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Abstract
To better understand the reward circuitry in human brain, we conducted activation likelihood
estimation (ALE) and parametric voxel-based meta-analyses (PVM) on 142 neuroimaging studies
that examined brain activation in reward-related tasks in healthy adults. We observed several core
brain areas that participated in reward-related decision making, including the nucleus accumbens
(NAcc), caudate, putamen, thalamus, orbitofrontal cortex (OFC), bilateral anterior insula, anterior
(ACC) and posterior (PCC) cingulate cortex, as well as cognitive control regions in the inferior
parietal lobule and prefrontal cortex (PFC). The NAcc was commonly activated by both positive
and negative rewards across various stages of reward processing (e.g., anticipation, outcome, and
evaluation). In addition, the medial OFC and PCC preferentially responded to positive rewards,
whereas the ACC, bilateral anterior insula, and lateral PFC selectively responded to negative
rewards. Reward anticipation activated the ACC, bilateral anterior insula, and brain stem, whereas
reward outcome more significantly activated the NAcc, medial OFC, and amygdala.
Neurobiological theories of reward-related decision making should therefore distributed and
interrelated representations of reward valuation and valence assessment into account.
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1. Introduction
People face countless reward-related decision making opportunities everyday. Our physical,
mental, and socio-economical well-being critically depends on the consequences of the
choices we make. It is thus crucial to understand what underlies normal functioning of
reward-related decision making. Studying the normal functioning of reward-related decision
making also helps us to better understand the various behavioral and mental disorders which
arise when such function is disrupted, such as depression (Drevets, 2001), substance abuse
(Bechara, 2005; Garavan and Stout, 2005; Volkow et al., 2003), and eating disorders
(Kringelbach et al., 2003; Volkow and Wise, 2005).

Functional neuroimaging research on reward has become a rapidly growing field. We have
observed a huge surge of neuroimaging research in this domain, with dozens of relevant
articles showing up in the PubMed database every month. On the one hand, this is exciting
because the mounting results are paramount to formalizing behavioral and neural
mechanisms of reward-related decision making (Fellows, 2004; Trepel et al., 2005). On the
other hand, the heterogeneity of the results in conjunction with the occasional opposing
patterns make it difficult to obtain a clear picture of the reward circuitry in human brain. The
mixture of results is partly due to diverse experimental paradigms developed by various
research groups that aimed to address different aspects of reward-related decision making,
such as the distinction between reward anticipation and outcome (Breiter et al., 2001;
Knutson et al., 2001b; McClure et al., 2003; Rogers et al., 2004), valuation of positive and
negative rewards (Liu et al., 2007; Nieuwenhuis et al., 2005; O’Doherty et al., 2003a;
O’Doherty et al., 2001; Ullsperger and von Cramon, 2003), and assessment of risk (Bach et
al., 2009; d’Acremont and Bossaerts, 2008; Hsu et al., 2009; Huettel, 2006).

Therefore, it is crucial to pool existing studies together and examine the core reward
networks in human brain, from both data-driven and theory-driven approaches to test the
commonality and distinction of different aspects of reward-related decision making. To
achieve this goal, we employed and compared two coordinate-based meta-analysis (CBMA)
methods (Salimi-Khorshidi et al., 2009), activation likelihood estimation (ALE) (Laird et al.,
2005; Turkeltaub et al., 2002) and parametric voxel-based meta-analysis (PVM) (Costafreda
et al., 2009), so as to reveal the concordance across a large number of neuroimaging studies
on reward-related decision making. We anticipated that the ventral striatum and
orbitofrontal cortex (OFC), two major dopaminergic projection areas that have been
associated with reward processing, would be consistently activated.

In addition, from a theory-driven perspective, we aimed to elucidate whether there exist
distinctions in the brain networks that are responsible for processing positive and negative
reward information, and that are preferentially involved in different stages of reward
processing such as reward anticipation, outcome monitoring, and decision evaluation.
Decision making involves encoding and representation of the alternative options and
comparing the values or utilities associated with these options. Across these processes,
decision making is usually affiliated with positive or negative valence from either the
outcomes or emotional responses toward the choices made. Positive reward valence refers to
the positive subjective states we experience (e.g., happiness or satisfaction) when the
outcome is positive (e.g., winning a lottery) or better than we anticipate (e.g., losing less
value than projected). Negative reward valence refers to the negative feelings we go through
(e.g., frustration or regret) when the outcome is negative (e.g., losing a gamble) or worse
than what we expect (e.g., stock value increasing lower than projected). Although previous
studies have attempted to distinguish reward networks that are sensitive to processing
positive or negative information (Kringelbach, 2005; Liu et al., 2007), as well as those that
are involved in reward anticipation or outcome (Knutson et al., 2003; Ramnani et al., 2004),
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empirical results have been mixed. We aimed to extract consistent patterns by pooling over a
large number of studies examining these distinctions.

2. Methods
2.1 Literature search and organization

2.1.1 Study identification—Two independent researchers conducted a thorough search
of the literature for fMRI studies examining reward-based decision making in humans. The
terms used to search the online citation indexing service PUBMED (through June 2009)
were “fMRI”, “reward”, and “decision” (by the first researcher), “reward decision making
task”, “fMRI”, and “human” (by the second researcher). These initial search results were
merged to yield a total of 182 articles. Another 90 articles were identified from a reference
database of a third researcher accumulated through June 2009 using “reward” and “MRI” as
filtering criteria. We also searched the BrainMap database using Sleuth, with “reward task”
and “fMRI” as search terms, and found 59 articles. All of these articles were pooled into a
database and redundant entries were eliminated. We then applied several exclusion criteria
to further eliminate articles that are not directly relevant to the current study. These criteria
are: 1) non-first hand empirical studies (e.g., review articles); 2) studies that did not report
results in standard stereotactic coordinate space (either Talairach or Montreal Neurological
Institute, MNI); 3) studies using tasks unrelated to reward or value-based decision making;
4) studies of structural brain analyses (e.g., voxel-based morphometry or diffusion tensor
imaging); 5) studies purely based on region of interest (ROI) analysis (e.g., using anatomical
masks or coordinates from other studies); 6) studies of special populations whose brain
functions may be deviated from those of normal healthy adults (e.g., children, aging adults,
or substance dependent individuals), although coordinates reported in these studies for the
healthy adult group alone were included. Variability among methods with which subjects
were instructed to report decisions during the tasks (i.e., verbal, nonverbal button-press) was
accepted. This resulted in 142 articles in the final database (listed in the Appendix).

During the data extraction stage, studies were then grouped by different spatial
normalization schemes according to coordinate transformations implemented in the
GingerALE toolbox (http://brainmap.org, Research Imaging Center of the University of
Texas Health Science Center, San Antonio, Texas): using FSL to report MNI coordinates,
using SPM to report MNI coordinates, using other programs to report MNI coordinates,
using Brett methods to convert MNI coordinates into Talairach space, using a Talairach
native template. Lists of coordinates that were in Talairach space were converted into the
MNI space according to their original normalization schemes. For the Brett-Talairach list,
we converted the coordinates back into the MNI space using reverse transformation by Brett
(i.e., tal2mni)(Brett et al., 2002). For the native Talairach list, we used BrainMap’s
Talairach-MNI transformation (i.e., tal2icbm_other). A master list of all studies was created
by combining all coordinates in MNI space in preparation for the ALE meta-analyses in
GingerALE.

2.1.2 Experiment categorization—To test hypotheses with regards to the common and
distinct reward pathways that are recruited by different aspects of reward-related decision
making, we categorized coordinates according to two types of classification: reward valence
and decision stages. We adopted the term of “experiments” used by the BrainMap database
to refer to individual regressors or contrasts typically reported in fMRI studies. For reward
valence, we organized the experiments into positive and negative rewards. For decision
stages, we separated the experiments into reward anticipation, outcome, and evaluation.
Coordinates in the master list that fit into these categories were put into sub-lists; those that
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were difficult to interpret or not clearly defined were omitted. Below we list some examples
that were put into each of these categories.

The following contrasts were classified as processing of positive rewards: those in which
subjects won money or points (Elliott et al., 2000)(reward during run of success); avoided
losing money or points (Kim et al., 2006)(direct comparison between avoidance of an averse
outcome and reward receipt); won the larger of two sums of money or points (Knutson et al.,
2001a)(large vs. small reward anticipation); lost the smaller of two sums of money or points
(Ernst et al., 2005)(no-win $0.50 > no-win $4); received encouraging words or graphics on
the screen(Zalla et al., 2000) (increase for “win”); received sweet taste in their mouths
(O’Doherty et al., 2002)(glucose > neutral taste); positively evaluated the choice (Liu et al.,
2007)(right > wrong), or received any other type of positive rewards as a result of successful
completion of the task.

Experiments classified for negative rewards included those in which subjects lost money or
points (Elliott et al., 2000)(penalty during run of failure); did not win money or points (Ernst
et al., 2005)(dissatisfaction of no-win); won the smaller of two sums of money or points
(Knutson et al., 2001a)($1 vs. $50 reward); lost the larger of two sums of money or points
(Knutson et al., 2001a)(large vs. small punishment anticipation); negatively evaluated the
choice (Liu et al., 2007)(wrong > right); or received any other negative rewards such as the
administration of a bitter taste in their mouths (O’Doherty et al., 2002)(salt > neutral taste)
or discouraging words or images (Zalla et al., 2000)(increase for “lose” and decrease for
“win”).

Reward anticipation was defined as the time period when the subject was pondering
potential options before making a decision. For example, placing a bet and expecting to win
money on that bet would be classified as anticipation (Cohen and Ranganath, 2005)(high-
risk vs. low-risk decision). Reward outcome/delivery was classified as the period when the
subject received feedback on the chosen option, such as a screen with the words “win x$” or
“lose x$” (Bjork et al., 2004)(gain vs. non-gain outcome). When the feedback influenced the
subject’s decision and behavior in a subsequent trial or was used as a learning signal, the
contrast was classified as reward evaluation. For example, a risky decision that is rewarded
in the initial trial may lead a subject to take another, perhaps bigger, risk in the next trial
(Cohen and Ranganath, 2005)(low-risk rewards followed by high-risk vs. low-risk
decisions). Loss aversion, the tendency for people to strongly prefer avoiding losses to
acquiring gains, is another example of evaluation (Tom et al., 2007)(relation between
lambda and neural loss aversion).

2.2 Activation likelihood estimation (ALE)
The algorithm of ALE is based on (Eickhoff et al., 2009). ALE models the activation foci as
3D Gaussian distributions centered at the reported coordinates, and then calculates the
overlap of these distributions across different experiments (ALE treats each contrast in a
study as a separate experiment). The spatial uncertainty associated with activation foci is
estimated with respect to the number of subjects in each study (i.e., a larger sample produces
more reliable activation patterns and localization; therefore the coordinates are convolved
with a tighter Gaussian kernel). The convergence of activation patterns across experiments is
calculated by taking the union of the above modeled activation maps. A null distribution that
represents ALE scores generated by random spatial overlap across studies is estimated
through permutation procedure. Finally the ALE map computed from the real activation
coordinates is tested against the ALE scores from the null distribution, producing a
statistical map representing the p values of the ALE scores. The nonparametric p values are
then transformed into z scores and thresholded at a cluster-level corrected p<0.05.
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Six different ALE analyses were conducted using GingerALE 2.0 (Eickhoff et al., 2009),
one for the main analysis of all studies, and one for each of the five sub-lists characterizing
brain activation by positive or negative rewards as well as anticipation, outcome, and
evaluation. Two subtraction ALE analyses were conducted using GingerALE 1.2
(Turkeltaub et al., 2002), one for the contrast between positive and negative rewards, and the
other for the contrast between anticipation and outcome.

2.2.1 Main analysis of all studies—All 142 studies were included in the main analysis,
which consisted of 5214 foci from 655 experiments (contrasts). We used the algorithm
implemented in GingerALE 2.0, which models the ALE based on the spatial uncertainty of
each focus using an estimation of the inter-subject and inter-experiment variability. The
estimation was constrained by a gray matter mask and estimated the above-chance clustering
with the experiments as a random-effects factor, rather than using a fixed-effects analysis on
foci (Eickhoff et al., 2009). The resulting ALE map was thresholded using the false discover
rate (FDR) method with p<0.05 and a minimum cluster size of 60 voxels of 2×2×2 mm (for
a total of 480 mm3) to protect against false positives of multiple comparisons.

2.2.2 Individual analyses of sub-lists—Five other ALE analyses were also conducted
based on the sub-lists that categorize different experiments into positive and negative
rewards, as well as reward anticipation, reward delivery (outcome), and choice evaluation.
For the positive reward analysis, 2167 foci from 283 experiments were included. The
negative reward analysis consisted of 935 foci from 140 experiments. The numbers of foci
included in the analyses for anticipation, outcome, and choice evaluation were 1553 foci
(185 experiments), 1977 (253), and 520 (97), respectively. We applied the same analysis and
threshold approaches as we did for the main analysis above.

2.2.3 Subtraction analyses—We were also interested in contrasting the brain areas that
were selectively or preferentially activated by positive versus negative rewards, and by
reward anticipation versus reward delivery. GingerALE 1.2 was used to conduct these two
analyses. ALE maps were smoothed with a kernel with a FWHM of 10 mm. A permutation
test of randomly distributed foci with 10000 simulations was run to determine statistical
significance of the ALE maps. To correct for multiple comparisons, the resulting ALE maps
were thresholded using the FDR method with p<0.05 and a minimum cluster size of 60
voxels.

2.3 Parametric voxel-based meta-analysis (PVM)
We also analyzed the same coordinate lists using another meta-analysis approach, PVM. In
contrast to the ALE analysis, which treats different contrasts within a study as distinct
experiments, PVM analysis pools peaks from all different contrasts within a study and
creates a single coordinate map for the specific study (Costafreda et al., 2009). Therefore,
the random-effects factor in the PVM analysis is the studies, in comparison to individual
experiments/contrasts in the ALE analysis. This further reduces estimation bias caused by
studies with multiple contrasts that reporting similar activation patterns. Similar to the ALE
approach, we conducted six different PVM analyses using the algorithms implemented in R
statistical software (http://www.R-project.org) from a previous study (Costafreda et al.,
2009), one for the main analysis of all studies, and one for each of the five sub-lists
characterizing brain activation by different aspects of reward processing. Two additional
PVM analyses were conducted using the same code base to compare between positive and
negative rewards as well as between reward anticipation and outcome.

2.3.1 Main analysis of all studies—MNI coordinates (5214) from the same 142 studies
used in the ALE analysis were transformed into a text table, with each study identified by a
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unique study identification label. Computations on the peak map were constrained within a
mask in MNI space. The peak map was first smoothed with a uniform kernel (ρ = 10 mm) to
generate the summary map, which represents the number of studies reporting overlapping
activation peaks within a neighborhood of 10 mm radius. Next, random-effects PVM
analysis was run to estimate statistical significance associated with each voxel in the
summary map. The number of studies in the summary map was converted into the
proportion of studies that reported concordant activation. We used the same threshold as
used in ALE analysis to identify significant clusters for the proportion map (using the FDR
method with p<0.05 and a minimum cluster size of 60 voxels).

2.3.2 Individual analyses of sub-lists—Five other PVM analyses were conducted on
the sub-lists for positive and negative rewards, as well as reward anticipation, outcome, and
evaluation. The positive reward analysis included 2167 foci from 111 studies whereas the
negative reward analysis included 935 foci from 67 studies. The numbers of studies included
in the analyses for anticipation, outcome, and choice evaluation were 1553 foci (65 studies),
1977 (86), and 520 (39), respectively. We applied the same analysis and threshold
approaches as we did for the main analysis above.

2.3.3 Comparison analyses—We also conducted two PVM analyses to compare the
activation patterns between positive and negative rewards as well as between reward
anticipation and outcome. Two peak maps (e.g., one for positive and the other for negative)
were first smoothed with a uniform kernel (ρ = 10 mm) to generate the summary maps, each
representing the number of studies with overlapping activation peak within a neighborhood
of 10 mm radius. These two summary maps were entered into a Fisher test to estimate the
odds ratio and statistical significance p value for each contributing voxel within the MNI
space mask. Since the Fisher test is not specifically developed for fMRI data analysis and
empirically less sensitive than the other methods, we applied a relatively lenient threshold
for the direct comparison PVM analysis, using uncorrected p<0.01 and a minimum cluster
size of 60 voxels (Xiong et al., 1995), to correct for multiple comparison Type I error.

3. Results
3.1 ALE results

The all-inclusive analysis of 142 studies showed significant activation of a large cluster that
encompassed the bilateral nucleus accumbens (NAcc), pallidum, anterior insula, lateral/
medial OFC, anterior cingulate cortex (ACC), supplementary motor area (SMA), lateral
prefrontal cortex (PFC), right amygdala, left hippocampus, thalamus, and brain stem (Figure
1A). Other smaller clusters included the right middle frontal gyrus and left middle/inferior
frontal gyrus, bilateral inferior/superior parietal lobule, and posterior cingulate cortex (PCC)
(Table 1).

Positive rewards activated a subset of the above mentioned networks, including the bilateral
pallidum, anterior insula, thalamus, brain stem, medial OFC, ACC, SMA, PCC, and other
frontal and parietal areas (Figure 1B and Table 2, also see Supplementary Materials - Figure
S1A). Negative rewards showed activation in the bilateral NAcc, caudate, pallidum, anterior
insula, amygdale, thalamus, brain stem, rostral ACC, dorsomedial PFC, lateral OFC, and
right middle and inferior frontal gyrus (Figure 1B and Table 2, also see Supplementary
Materials - Figure S1B). Contrasting activation by positive versus negative rewards, we
found that positive rewards significantly activated the following regions to a great degree:
bilateral NAcc, anterior insula, medial OFC, hippocampus, left putamen, and thalamus
(Figure 1D and Table 4). None showed more activation by negative than positive rewards.
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Different reward processing stages shared similar brain activation patterns in the above-
mentioned core networks, including the bilateral NAcc, anterior insula, thalamus, medial
OFC, ACC, and dorsomedial PFC (Figure 1C and Table 3, also see Supplementary
Materials - Figures S1C–E). Reward anticipation, as compared to reward outcome, revealed
greater activation in the bilateral anterior insula, ACC, SMA, left inferior parietal lobule and
middle frontal gyrus (Figure 1E and Table 5). Outcome preferential activation included
bilateral NAcc, caudate, thalamus, and medial/lateral OFC (Table 5).

3.2 PVM results
The main analysis of 142 studies showed significant activation in bilateral NAcc, anterior
insula, lateral/medial OFC, ACC, PCC, inferior parietal lobule, and middle frontal Gyrus
(Figure 2A and Table 6).

Positive rewards activated the bilateral NAcc, pallidum, putamen, thalamus, medial OFC,
pregenual cingulate cortex, SMA, and PCC (Figure 2B and Table 7, also see Supplementary
Materials - Figure S2A). Activation by negative rewards was found in the bilateral NAcc
and anterior insula, pallidum, ACC, SMA, and middle/inferior frontal gyrus (Figure 2B and
Table 7, also see Supplementary Materials - Figure S2B). Direct contrast between positive
and negative rewards revealed preferential activation by positive rewards in the NAcc,
pallidum, medial OFC, and PCC, and greater activation by negative rewards in ACC and
middle/inferior frontal gyrus (Figure 2D and Table 9).

Different reward processing stages similarly activated the NAcc and ACC whereas they
differentially recruited other brain areas such as medial OFC, anterior insula, and amygdala
(Figure 2C and Table 8, also see Supplementary Materials - Figure S2C–E). Reward
anticipation, as compared to reward outcome, revealed significant activation in the bilateral
anterior insula, thalamus, precentral gyrus, and inferior parietal lobule (Figure 2E and Table
10). No brain area showed greater activation by reward outcome in comparison to
anticipation.

3.3 Comparison of ALE and PVM results
The current study also showed that although ALE and PVM methods treated the coordinate-
based data differently and adopted distinct estimation algorithms, the results for a single list
of coordinates from these two meta-analysis approaches were very similar and comparable
(Figures 1A–C and 2A–C, Table 11, also see Figures S1 and S2 in the Supplementary
Materials). The improved ALE algorithm implemented in GingerALE 2.0, by design, treats
experiments (or contrasts) as the random-effects factor, which significantly reduces the bias
caused by experiments reporting more loci versus those with fewer loci. Different studies,
however, include different number of experiments/contrasts. Therefore, the results of
GingerALE 2.0 may still be affected by the bias that weighs more toward studies reporting
more contrasts, potentially overestimating cross-study concordance. However, by choice,
users can combine coordinates from different contrasts together so that GingerALE 2.0 can
treat each study as a single experiment. This is what PVM implements, pooling coordinates
from all contrasts within a study into a single activation map, thus weighing all studies
equally to estimate activation overlap across studies.

In contrast, comparison of two lists of coordinates differed significantly between ALE and
PVM approaches (Table 11), as a result of their differences in sensitivity to within-study and
cross-study convergence. Since the improved ALE algorithm has not been implemented for
the subtractive ALE analysis, we used an earlier version, GingerALE 1.2, which treats the
coordinates as the random-effects factor and experiments as the fixed-effects variable.
Therefore differences in both the numbers of coordinates and experiments in two lists may
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affect the subtraction results. The subtractive ALE analysis biased toward the list with more
experiments against the other with fewer (Figure 1D/E). Positive reward studies (2167 foci
from 283 experiments) clearly predominated over negative studies (935 foci from 140
experiments). The difference between reward anticipation (1553 foci from 185 experiments)
and outcome (1977 foci from 253 experiments) was smaller, but could have also caused the
bias toward the outcome phase. On the other hand, the use of the Fisher test to estimate the
odds ratio and assign voxels in one of the two lists by PVM seemed to be less sensitive in
detecting activation difference between the two lists (Figure 2D/E).

4. Discussion
We are constantly making decisions in our everyday life. Some decisions involve no
apparent positive or negative values of the outcomes whereas others have significant
impacts on the valence of the results and our emotional responses toward the choices we
make. We may feel happy and satisfied when the outcome is positive or our expectation is
fulfilled, or feel frustrated when the outcome is negative or lower than what we anticipated.
Moreover, many decisions must be made without advance knowledge of their consequences.
Therefore, we need to be able to make predictions about the future reward, and evaluate the
reward value and potential risk of obtaining it or being penalized. This requires us to
evaluate the choice we make based on the presence of prediction errors and to use these
signals to guide our learning and future behaviors. Many neuroimaging studies have
examined reward-related decision making. However, given the complex and heterogeneous
psychological processes involved in value-based decision making, it is no trivial task to
examine neural networks that subserve representation and processing of reward-related
information. We have observed a rapid growth in the number of empirical studies in the
field of neuroeconomics, yet thus far it has been hard to see how these studies have
converged so as to clearly delineate the reward circuitry in the human brain. In the current
meta-analysis study, we have showed concordance across a large number of studies and
revealed the common and distinct patterns of brain activation by different aspects of reward
processing. In a data-driven fashion, we pooled over all coordinates from different contrasts/
experiments of 142 studies, and observed a core reward network, which consists of the
NAcc, lateral/medial OFC, ACC, anterior insula, dorsomedial PFC, as well as the lateral
frontoparietal areas. A recent meta-analysis study focusing on risk assessment in decision
making reported a similar reward circuitry (Mohr et al., 2010). In addition, from a theory-
driven perspective, we contrasted neural networks that were involved in positive and
negative valence across anticipation and outcome stages of reward processing, and
elucidated distinct neural substrates subserving valence-related assessment as well as their
preferential involvement in anticipation and outcome.

4.1 Core reward areas: NAcc and OFC
The NAcc and OFC have long been conceived as the major players in reward processing
because they are the main projection areas of two distinct dopaminergic pathways, the
mesolimbic and mesocortical pathways, respectively. However, it remains unknown how
dopamine neurons distinctively modulate activity in these limbic and cortical areas. Previous
studies have tried to differentiate the roles of these two structures in terms of temporal
stages, associating the NAcc with reward anticipation and relating the medial OFC to receipt
of reward (Knutson et al., 2001b; Knutson et al., 2003; Ramnani et al., 2004). Results from
other studies questioned such a distinction (Breiter et al., 2001; Delgado et al., 2005; Rogers
et al., 2004). Many studies also implied that the NAcc was responsible for detecting
prediction error, a crucial signal in incentive learning and reward association (McClure et
al., 2003; O’Doherty et al., 2003b; Pagnoni et al., 2002). Studies also found that the NAcc
showed a biphasic response, such that activity in the NAcc would decrease and drop below
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the baseline in response to negative prediction errors (Knutson et al., 2001b; McClure et al.,
2003; O’Doherty et al., 2003b). Although the OFC usually displays similar patterns of
activity as the NAcc, previous neuroimaging studies in humans have suggested that the OFC
serves to convert a variety of stimuli into a common currency in terms of their reward values
(Arana et al., 2003; Cox et al., 2005; Elliott et al., 2010; FitzGerald et al., 2009; Gottfried et
al., 2003; Kringelbach et al., 2003; O’Doherty et al., 2001; Plassmann et al., 2007). These
findings paralleled those obtained from single cell recording and lesion studies in animals
(Schoenbaum and Roesch, 2005; Schoenbaum et al., 2009; Schoenbaum et al., 2003; Schultz
et al., 2000; Tremblay and Schultz, 1999, 2000; Wallis, 2007).

Our overall analyses showed that the NAcc and OFC responded to general reward
processing (Figure 1A and Figure 2A). Activation in the NAcc largely overlapped across
different stages, whereas the medial OFC was more tuned to reward receipt (Figure 1C/E
and Figure 2C). These findings highlighted that the NAcc may be responsible for tracking
both positive and negative signals of reward and using them to modulate learning of reward
association, whereas the OFC mostly monitors and evaluates reward outcomes. Further
investigation is needed to better differentiate the roles of the NAcc and OFC in reward-
related decision making (Frank and Claus, 2006; Hare et al., 2008).

4.2 Valence-related assessment
In addition to converting various reward options into common currency and representing
their reward values, distinct brain regions in the reward circuitry may separately encode
positive and negative valences of reward. Direct comparisons across reward valence
revealed that both the NAcc and medial OFC were more active in response to positive
versus negative rewards (Figure 1B/D and Figure 2B/D). In contrast, the anterior insular
cortex was involved in the processing of negative reward information (Figure 1B and Figure
2B). These results confirmed the medial-lateral distinction for positive versus negative
rewards (Kringelbach, 2005; Kringelbach and Rolls, 2004), and were consistent with what
we observed in our previous study on a reward task (Liu et al., 2007). Sub-regions of the
ACC uniquely responded to positive and negative rewards. Pregenual and rostral ACC,
close to the medial OFC, were activated by positive rewards whereas the caudal ACC
responded to negative rewards (Figure 1B and Figure 2B). ALE and PVM meta-analyses
also revealed that the PCC was consistently activated by positive rewards (Figure 1B and
Figure 2B).

Interestingly, separate networks encoding positive and negative valences are similar to the
distinction between two anti-correlated networks, the default-mode network and task-related
network (Fox et al., 2005; Raichle et al., 2001; Raichle and Snyder, 2007). Recent meta-
analyses found that the default-mode network mainly involved the medial prefrontal regions
(including the medial OFC) and medial posterior cortex (including the PCC and precuneus),
and the task-related network includes the ACC, insula, and lateral frontoparietal regions
(Laird et al., 2009; Toro et al., 2008). Activation in the medial OFC and PCC by positive
rewards mirrored the default-mode network commonly observed during the resting state,
whereas activation in the ACC, insula, lateral prefrontal cortex by negative rewards
paralleled the task-related network. This intrinsic functional organization of the brain was
found to influence reward and risky decision making and account for individual differences
in risk-taking traits (Cox et al., 2010).

4.3 Anticipation versus outcome
The bilateral anterior insula, ACC/SMA, inferior parietal lobule, and brain stem showed
more consistent activation in anticipation in comparison to the outcome phase (Figure 1C/E
and Figure 2C/E). The anterior insula and ACC have previously been implicated in
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interoception, emotion and empathy (Craig, 2002, 2009; Gu et al., 2010; Phan et al., 2002),
and risk and uncertainty assessment (Critchley et al., 2001; Kuhnen and Knutson, 2005;
Paulus et al., 2003), lending its role in anticipation. The anterior insula was consistently
involved in risk processing, especially in anticipation of loss, as revealed by a recent meta-
analysis (Mohr et al., 2010). Similar to the role of the OFC, the parietal lobule has been
associated with valuation of different options (Sugrue et al., 2005), numerical representation
(Cohen Kadosh et al., 2005; Hubbard et al., 2005), and information integration (Gold and
Shadlen, 2007; Yang and Shadlen, 2007). Therefore, it is crucial for the parietal lobule to be
involved in the anticipation stage of reward processing so as to plan and prepare for an
informed action (Andersen and Cui, 2009; Lau et al., 2004a; Lau et al., 2004b).

On the other hand, the ventral striatum, medial OFC, and amygdala showed preferential
activation during reward outcome in comparison to the anticipation stage (Figure 1C/E and
Figure 2C). These patterns were consistent with what we and other investigators found
previously (Breiter et al., 2001; Delgado et al., 2005; Liu et al., 2007; Rogers et al., 2004),
standing against the functional dissociation between the ventral striatum and medial OFC in
terms of their respective roles in reward anticipation and reward outcome (Knutson et al.,
2001a; Knutson et al., 2001b; Knutson et al., 2003).

4.4 A schematic illustration of reward processing
Based on the findings of common and distinct networks involved in various aspects of
reward decision making, we have come up with a schematic illustration to summarize the
distributed representations of valuation and valence in reward processing (Figure 3). We
tentatively group different brain regions based on their roles in different processes, although
each region may serve multiple functions and interact with other brain areas in a far more
complex way. When facing alternative choices, each of which has distinctive characteristics
such as magnitude and probability, these properties need to be converted into comparable
value-based information, a “common currency”. Not only do we compare the values of these
alternative choices, but we also compare the factual and projected values as well as the
fictional values associated with the un-chosen choice (e.g., the prediction error signal). The
ventral striatum and medial OFC have been implicated in this value-based representation.
The inferior parietal lobule has also been found to be involved in representing and
comparing numerical information. In addition, value-based decision making inevitably
results in evaluation of the choices, based on the valence of the outcomes and associated
emotional responses. While the ventral striatum and medial OFC are also involved in
detecting the positive reward valence, the lateral OFC, anterior insula, ACC and amygdala
are mostly implicated in processing of the negative reward valence, most likely linked to
their evaluative roles in negative emotional responses. Because of the negative affect usually
associated with risk, the anterior insula and ACC are also involved in reward anticipation of
risky decisions, especially for uncertainty-averse responses in anticipation of loss. Finally,
the frontoparietal regions serve to integrate and act upon these signals in order to produce
optimal decisions (e.g., win-stay-loss-switch).

4.5 Caveats
A couple of methodological caveats need to be noted. The first is related to the bias in
reporting the results in different studies. Some studies are purely ROI-based, which were
excluded from the current study. Still, others singled out or put more emphasis on a prior
regions by reporting more coordinates or contrasts related to those regions. They could bias
the results toward confirming the “hotspots”. Secondly, we want to caution about conceptual
distinction of different aspects of reward processing. We classified various contrasts into
different categories of theoretical interest. However, with real life decisions or in many
experimental tasks, these aspects do not necessarily have clear divisions. For example,
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evaluation of the previous choice and reward outcome may intermingle with upcoming
reward anticipation and decision making. There is no clear boundary across different stages
of reward processing, leaving our current classification open for discussion. Nonetheless,
this hypothesis-driven approach is greatly needed (Caspers et al., 2010; Mohr et al., 2010;
Richlan et al., 2009), which complements the data-driven nature of meta-analysis. Many
factors related to reward decision making, such as risk assessment and types of reward (e.g.,
primary vs. secondary, monetary vs. social), call for additional meta-analyses.

Research Highlights

• We conducted two sets of coordinate-based meta-analyses on 142 fMRI studies
of reward.

• The core reward circuitry included the nucleus accumbens, insula, orbitofrontal,
cingulate, and frontoparietal regions.

• The nucleus accumbens was activated by both positive and negative rewards
across various reward processing stages.

• Other regions showed preferential responses toward positive or negative
rewards, or during anticipation or outcome.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Concordance of brain activation from the ALE analyses. A. Core network activated by all
contrasts/experiments. B. Overlay of brain areas separately involved in positive versus
negative reward processing. C. Overlay of brain areas individually activated by different
reward processing stages, anticipation, outcome, and evaluation. D. Direct contrast of brain
activation between positive and negative reward processing. E. Direct contrast of brain
activation between reward anticipation and outcome.
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Figure 2.
Concordance of brain activation from the PVM analyses. A. Core network activated by all
contrasts/experiments. B. Overlay of brain areas separately involved in positive versus
negative reward processing. C. Overlay of brain areas individually activated by different
reward processing stages, anticipation, outcome, and evaluation. D. Direct contrast of brain
activation between positive and negative reward processing. E. Direct contrast of brain
activation between reward anticipation and outcome.
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Figure 3.
A schematic framework illustrates the roles of core brain areas involved in different aspects
of reward-related decision making. The grid pattern denotes the medial orbitofrontal cortex
encoding positive valence; the dash pattern denotes the anterior insula, lateral orbitofrontal
cortex, anterior cingulate cortex, and amygdala encoding negative valence; the wave pattern
denotes the ventral striatum encoding both positive and negative valence; the diamond
pattern denotes the frontoparietal network being involved in information integration.

Liu et al. Page 25

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 26

Ta
bl

e 
1

B
ra

in
 a

re
as

 c
om

m
on

ly
 a

ct
iv

at
ed

 b
y 

al
l s

tu
di

es
 f

ro
m

 th
e 

A
L

E
 a

na
ly

si
s 

(F
D

R
 p

<
0.

05
 a

nd
 a

 m
in

im
um

 c
lu

st
er

 s
iz

e 
of

 6
0 

vo
xe

ls
).

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

N
uc

le
us

 A
cc

um
be

ns
R

12
10

−
6

59
19

46
1

Pa
lli

du
m

L
−

10
8

−
4

56

In
su

la
R

36
20

−
6

23

In
su

la
L

−
32

20
−

4
21

D
or

so
m

ed
ia

l F
ro

nt
al

 C
or

te
x

L
0

24
40

19

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

0
54

−
8

19

A
m

yg
da

la
R

24
−

2
−

16
15

T
ha

la
m

us
R

4
−

14
8

15

T
ha

la
m

us
L

−
6

−
16

8
15

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
0

8
48

14

B
ra

in
 S

te
m

R
8

−
18

−
10

14

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

44
20

12

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
2

−
8

50
11

B
ra

in
 S

te
m

L
−

6
−

18
−

10
11

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

0
44

10
11

B
ra

in
 S

te
m

L
−

4
−

24
−

4
10

M
id

dl
e 

Fr
on

ta
l G

yr
us

L
−

24
2

52
9

In
su

la
L

−
38

−
4

6
9

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

R
24

40
−

14
9

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

L
−

16
42

−
14

9

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
40

32
32

10
73

9

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
44

16
30

8

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

28
−

56
48

11
59

8

Su
pe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

24
−

68
56

10

A
ng

ul
ar

 G
yr

us
R

28
−

58
50

10
47

5

A
ng

ul
ar

 G
yr

us
R

44
−

52
50

8

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

−
32

32
12

42
5

Fr
on

ta
l P

ol
e

L
−

36
50

10
9

33
7

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

L
−

46
42

−
4

7

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 27

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

L
−

42
52

−
6

7

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
30

4
50

7
21

0

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

−
50

26
8

20
5

M
id

dl
e 

Fr
on

ta
l G

yr
us

L
−

44
28

30
7

13
9

Su
pe

ri
or

 F
ro

nt
al

 G
yr

us
L

−
22

30
48

9
12

9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 28

Ta
bl

e 
2

B
ra

in
 a

re
as

 a
ct

iv
at

ed
 b

y 
po

si
tiv

e 
or

 n
eg

at
iv

e 
re

w
ar

ds
 f

ro
m

 th
e 

A
L

E
 a

na
ly

si
s 

(F
D

R
 p

<
0.

05
 a

nd
 a

 m
in

im
um

 c
lu

st
er

 s
iz

e 
of

 6
0 

vo
xe

ls
).

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

P
os

iti
ve

Pa
lli

du
m

R
12

8
−

4
35

92
54

Pa
lli

du
m

L
−

12
8

−
4

33

In
su

la
R

36
20

−
2

10

In
su

la
L

−
32

18
−

4
8

T
ha

la
m

us
R

4
−

14
8

7

T
ha

la
m

us
L

−
10

−
22

12
5

H
ip

po
ca

m
pu

s
L

−
30

−
20

−
18

6

B
ra

in
 S

te
m

L
−

4
−

18
−

12
5

H
ip

po
ca

m
pu

s
L

−
24

−
14

−
12

5

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

L
−

28
28

−
12

5

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
L

−
52

18
0

4

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
2

54
−

6
10

34
83

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
R

2
48

−
14

10

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
R

2
8

48
8

Pr
eg

en
ua

l C
in

gu
la

te
 C

or
te

x
R

4
42

18
7

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

−
30

32
6

29
2

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

30
−

60
48

5
22

2

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

−
50

26
4

16
6

N
eg

at
iv

e

Pa
lli

du
m

L
−

10
6

−
2

9
57

05

N
uc

le
us

 A
cc

um
be

ns
L

−
16

12
−

10
8

N
uc

le
us

 A
cc

um
be

ns
R

12
10

−
8

7

In
su

la
R

36
20

−
6

6

C
au

da
te

R
10

6
4

5

In
su

la
L

−
28

24
−

8
5

A
m

yg
da

la
R

26
0

−
18

5

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
6

24
34

7
11

02

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
R

52
10

22
3

19
5

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 29

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

Pr
ec

en
tr

al
 G

yr
us

L
−

48
4

26
4

18
9

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
44

28
36

2
12

5

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

L
−

18
44

−
12

3
98

Fr
on

ta
l P

ol
e

L
−

36
50

10
4

91

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 30

Ta
bl

e 
3

B
ra

in
 a

re
as

 a
ct

iv
at

ed
 b

y 
an

tic
ip

at
io

n,
 o

ut
co

m
e,

 a
nd

 e
va

lu
at

io
n 

fr
om

 th
e 

A
L

E
 a

na
ly

si
s 

(F
D

R
 p

<
0.

05
 a

nd
 a

 m
in

im
um

 c
lu

st
er

 s
iz

e 
of

 6
0 

vo
xe

ls
).

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

A
nt

ic
ip

at
io

n

N
uc

le
us

 A
cc

um
be

ns
R

12
10

−
4

20
79

60

N
uc

le
us

 A
cc

um
be

ns
L

−
12

10
−

6
20

In
su

la
R

38
20

−
8

10

In
su

la
L

−
32

18
−

6
8

T
ha

la
m

us
R

4
−

12
12

6

T
ha

la
m

us
L

−
10

−
22

12
6

B
ra

in
 S

te
m

R
8

−
18

−
10

6

B
ra

in
 S

te
m

L
−

4
−

24
−

6
5

Pu
ta

m
en

R
24

4
0

5

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
R

2
8

48
8

22
58

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
2

24
40

7

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
4

38
38

5

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

28
34

7

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
2

−
6

50
4

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
2

50
−

16
5

45
0

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

28
−

58
50

5
32

7

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
40

28
34

4
19

2

Su
pe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

R
34

−
52

52
3

13
1

M
id

dl
e 

Fr
on

ta
l G

yr
us

L
−

26
4

52
4

11
9

Pr
ec

en
tr

al
 G

yr
us

L
−

44
6

30
3

95

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

−
30

32
4

94

O
ut

co
m

e

N
uc

le
us

 A
cc

um
be

ns
R

12
10

−
6

27
11

32
2

N
uc

le
us

 A
cc

um
be

ns
L

−
10

8
−

4
26

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
2

56
−

6
10

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
R

2
48

−
14

9

A
m

yg
da

la
R

26
0

−
16

10

In
su

la
R

36
22

−
8

9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 31

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

In
su

la
L

−
28

24
−

8
7

T
ha

la
m

us
R

4
−

16
6

9

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
8

24
32

7

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
R

4
22

52
6

Fr
on

ta
l P

ol
e

L
−

18
40

−
16

6

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

0
−

22
32

5
34

5

Su
pe

ri
or

 F
ro

nt
al

 G
yr

us
L

−
24

30
48

5
15

0

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
R

2
−

6
50

4
14

7

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
L

−
54

18
16

3
11

3

O
cc

ip
ita

l P
ol

e
L

−
32

−
94

−
12

5
11

1

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
44

36
28

4
11

0

E
va

lu
at

io
n

Pa
lli

du
m

L
−

10
4

−
4

7
28

46

Pu
ta

m
en

L
−

26
6

−
8

5

N
uc

le
us

 A
cc

um
be

ns
R

10
10

−
10

5

N
uc

le
us

 A
cc

um
be

ns
L

−
16

4
−

14
5

D
or

so
m

ed
ia

l F
ro

nt
al

 C
or

te
x

L
−

2
24

42
3

58
5

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
6

26
34

3

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

2
32

30
3

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

R
30

30
−

16
3

36
3

In
su

la
R

38
18

−
4

2

C
au

da
te

R
20

4
18

2
20

2

Fr
on

ta
l P

ol
e

L
−

36
50

10
4

13
7

Fr
on

ta
l P

ol
e

R
32

54
−

4
2

13
2

Pr
ec

en
tr

al
 G

yr
us

L
−

48
4

24
3

10
0

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 32

Ta
bl

e 
4

B
ra

in
 a

re
as

 d
if

fe
re

nt
ia

lly
 a

ct
iv

at
ed

 b
y 

po
si

tiv
e 

an
d 

ne
ga

tiv
e 

re
w

ar
ds

 f
ro

m
 th

e 
A

L
E

 s
ub

tr
ac

tio
n 

an
al

ys
is

 (
FD

R
 p

<
0.

05
 a

nd
 a

 m
in

im
um

 c
lu

st
er

 s
iz

e 
of

 6
0

vo
xe

ls
).

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

P
os

iti
ve

 >
 N

eg
at

iv
e

N
uc

le
us

 A
cc

um
be

ns
R

12
8

−
4

17
7

59
51

N
uc

le
us

 A
cc

um
be

ns
L

−
10

10
−

4
15

7

Pu
ta

m
en

L
−

24
4

6
38

B
ra

in
 S

te
m

L
−

4
−

18
−

14
37

H
ip

po
ca

m
pu

s
L

−
30

−
20

−
18

36

H
ip

po
ca

m
pu

s
L

−
24

−
14

−
12

35

In
su

la
R

42
−

4
−

4
32

T
ha

la
m

us
L

−
10

−
24

12
32

In
su

la
L

−
30

18
−

2
30

H
ip

po
ca

m
pu

s
R

20
−

22
−

10
27

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
0

48
−

12
72

18
55

Pr
eg

en
ua

l C
in

gu
la

te
 C

or
te

x
R

2
46

8
52

Pr
eg

en
ua

l C
in

gu
la

te
 C

or
te

x
R

4
44

16
45

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
R

2
6

48
49

41
9

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

0
−

32
32

43
36

1

In
su

la
R

36
22

0
38

20
7

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

0
−

50
26

30
18

1

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

30
−

62
48

33
14

9

Fr
on

ta
l P

ol
e

R
30

46
−

10
30

14
5

P
os

iti
ve

 <
 N

eg
at

iv
e

N
on

e

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 33

Ta
bl

e 
5

B
ra

in
 a

re
as

 d
if

fe
re

nt
ia

lly
 a

ct
iv

at
ed

 b
y 

an
tic

ip
at

io
n 

an
d 

ou
tc

om
e 

fr
om

 th
e 

A
L

E
 s

ub
tr

ac
tio

n 
an

al
ys

is
 (

FD
R

 p
<

0.
05

 a
nd

 a
 m

in
im

um
 c

lu
st

er
 s

iz
e 

of
 6

0
vo

xe
ls

).

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

A
nt

ic
ip

at
io

n 
>

 O
ut

co
m

e

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

2
8

50
52

54
5

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
4

40
36

30

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
4

22
40

29

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
6

46
24

24

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

30
32

21

B
ra

in
 S

te
m

R
6

−
18

−
10

34
27

5

B
ra

in
 S

te
m

L
−

6
−

24
−

12
23

In
su

la
L

−
42

−
6

4
32

22
9

Pa
lli

du
m

L
−

22
−

4
2

19

In
su

la
R

40
16

−
6

31
15

0

In
su

la
R

34
26

2
25

T
ha

la
m

us
R

6
0

4
37

14
3

T
ha

la
m

us
L

−
10

−
22

12
27

13
6

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

28
−

60
50

31
11

3

M
id

dl
e 

Fr
on

ta
l G

yr
us

L
−

44
18

36
22

99

A
nt

ic
ip

at
io

n 
<

 O
ut

co
m

e

N
uc

le
us

 A
cc

um
be

ns
L

−
18

8
−

14
69

44
91

A
m

yg
da

la
R

26
0

−
16

61

N
uc

le
us

 A
cc

um
be

ns
R

14
10

−
12

57

C
au

da
te

L
−

8
14

2
56

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
2

56
−

6
54

C
au

da
te

R
8

20
2

52

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
R

4
48

−
14

50

N
uc

le
us

 A
cc

um
be

ns
L

−
8

8
−

4
48

Pr
eg

en
ua

l C
in

gu
la

te
 C

or
te

x
R

4
34

10
34

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

L
−

18
40

−
16

33

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

L
−

40
44

−
16

28

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 34

R
eg

io
n

L
/R

x
y

z
A

L
E

 (
10

−3
)

Si
ze

M
ed

ia
l S

up
er

io
r 

Fr
on

ta
l C

or
te

x
R

4
62

14
27

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
10

42
−

8
27

O
cc

ip
ita

l P
ol

e
L

−
30

−
94

−
14

34
17

5

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
L

−
38

34
12

25
11

3

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

L
−

50
24

−
14

26
11

1

Fr
on

ta
l P

ol
e

R
46

34
−

6
22

11
0

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 35

Ta
bl

e 
6

B
ra

in
 a

re
as

 c
om

m
on

ly
 a

ct
iv

at
ed

 b
y 

al
l s

tu
di

es
 f

ro
m

 th
e 

PV
M

 a
na

ly
si

s 
(F

D
R

 p
<

0.
05

 a
nd

 a
 m

in
im

um
 c

lu
st

er
 s

iz
e 

of
 6

0 
vo

xe
ls

).

L
ab

el
L

/R
x

y
z

P
V

M
 (

10
−2

)
Si

ze

N
uc

le
us

 A
cc

um
be

ns
R

12
8

−
10

54
92

16

Pu
ta

m
en

L
−

16
4

−
10

54

N
uc

le
us

 A
cc

um
be

ns
L

−
8

6
−

6
51

In
su

la
R

38
20

−
2

32

In
su

la
R

30
18

−
8

31

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
2

22
36

30
30

32

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
4

50
−

10
27

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
8

42
−

18
25

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

34
28

24

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
6

38
−

12
24

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
36

36
30

20
28

8

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
44

34
22

20

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
40

22
34

17

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
48

38
16

15

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

36
−

58
48

20
15

5

Su
pe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

26
−

66
50

18

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

2
−

34
30

19
11

4

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

R
34

50
−

6
21

63

L
at

er
al

 O
rb

ito
fr

on
ta

l C
or

te
x

R
30

52
0

17

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 36

Ta
bl

e 
7

B
ra

in
 a

re
as

 a
ct

iv
at

ed
 b

y 
po

si
tiv

e 
or

 n
eg

at
iv

e 
re

w
ar

ds
 f

ro
m

 th
e 

PV
M

 a
na

ly
si

s 
(F

D
R

 p
<

0.
05

 a
nd

 a
 m

in
im

um
 c

lu
st

er
 s

iz
e 

of
 6

0 
vo

xe
ls

).

L
ab

el
L

/R
x

y
z

P
V

M
 (

10
−2

)
Si

ze

P
os

iti
ve

N
uc

le
us

 A
cc

um
be

ns
L

−
16

8
−

8
46

66
09

N
uc

le
us

 A
cc

um
be

ns
R

14
10

−
10

46

Pu
ta

m
en

L
−

18
4

−
14

41

T
ha

la
m

us
R

10
−

8
6

23

T
ha

la
m

us
R

6
−

12
2

21

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
4

50
−

10
23

15
21

Pr
eg

en
ua

l C
in

gu
la

te
 C

or
te

x
L

−
6

42
−

2
19

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
8

40
−

18
19

Pr
eg

en
ua

l C
in

gu
la

te
 C

or
te

x
L

2
38

10
18

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
4

58
−

2
17

M
id

dl
e 

C
in

gu
la

te
 C

or
te

x
L

0
2

40
15

34
3

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
2

18
42

14

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
8

−
4

44
12

M
id

dl
e 

C
in

gu
la

te
 C

or
te

x
L

−
2

10
34

12

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

4
−

32
32

16
24

3

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

2
−

46
30

14

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

R
24

40
−

14
14

65

M
id

-O
rb

ito
fr

on
ta

l C
or

te
x

R
16

38
−

18
13

N
eg

at
iv

e

N
uc

le
us

 A
cc

um
be

ns
L

−
18

4
−

10
31

48
91

N
uc

le
us

 A
cc

um
be

ns
R

12
2

−
10

27

N
uc

le
us

 A
cc

um
be

ns
R

14
8

−
14

27

Pa
lli

du
m

L
−

16
0

−
2

25

In
su

la
R

36
20

−
10

25

In
su

la
L

−
32

20
−

2
22

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

20
36

27
11

66

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

0
22

28
25

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

2
12

50
16

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 37

L
ab

el
L

/R
x

y
z

P
V

M
 (

10
−2

)
Si

ze

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

36
26

15

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
42

26
28

16
13

9

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
44

18
30

15

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
R

50
6

26
15

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
L

−
52

4
26

15
82

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 38

Ta
bl

e 
8

B
ra

in
 a

re
as

 a
ct

iv
at

ed
 b

y 
an

tic
ip

at
io

n,
 o

ut
co

m
e,

 a
nd

 e
va

lu
at

io
n 

fr
om

 th
e 

PV
M

 a
na

ly
si

s 
(F

D
R

 p
<

0.
05

 a
nd

 a
 m

in
im

um
 c

lu
st

er
 s

iz
e 

of
 6

0 
vo

xe
ls

).

L
ab

el
L

/R
x

y
z

P
V

M
 (

10
−2

)
Si

ze

A
nt

ic
ip

at
io

n

N
uc

le
us

 A
cc

um
be

ns
R

12
2

−
4

46
56

23

N
uc

le
us

 A
cc

um
be

ns
L

−
16

4
−

10
46

In
su

la
R

34
20

−
6

40

T
ha

la
m

us
L

−
8

−
20

8
29

T
ha

la
m

us
R

8
−

6
6

29

T
ha

la
m

us
L

−
2

−
16

6
26

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

0
20

42
28

10
03

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

30
34

25

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
4

4
50

20

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

0
0

46
20

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
8

−
4

44
18

O
ut

co
m

e

N
uc

le
us

 A
cc

um
be

ns
R

12
12

−
6

51
52

88

N
uc

le
us

 A
cc

um
be

ns
R

14
8

−
12

48

N
uc

le
us

 A
cc

um
be

ns
L

−
16

8
−

10
45

N
uc

le
us

 A
cc

um
be

ns
L

−
10

8
−

4
43

A
m

yg
da

la
L

−
18

0
−

18
29

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
0

44
−

10
27

12
54

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
8

46
−

12
23

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
8

38
−

16
23

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
2

60
−

6
21

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

24
30

21
23

4

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

18
38

17

Su
pp

le
m

en
ta

ry
 M

ot
or

 A
re

a
L

−
4

16
46

15

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

2
−

34
30

20
21

0

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
2

−
46

24
15

E
va

lu
at

io
n

N
uc

le
us

 A
cc

um
be

ns
L

−
20

6
−

12
38

17
96

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 39

L
ab

el
L

/R
x

y
z

P
V

M
 (

10
−2

)
Si

ze

N
uc

le
us

 A
cc

um
be

ns
R

12
2

−
10

36

A
m

yg
da

la
L

−
12

0
−

14
33

Pa
lli

du
m

L
−

12
2

−
2

28

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

26
24

23
11

5

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
2

22
38

20

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
0

36
26

20

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

6
32

22
18

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 40

Ta
bl

e 
9

B
ra

in
 a

re
as

 d
if

fe
re

nt
ia

lly
 a

ct
iv

at
ed

 b
y 

po
si

tiv
e 

an
d 

ne
ga

tiv
e 

re
w

ar
ds

 f
ro

m
 th

e 
PV

M
 F

is
he

r 
od

ds
 r

at
io

 a
na

ly
si

s 
(v

ox
el

 p
<

0.
01

 a
nd

 a
 m

in
im

um
 c

lu
st

er
 s

iz
e

of
 6

0 
vo

xe
ls

).

L
ab

el
L

/R
x

y
z

O
R

Si
ze

P
os

iti
ve

 >
 N

eg
at

iv
e

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
12

48
−

22
0.

00
1

37
1

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
4

38
−

22
0.

09
7

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
6

52
−

12
0.

20
2

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
8

42
−

18
0.

20
2

M
ed

ia
l O

rb
ito

fr
on

ta
l C

or
te

x
L

−
6

48
−

6
0.

24
4

N
uc

le
us

 A
cc

um
be

ns
L

−
6

4
−

10
0.

35
2

19
2

Pa
lli

du
m

L
−

12
4

−
2

0.
40

9

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
4

−
30

38
0.

00
1

12
9

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
6

−
34

30
0.

00
1

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

8
−

38
34

0.
09

7

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

2
−

46
30

0.
09

7

Po
st

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

4
−

34
28

0.
09

7

Pa
lli

du
m

R
16

2
−

2
0.

33
6

60

N
uc

le
us

 A
cc

um
be

ns
R

8
12

−
8

0.
40

9

P
os

iti
ve

 <
 N

eg
at

iv
e

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
46

18
32

17
24

.2
14

9

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
R

52
12

24
17

24
.2

M
id

dl
e 

Fr
on

ta
l G

yr
us

R
50

24
32

10
93

.5

In
fe

ri
or

 F
ro

nt
al

 G
yr

us
R

60
12

16
89

6.
9

Pr
ec

en
tr

al
 G

yr
us

R
50

6
26

19
.0

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
8

24
24

7.
8

65

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
6

16
30

5.
2

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

L
−

4
20

28
4.

2

A
nt

er
io

r 
C

in
gu

la
te

 C
or

te
x

R
4

24
34

3.
4

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 41

Ta
bl

e 
10

B
ra

in
 a

re
as

 d
if

fe
re

nt
ia

lly
 a

ct
iv

at
ed

 b
y 

an
tic

ip
at

io
n 

an
d 

ou
tc

om
e 

fr
om

 th
e 

PV
M

 F
is

he
r 

od
ds

 r
at

io
 a

na
ly

si
s 

(v
ox

el
 p

<
0.

01
 a

nd
 a

 m
in

im
um

 c
lu

st
er

 s
iz

e 
of

 6
0

vo
xe

ls
).

L
ab

el
L

/R
x

y
z

O
R

Si
ze

A
nt

ic
ip

at
io

n 
>

 O
ut

co
m

e

Su
pe

ri
or

 T
em

po
ra

l G
yr

us
L

−
58

−
6

0
0.

14
9

14
3

H
es

ch
l G

yr
us

L
−

50
−

10
0

0.
14

9

In
su

la
L

−
40

−
2

−
2

0.
14

9

R
ol

an
di

c 
O

pe
rc

ul
ar

L
−

46
−

4
6

0.
17

9

In
su

la
L

−
34

6
−

4
0.

21
7

A
ng

ul
ar

 G
yr

us
L

−
36

−
68

42
0.

14
9

11
7

A
ng

ul
ar

 G
yr

us
L

−
42

−
56

36
0.

14
9

In
fe

ri
or

 P
ar

ie
ta

l L
ob

ul
e

L
−

32
−

62
46

0.
17

9

A
ng

ul
ar

 G
yr

us
L

−
42

−
66

38
0.

17
9

In
su

la
R

38
22

4
0.

30
7

11
6

In
su

la
R

28
24

−
6

0.
30

7

In
su

la
R

36
20

−
4

0.
35

7

Pr
ec

en
tr

al
 G

yr
us

L
−

42
2

38
0.

00
1

10
6

Pr
ec

en
tr

al
 G

yr
us

L
−

48
0

30
0.

14
9

B
ra

in
 S

te
m

0
−

24
−

10
0.

27
3

79

T
ha

la
m

us
L

−
4

−
16

14
0.

21
7

78

T
ha

la
m

us
L

−
8

−
18

8
0.

27
0

T
ha

la
m

us
L

−
10

−
24

4
0.

27
3

A
nt

ic
ip

at
io

n 
<

 O
ut

co
m

e

N
on

e

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 42

Ta
bl

e 
11

Su
m

m
ar

y 
of

 A
L

E
 a

nd
 P

V
M

 r
es

ul
ts

 o
n 

ke
y 

re
gi

on
s 

of
 in

te
re

st
.

V
S

aI
N

S
m

O
F

C
lO

F
C

A
M

Y
A

C
C

IP
L

dl
P

F
C

dm
P

F
C

O
ve

ra
ll

A
L

E
, P

V
M

A
L

E
, P

V
M

A
L

E
, P

V
M

A
L

E
, P

V
M

A
L

E
A

L
E

, P
V

M
A

L
E

, P
V

M
A

L
E

, P
V

M
A

L
E

Po
si

tiv
e

A
L

E
, P

V
M

A
L

E
A

L
E

, P
V

M
A

L
E

A
L

E

N
eg

at
iv

e
A

L
E

, P
V

M
A

L
E

, P
V

M
A

L
E

A
L

E
, P

V
M

A
L

E
, P

V
M

A
nt

ic
ip

at
io

n
A

L
E

, P
V

M
A

L
E

, P
V

M
A

L
E

A
L

E
, P

V
M

A
L

E
A

L
E

O
ut

co
m

e
A

L
E

, P
V

M
A

L
E

A
L

E
, P

V
M

A
L

E
, P

V
M

A
L

E
, P

V
M

A
L

E

E
va

lu
at

io
n

A
L

E
, P

V
M

A
L

E
A

L
E

A
L

E
, P

V
M

A
L

E
, P

V
M

A
L

E

Po
si

tiv
e>

N
eg

at
iv

e
A

L
E

, P
V

M
A

L
E

A
L

E
, P

V
M

A
L

E

Po
si

tiv
e<

N
eg

at
iv

e
PV

M
PV

M

A
nt

ic
ip

at
io

n>
O

ut
co

m
e

A
L

E
, P

V
M

A
L

E
A

L
E

, P
V

M
A

L
E

A
nt

ic
ip

at
io

n<
O

ut
co

m
e

A
L

E
A

L
E

A
L

E
A

L
E

A
L

E

V
S 

- 
ve

nt
ra

l s
tr

ia
tu

m
; a

IN
S 

- 
an

te
ri

or
 in

su
la

; m
O

FC
 -

 m
ed

ia
l o

rb
ito

fr
on

ta
l c

or
te

x;
 lO

FC
 -

 la
te

ra
l o

rb
ito

fr
on

ta
l c

or
te

x;
 A

M
Y

 –
 a

m
yg

da
la

; A
C

C
 -

 a
nt

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
; I

PL
 -

 in
fe

ri
or

 p
ar

ie
ta

l l
ob

ul
e;

 d
lP

FC
- 

do
rs

ol
at

er
al

 p
re

fr
on

ta
l c

or
te

x;
 d

m
PF

C
 -

 d
or

so
m

ed
ia

l p
re

fr
on

ta
l c

or
te

x

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 July 12.


