al. data set was applied to the combined van de Vijver et al. and van ’t Veer et al. data sets and the Waddell et al.
data set.

True/predicted BRCA1 BRCA2 Familial Sporadic Total Sensitivity Specificity
All

genesa
DNA repair

backgrounda

Jönsson et al. data set
All 417 up-regulated proteins

BRCA1 17 0 1 4 22 77.3% 84.7% 0.016 0.017
BRCA2 4 24 3 1 32 75.0% 85.9% 0.286 0.315
BRCA1/2 45 45 4 5 54 83.3% 69.5% 0.040 0.012
Familial 15 26 63 28 132 47.7% 78.4%
Sporadic 32 20 45 76 173 43.9% 82.3%

BRCA1 deficiency signature
BRCA1 18 0 1 3 22 81.8% 81.3% 0.329 0.243
BRCA2 5 16 8 3 32 50.0% 86.5% 0.184 0.217
BRCA1/2 39 39 9 6 54 72.2% 66.6% 0.245 0.178
Familial 16 25 65 26 132 49.2% 72.7%
Sporadic 42 19 53 59 173 34.1% 85.6%

Combined van de Vijver et al. and
van ’t Veer et al. data sets

All 417 up-regulated proteins
BRCA1 17 0 1 18 94.4% 75.8%
BRCA2 0 2 0 2 100.0% 57.2%
BRCA1/2 19 19 1 20 95.0% 30.2%
Sporadic 72 134 89 295 30.2% 95.0%

BRCA1 deficiency signature
BRCA1 17 0 1 18 94.4% 80.3%
BRCA2 0 2 0 2 100.0% 71.1%
BRCA1/2 19 19 1 20 95.0% 32.2%
Sporadic 73 127 95 295 32.2% 95.0%

Waddell et al. data set
All 417 up-regulated proteins

BRCA1 15 1 3 19 78.9% 78.6%
BRCA2 7 12 11 30 40.0% 91.7%
BRCA1/2 35 35 14 49 71.4% 56.0%
Familial 8 3 14 25 56.0% 71.4%

BRCA1 deficiency signature
BRCA1 13 3 3 19 68.4% 77.5%
BRCA2 8 8 14 30 26.7% 86.3%
BRCA1/2 32 32 17 49 65.3% 52.0%
Familial 8 4 13 25 52.0% 65.3%

a p value of permutation analysis using random gene lists (the fraction of a 1,000 random gene lists of the same length performing better
then the up-regulated proteins or BRCA1 deficiency signature). In the case of “All genes,” sampling was done from all genes present in
the human genomes that had a official gene symbol. Genes from a DNA repair background were sampled from a list generated by IPA.
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signature (data not shown). The set of all up-regulated pro-
teins achieved the best performance for diagnosing BRCA1
mutations in comparison with random (DNA repair) genes.
BRCA2-deficient tumors were also classified, implying enrich-
ment for homology-directed repair-deficient tumors in gen-
eral. Moreover, the 45 protein signature and all up-regulated
proteins also classify a number of familial tumors without
BRCA1/2 mutation and sporadic patients as BRCA1/2-like,
suggesting that these tumors might be deficient in homology-
directed DNA repair.

BRCA1 Deficiency Signature Proteins Show Prognostic
Power when Mapped to Human Breast Cancer Gene Expres-
sion Data Sets—To investigate whether the BRCA1 deficiency
proteins and signature have prognostic power, we used the
mapped mRNAs of the up-regulated proteins in the four pub-
lic breast cancer gene expression data sets that have asso-
ciated clinical end point data (van de Vijver, Wang, Naderi and
Jönsson (8, 10, 12, 34); Table IV) to perform a Kaplan-Meier
survival analysis. The Jönsson data set was the only cohort
that has an enrichment of familial (BRCA1/2-related) patients.
For comparison, we also performed a Kaplan-Meier analysis
using two commercially available prognostic gene signatures
(MammaPrint� and Oncotype DX�). In a third comparison, we
used the Naderi signature (discovered in the Naderi cohort),
which has been shown to also have prognostic power in both
the van de Vijver and Wang cohorts (10).

The mapped list of all 417 up-regulated proteins in BRCA1-
deficient tumors yielded highly significant p values for survival
analysis across all data sets, but these were only significantly
better than random gene lists in the van de Vijver data set.
When sampling from a DNA repair gene background, no
significant p values for the permutation analysis were ob-
tained (Table VI). It is of note here that the external (commer-
cial) gene expression-based signatures in some instances
showed a similar level of underperformance when compared
with random DNA repair gene lists in the sporadic data sets
and were performing nonsignificantly in all permutation set-
tings in the Jönsson cohort. Not surprisingly, the two mRNA
signatures identified within their discovery cohort, Mam-
maPrint� in the van de Vijver cohort (1, 12) and Naderi signa-
ture in the Naderi cohort (10), outperformed all other signa-
tures within their cohort.

The mapped BRCA1 deficiency signature has highly signif-
icant prognostic value. The Kaplan-Meier plots of the BRCA1
deficiency signature in the four breast cancer data sets is
shown in Fig. 5. Performance was comparable with the gene
expression-based signatures in the three sporadic cohorts
(the van de Vijver, Wang, and Caldas data sets). Importantly,
in the data set with an over-representation of familial
(BRCA1/2) tumors (the Jönsson cohort), the mapped mouse
BRCA1 deficiency signature outperformed all human gene
expression-based signatures, and performance was still sig-
nificant when compared with random (DNA repair) gene lists.
In summary, these data demonstrate that the mouse BRCA1
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deficiency protein signature, when mapped to human gene
expression data has prognostic value and outperforms (com-
mercial) gene expression-based signatures in a cohort en-
riched for breast cancer with defects in the homology-di-
rected DNA repair pathway.

Poor Outcome Human Breast Tumors Identified by BRCA1
Deficiency Signature Show Enrichment in p53 Mutations—
p53 mutations have the capacity to disrupt the signaling
between accumulated DNA damage and the induction of
apoptosis. Moreover, the loss of functional p53 is often as-
sociated with BRCA1-related hereditary breast cancer in hu-
mans (45, 46). For this reason, we investigated whether the
poor prognosis patients identified in the survival analysis
showed a significant enrichment for p53 mutations. For the
van de Vijver cohort, we were able to retrieve p53 mutational
status for 204 of the 295 tumors (data not shown). Enrichment
of p53 mutation in the poor prognosis patients was assessed
using Fisher’s exact test. Both the total list of 417 up-regu-
lated proteins and the BRCA1 deficiency signature showed a
highly significant enrichment for p53 mutations in poor prog-
nosis patients (both p values were �10�10; Table VII). These
data highlight the finding that the BRCA1 deficiency proteins
and signature associate with p53 mutation as well as with
survival.

Protein Quantitation by Targeted Mass Spectrometry—We
have selected several proteins for follow-up at the protein
level: four genes/proteins that showed discordant regulations,
significantly up-regulated protein levels, and down-regulated
mRNA expression levels (NCAPD2, SIN3A, BAZ1B, and
TOP2B) in the BRCA1-deficient breast tumors of the mouse
model. We also included one gene for which no probe was
available on the microarray (TOP2A) and one protein for which
protein and mRNA regulation was concordant (PARP1) in the
mouse model. Of these gene products, SIN3A and TOP2B
had also down-regulated mRNAs in the human data set of
Jönsson, whereas PARP1 was not regulated, TOP2A was
up-regulated, and for NCAPD2 and BAZ1B no probes were

available. First, we confirmed the protein regulations as re-
vealed by the spectral count data in the discovery samples
using an independent measure of label-free protein quantita-
tion, i.e., the area under the curve of the extracted ion chro-
matograms. Second, we performed targeted mass spectrom-
etry by SRM-MS in 10 independent mouse breast tumors, all
carcinomas. The regulation of SIN3A, NCAPD2, TOP2A,
TOP2B, and PARP1 was confirmed by SRM-MS in independ-
ent tumors, with all peptides being significantly up-regulated
in BRCA1 deficient breast tumors, whereas only BAZ1B was
not significantly up-regulated (supplemental Fig. 3). Hierarchi-
cal clustering using all peptides from the discordant proteins
clearly separated this pilot validation set according to BRCA1
status (supplemental Fig. 4). In conclusion, the SRM validation
of protein expression levels for which the RNA levels were
discordant underscores the fact that RNA expression levels

FIG. 5. Survival analysis displaying Kaplan-Meier curves on a diverse set of public human gene expression breast cancer data using
the BRCA1 deficiency signature. Green curves represent patients with poor prognosis, and red curves are patients with good prognosis.
Overall survival was used as clinical end point, unless specified otherwise. A, van de Vijver data set of 295 patients. B, Wang cohort with 286
tumors using metastasis-free survival as clinical end point. C, Naderi data set with 120 early stage tumors. D, Jönsson data set containing 359
tumors, which includes 186 familial tumors, of which 54 were confirmed BRCA1/2 carriers. *, p value from Kaplan-Meier survival analysis. **,
p value from permutation analysis (the fraction of a 1,000 random gene lists of the same length performing better then the BRCA1 deficiency
signature.

TABLE VII
Overview and statistical analysis of enrichment for p53 mutations in
poor prognosis patients versus good prognosis patients using Fisher’s

exact test in the van de Vijver et al. data set

The table displays the distribution of p53 mutation status and
good/bad prognosis patients within the van de Vijver data set: all 417
up-regulated BRCA-deficient proteins and the BRCA1 deficiency sig-
nature. Note that 204 of the 295 patients from the van de Vijver et al.
cohort had associated p53 mutational status.

Poor
prognosis

Good
prognosis

Sum

All 417 up-regulated proteins:
p value � 2.20E-16a

p53 mutation 55 (79%) 15 (21%) 70
Wild-type p53 25 (19%) 109 (81%) 134
Sum 80 124 204

BRCA1 deficiency signature
(45 proteins): p value �
2.55E-12a

p53 mutation 49 (70%) 21 (30%) 70
Wild-type p53 26 (19%) 108 (81%) 134
Sum 75 129 204

a p value from Fisher’s exact test.
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cannot always be simply translated to protein expression
levels, as well as the importance of analysis of the end prod-
ucts of genes by proteomics.

DISCUSSION

In the present study, we aimed to identify proteins that are
associated with the loss of expression of BRCA1, which is
involved in homology-directed DNA repair. These proteins
could potentially find use as screening, prognostic, or predic-
tive biomarkers. To this end, we analyzed protein profiles in
BRCA1-proficient and -deficient mouse breast tumors using a
high resolution tandem mass spectrometry-based proteomics
approach. We identified 3,545 proteins, of which 801 were
significantly differentially regulated. A BRCA1 deficiency 45-
protein signature was defined through the use of pathway and
protein complex analysis, with good performance in human
gene expression data sets enriched for BRCA1 deficiency. To
our knowledge, this is the first comprehensive in depth pro-
teomics analysis in genetic breast cancer. An overview of the
discovery and data mining strategies is given in Fig. 6.

Up-regulated Proteins in BRCA1-deficient Mouse Breast
Tumors Contain Basal-like Markers, Multiple Drug Targets,
and DNA Repair(-associated) Proteins—As expected, we
found significant up-regulation of basal-like markers that are
known to occur in breast cancer of the basal-like subtype.
This is in line with the fact that human BRCA1-mutated tumors
belong predominantly to the basal-like breast cancer subtype.
Therefore these confirmatory findings underscore the human
relevance of the BRCA1-deficient mouse tumor models.

BRCA1 has recently, through its function as a transcription
factor, been linked to the basal transcription machinery,
whereby functional BRCA1 represses transcription of basal
keratins (47). In addition, we identified a number of up-regu-
lated proliferative markers, a feature that is more prevalent in
human basal-like breast cancer.

Pathway and protein complex analysis identified DNA repair
and associated processes as the most important biological
function associated with the up-regulated proteins of the
BRCA1-deficient tumors. This is in line with previous reports
that loss of functional homology-directed DNA repair through
knock-out of BRCA1 might be partially compensated for by
other DNA repair mechanisms (4, 48). Importantly, we found a
number of therapeutic targets to be up-regulated in the
BRCA1-deficient tumors, including PARP1, TOP1, TOP2A,
and TOP2B. PARP1 has been shown to be a bona fide drug
target for human BRCA1-mutated tumors (43). Up-regulation
of the PARP1 protein may be a marker for the loss of func-
tional homology-directed DNA repair in general and might
therefore be a predictive marker for the efficacy of PARP1
inhibition. In line with this, the tumors of the BRCA1-deficient
mice used in this study responded well to the PARP inhibitor
olaparib, whereas the BRCA1-proficient mouse tumor models
did not (49). Moreover, we also found up-regulation of the
topoisomerases TOP1, TOP2A, and TOP2B drug targets
for topotecan (TOP1 inhibitor) and doxorubicin (TOP2A and
TOP2B inhibitor). These drugs inhibit the religation step of
topoisomerases and therefore also induce indirectly DNA
breaks. Higher levels of these proteins might have predictive

FIG. 6. Overview of proteomics dis-
covery, data mining, identification of a
BRCA1 deficiency signature, and in
silico validation in human transcrip-
tomics data sets.
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value, because the BRCA1-deficient mouse tumors used in
our experiments have been shown to be sensitive to topote-
can (50) and doxorubicin (51). We detected a number of other
potential drug targets. HDAC1 and HDAC2, two proteins in-
volved in chromatin remodeling by histone deacetylation,
were also up-regulated, although this was not significant (p �

0.07 and p � 0.14, respectively). At least 11 kinases were
significantly up-regulated, of which established drug targets
included KIT and SRC (see supplemental Table 2, IPA drug
targets). Novel kinase candidate drug targets included
MAPK14, CDK9, and CSFR1. Multiple proteins up-regulated
in the BRCA1-deficient mice tumors act upstream of BRCA1
function in the homology-directed DNA repair pathway (ATM,
BAZ1B, and TP53BP1), which may indicate an accumulation
of these proteins in response to BRCA1 loss. In a previous
study, Liu et al. (24) used gene expression analysis in the
same mouse models as used in this study. Using gene set
enrichment analysis, they reported a number of processes
that were induced after BRCA1 loss, including recombinato-
rial repair, mitotic recombination, telomere maintenance, and
transcriptional regulation (e.g. chromatin remodeling).

Mouse BRCA1 Deficiency Protein Signature with Diagnostic
and Prognostic Value in Human Gene Expression Data
Sets—We used an in silico validation approach to show that
mouse proteins up-regulated in BRCA1-deficient tumors, in-
cluding a BRCA1 deficiency signature, could classify human
BRCA1 and BRCA2 tumors in cohorts that contained both
sporadic and hereditary breast cancers. Using the BRCA1
deficiency signature, high sensitivities were achieved for clas-
sifying homology-directed DNA repair-deficient tumors in
data sets known to be enriched for these patients (14). The
BRCA1 deficiency signature also classified a considerable
number of sporadic and familial tumors as BRCA1/2-like. This
result may be explained by the possibility that a number of
sporadic and familial tumors lacking mutations in BRCA
genes might still harbor undetected deficiencies in homology-
directed DNA repair and might therefore benefit from DNA-
damaging agents. There is growing evidence that the majority
of sporadic basal-like breast cancers have BRCA1 dysfunc-
tionality rather than a mutation in BRCA1 itself (9, 13).

Approximately 25% of BRCA1 tumors were not picked up
by our classifier. This might be explained by the fact that our
mouse BRCA1 classifier is not able to capture the full hetero-
geneity of all BRCA1-mutated breast carcinomas. In addition,
a number of BRCA1-mutated breast carcinomas might es-
cape detection because of restoration of homology-directed
double-strand break repair via loss of TP53BP1 (52, 53) or
equivalent factors.

The BRCA1 deficiency DNA repair signature showed prog-
nostic power across a wide variety of breast cancer data sets.
Moreover, our mouse protein signature outperformed two
commercially available prognostic RNA-based signatures
(MammaPrint� and Oncotype DX�) in a data set enriched for
homology repair-deficient tumors. Finally, in breast cancer,

proteins with prognostic power may have predictive value as
well. Examples are the hormone receptor ESR1 and the re-
ceptor tyrosine kinase ERBB2, the expression of which re-
sponse to targeted therapy as well as prognosis (54).

Furthermore, patients with sporadic breast cancer identi-
fied as poor outcome by our BRCA1 deficiency signature
were highly enriched for p53 mutations. Although both mouse
models used to develop the BRCA1 deficiency signature were
p53-deficient, this result is explained by the clinical observa-
tion that BRCA1-deficient breast cancers frequently comprise
p53 mutations, and both BRCA1 and p53 alterations are
enriched in triple-negative breast cancer (45, 46). The up-
regulation of drug targets involved in DNA repair (PARP1,
TOP1, TOP2A, and HDAC1) may indicate the predictive po-
tential of our BRCA1 deficiency DNA repair candidates. We
were not able to verify the predictive potential of our BRCA1
deficiency protein signature in large cohorts of treated breast
cancers, because the therapeutic agents (PARP1 and TOP
inhibition, cisplatin treatment, and histone deacetylase
(HDAC) inhibition) are still in clinical trial phase, so no large
scale publicly available gene expression data sets exist to
date.

Several breast cancer proteomic studies have been re-
ported to date. Biological materials used ranged from mouse
tissue (21, 55) to human breast cancer cell lines and tissues
(18, 20, 21, 56–58). A few studies yielded a number of markers
with potential for treatment prediction. Umar et al. (19) have
recently identified a protein profile in microdissected breast
tumor cells putatively predictive for the efficacy of tamoxifen.
Moreover, the differential up-regulation and activity of a num-
ber of kinases across a panel of breast cancer cell lines
correlated with differential responsiveness to small molecule
inhibitors in these cancer cell lines (59).

Concluding Remarks—Our study demonstrates that in
depth high resolution proteomics of tumors tissue from dif-
ferent mouse models is a successful strategy to discover
candidate protein biomarkers with screening, prognostic, and
possibly also predictive potential for human BRCA1 and ho-
mology-directed double-strand break repair-deficient breast
tumors. The proteins up-regulated in mammary tumors from
mouse models with a deficiency in BRCA1 are enriched in
DNA repair(-associated) proteins, which points toward a po-
tential rescue mechanism for the loss of homology-directed
DNA repair. In addition, a pathway in conjunction with protein
complex analysis has proven to be a promising strategy to
construct a signature that has diagnostic and prognostic po-
tential across multiple human breast cancer gene expression
data sets. This signature shows specificity for BRCA1 and
homology-directed DNA repair deficiency and has high prog-
nostic potential in breast cancer data sets enriched with ho-
mology repair deficient tumors. Several up-regulated DNA
repair proteins within this signature have been shown to be
drug targets in homology-directed DNA repair-deficient tu-
mors, suggesting that they may have predictive power for
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tailored therapies. Because multiple drug targets are up-reg-
ulated, these tumors might also benefit from combination
therapy.

Finally, we point out that the BRCA1 deficiency transcrip-
tome signature that we obtained by mapping mouse BRCA1
deficiency-associated breast tumor proteins is novel and
could not be obtained by using the published mouse tran-
scriptome data (24) as a starting point. To date, there is only
one BRCAness gene expression signature reported for ovar-
ian cancer (42). However, this signature was developed using
a publicly available ovarium cancer transcriptomics data set
and with a pilot study for predictiveness based on only 10
BRCA mutated/reverted samples originating from six pa-
tients, and this signature was not externally evaluated in
multiple large (BRCA1/2-deficient) breast cancer data sets.
Together, these results underscore the novelty of our
BRCAness transcriptome signature that we obtained by
mapping mouse BRCA1 deficiency associated breast tumor
proteins.

Future studies should address the value of our BRCA1
deficiency signature both at the transcriptome and proteome
level for patient selection for treatment in breast cancer and
other tumors types with potential homology repair deficien-
cies. With the advent of targeted mass spectrometry methods
like SRM-MS, the signature proteins may be analyzed in
pretreatment biopsies in one multiplex analysis, without the
need for antibodies. Targeted multiplex analysis in aspirate
fluid and plasma may highlight their potential use for nonin-
vasive testing.
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Loman, N., Malmström, P., Olsson, H., Johannsson, O. T., Arason, A.,
Nevanlinna, H., Barkardottir, R. B., and Borg, A. (2010) Genomic sub-
types of breast cancer identified by array-comparative genomic hybrid-
ization display distinct molecular and clinical characteristics. Breast Can-
cer Res. 12, R42

9. Joosse, S. A., Brandwijk, K. I., Mulder, L., Wesseling, J., Hannemann, J.,
and Nederlof, P. M. (2011) Genomic signature of BRCA1 deficiency in
sporadic basal-like breast tumors. Genes Chromosomes Cancer 50,
71–81

10. Naderi, A., Teschendorff, A. E., Barbosa-Morais, N. L., Pinder, S. E., Green,
A. R., Powe, D. G., Robertson, J. F., Aparicio, S., Ellis, I. O., Brenton,
J. D., and Caldas, C. (2007) A gene-expression signature to predict
survival in breast cancer across independent data sets. Oncogene 26,
1507–1516

11. Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F. L.,
Walker, M. G., Watson, D., Park, T., Hiller, W., Fisher, E. R., Wickerham,
D. L., Bryant, J., and Wolmark, N. (2004) A multigene assay to predict
recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl.
J. Med. 351, 2817–2826

12. van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil,
D. W., Schreiber, G. J., Peterse, J. L., Roberts, C., Marton, M. J., Parrish,
M., Atsma, D., Witteveen, A., Glas, A., Delahaye, L., van der Velde, T.,
Bartelink, H., Rodenhuis, S., Rutgers, E. T., Friend, S. H., and Bernards,
R. (2002) A gene-expression signature as a predictor of survival in breast
cancer. N. Engl. J. Med. 347, 1999–2009

13. Vollebergh, M. A., Lips, E. H., Nederlof, P. M., Wessels, L. F., Schmidt,
M. K., van Beers, E. H., Cornelissen, S., Holtkamp, M., Froklage, F. E., de
Vries, E. G., Schrama, J. G., Wesseling, J., van, d., V, van, T. H., de,
B. M., Hauptmann, M., Rodenhuis, S., and Linn, S. C. (2012) An aCGH
classifier derived from BRCA1-mutated breast cancer and benefit of
high-dose platinum-based chemotherapy in HER2-negative breast can-
cer patients. Ann. Oncol., 22, 1561–1570

14. Waddell, N., Arnold, J., Cocciardi, S., da Silva, L., Marsh, A., Riley, J.,
Johnstone, C. N., Orloff, M., Assie, G., Eng, C., Reid, L., Keith, P., Yan,
M., Fox, S., Devilee, P., Godwin, A. K., Hogervorst, F. B., Couch, F.,
Grimmond, S., Flanagan, J. M., Khanna, K., Simpson, P. T., Lakhani,
S. R., and Chenevix-Trench, G. (2010) Subtypes of familial breast tu-
mours revealed by expression and copy number profiling. Breast Cancer
Res. Treat. 123, 661–677

15. Straver, M. E., Glas, A. M., Hannemann, J., Wesseling, J., van de Vijver,
M. J., Rutgers, E. J., Vrancken Peeters, M. J., van Tinteren, H., Van’t
Veer, L. J., and Rodenhuis, S. (2010) The 70-gene signature as a re-
sponse predictor for neoadjuvant chemotherapy in breast cancer. Breast
Cancer Res. Treat. 119, 551–558

16. Cardoso, F., Piccart-Gebhart, M., Van’t Veer, L., and Rutgers, E. (2007) The
MINDACT trial: The first prospective clinical validation of a genomic tool.
Mol. Oncol. 1, 246–251

Discovery of BRCA1-associated Proteins Using Mouse Models

Molecular & Cellular Proteomics 11.7 10.1074/mcp.M111.013334–17

http://www.mcponline.org/cgi/content/full/M111.013334/DC1


17. Pavlou, M. P., Kulasingam, V., Sauter, E. R., Kliethermes, B., and Diaman-
dis, E. P. (2010) Nipple aspirate fluid proteome of healthy females and
patients with breast cancer. Clin. Chem. 56, 848–855

18. Xu, X., Qiao, M., Zhang, Y., Jiang, Y., Wei, P., Yao, J., Gu, B., Wang, Y., Lu,
J., Wang, Z., Tang, Z., Sun, Y., Wu, W., and Shi, Q. (2010) Quantitative
proteomics study of breast cancer cell lines isolated from a single pa-
tient: Discovery of TIMM17A as a marker for breast cancer. Proteomics
10, 1374–1390

19. Umar, A., Kang, H., Timmermans, A. M., Look, M. P., Meijer-van Gelder,
M. E., den Bakker, M. A., Jaitly, N., Martens, J. W., Luider, T. M.,
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