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In recent years, Independent Component Analysis (ICA) has become a standard to identify relevant dimensions of the data in
neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis
of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost
(a rapid video card) of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple
channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation
of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of
computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to
the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch
overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a
25x increase of performance for the ICA calculation.

1. Introduction

Analysis of brain imaging data has two intrinsic difficulties:
dealing with high volumes of data (and often high dimen-
sional) and a usually low signal-to-noise ratio due to persis-
tent artifacts. A significant number of methods have been
developed, usually based on some form of dimensionality
reduction of data, to cope with these difficulties. Multivariate
statistical analysis for the separation of signals is a widely
studied topic of great complexity because of the large number
of sources and the low signal-to-noise ratio, inherent in this
kind of signals. Specific approaches have been developed to
separate the signals generated by the study of those sources
that contribute only noise, such as principal component
analysis (PCA) [1], factor analysis [2], and projection pursuit
[3], among others.

Independent Component Analysis (ICA) [4–6] is one
of the most effective methods for source separation and
removal of noise and artifacts. The most emblematic exam-
ple was the separation of audio sources in noisy envi-
ronments [5]. In recent years, it has become a standard

in brain imaging-electroencephalogram (EEG) [7–9], mag-
netoencephalogram (MEG) [10] and functional magnetic
resonance imaging (fMRI) [11–13]. It has been used for
the removal of artifacts arising from eye movements [14],
but also for the selection of relevant dimensions of the
data [15, 16]. In fact, the most popular open packages
for EEG analysis—EEGLAB (http://sccn.ucsd.edu/eeglab/)
and Fieldtrip (http://fieldtrip.fcdonders.nl/)—strongly rely
on ICA.

Analyzing EEG, MEG, or fMRI with ICA does not come
without a cost and requires a huge amount of computing
power. For example, analyzing a typical single-subject EEG
experiment (data from 132 channels, at 512 Hz of sampling
rate, stored in single-precision, for a 1-hour experiment,
which amounts to a total of 1.5 GB of data), typically takes
around 12 hours on an Intel i5, 4 GB RAM, or 8.5 hours on an
Intel i7, 16 GB RAM. Often one needs to look at the output
of ICA before making a decision on how to proceed with
the data, and this long-lasting processing heavily conditions
the flexibility of analysis. More importantly, it makes this
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analysis completely prohibitive for online access of the data,
for instance in Brain Computer Interface applications.

Current standard CPU hardware include different exten-
sions of the basic instruction set architecture for vector
processing support, for example, the Streaming SIMD
Extensions (SSE) or Advanced Vector Extensions (AVX).
These extensions enable the parallel execution of the same
operations on multiple data, a key requirement for signal-
processing. Although, no effective tools to operate with more
than a few tens of floating point numbers simultaneously are
available in current CPUs, which makes the calculation more
efficient but it still lacks the key feature needed to get the
results quick. In other words, processors of coming years will
only improve slightly this performance.

One approach to solving this problem is using Beowulf
parallel computing clusters [17]. The main drawback of this
implementation is the communication overhead needed to
synchronize the different compute nodes, since the memory
is distributed over the nodes.

Here, we propose to use of the massive parallel processors
included in the graphical units (GPU) for ICA calculations.
Contrary to a Beowulf, this architecture has a common
shared memory allowing a much faster parallelization of ICA
algorithms. In addition, the low cost of GPUs makes this
project available for virtually every user. We investigate the
processing of EEG data series using CUDA: a parallel com-
puting platform and programming model. CUDA extends
C/C++ programming language, enabling the programmer to
write a serial program (functions, also called cuda kernels)
that executes in parallel across a set of threads operating over
different memory positions [18].

Many implementations of ICA are available, for example,
Infomax [5], SOBI [19], and FastICA [20]. These imple-
mentations use mostly linear algebra operations which are
included in off-the-shelf optimized GPU standard libraries.
FastICA has demonstrated that parallelization may be rel-
atively straightforward replacing linear algebra routines by
standard GPU libraries [21].

However, ICA of human EEG data is much better
approximated by Infomax [7] enhanced which has made it
a standard in EEG analysis. We show that simply replacing
linear algebra routines with GPU libraries do not show better
performance. Parallelizing Infomax requires an efficient
optimization of GPU memory access and kernel dispatch,
in order to obtain an increased performance. Here, we
set to develop and implement CUDAICA, an optimization
algorithm to increase processing time by a 25x factor, at
almost no cost, without changing the original algorithm.

2. Independent Component Analysis

ICA was introduced in 1994 by Comon [22] independent.
The concept of ICA can be seen as an extension of the
PCA, where the linear transformation minimizes the statistic
dependence between its components.

The following statistic model is assumed [23]:

x =My + v, (1)

where x, y, and v are random vectors with values in R or
C with zero mean and finite covariance, M is a rectangular
matrix with at most as many columns as rows and vector y
has statistically independent components.

The problem set by ICA can be summarized as follows:
given T samples of vector x, an estimation of matrix M
is desired, and the corresponding samples from vector y.
However, because of the presence of noise v, it is in general
impossible to reconstruct the exact vector y. Since the noise v
is assumed here to have an unknown distribution, it can only
be treated as a nuisance, and the ICA cannot be devised for
the noisy model above. Instead, it will be assumed that:

x = As, (2)

where s is a random vector whose components are maximiz-
ing statistical independence [22].

Both, EEGLAB and FieldTrip analysis software, use the
Infomax algorithm [5] for estimation of independent com-
ponents [24, 25]. Infomax is based on a neural network with
three columns of neurons, each representing: (1) the original
data (X); (2) the registered data (r); (3) the approximated
independent data (Y). Each column of neurons combine
linearly by matrices A and W .

The principle used by this algorithm is maximizing the
mutual information that output Y of a neural network
processor contains about its input X , defined as

I(Y ,X) = H(Y)−H(Y | X), (3)

where H(Y) is the entropy of output Y and H(Y | X) is the
entropy of the output that did not come from the input. In
fact, H(Y) is the differential entropy of Y with respect to
some reference, such as the noise level or the accuracy of
discretization of the variables in X and Y . Thus, only the
gradient of information-theoretic quantities with respect to
some parameter w is considered [5]. Then, the equation (3)
can be differentiated, with respect to a parameter w as:

∂

∂w
I(X ,Y) = ∂

∂w
H(Y), (4)

because H(X | Y) does not depend on w.

In the system (1), H(X | Y) = v. Whatever the
level of the additive noise, maximization of the mutual
information is equivalent to the maximization of the output
entropy, because (∂/∂w)H(v) = 0. In consequence, for any
invertible continuous deterministic mappings, the mutual
information between inputs and outputs can be maximized
by maximizing the entropy of the outputs alone.

The natural (or relative) gradient method simplifies
considerably the method. The natural gradient principle
[26, 27] is based on the geometric structure of parameters
space and it is related to the relative gradient principle [28]
that ICA uses.

Using this approach, the authors propose the following
iteration of the gradient method to estimate the W matrix:

ΔW ∝W − tanh
(
Wx

2

)
(Wx)TW. (5)
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In summary, Infomax ICA consists of the following steps:

(1) U = W × perm(x) (where perm is a random
permutation),

(2) Y = − tanh(U/2),

(3) YU = Y ×UT ,

(4) YU = YU + I ,

(5) W = lrate× YU ×W + W ,

where lrate is the learning rate for each iteration of the
method, generally lower than 1e−2. High values of lrate may
lead to faster computation but a bad choice could destroy
convergence. We propose a fast implementation using GPUs
keeping the original algorithm intact, including the selection
criteria for lrate.

3. Material and Methods

We first present, as a baseline measure, the performance of
Infomax ICA implementations available. We then compare
them with our development for Infomax ICA based on
CUDA optimized for GPU processing.

3.1. Infomax ICA Implementations. Current implementa-
tions (C/C++ and Matlab) make use of Basic Linear Algebra
Subprograms (BLAS). This library provides the standard
routines for performing basic vector and matrix operations
[29]. Several implementations of BLAS can be used to
compute ICA: ATLAS, Intel MKL, and CUBLAS, among
others.

The most popular implementation of these routines is
ATLAS, a portable self-optimizing BLAS, included in most
unix distributions [30]. Intel offers the Math Kernel Library
(Intel MKL), a computing math library of highly optimized,
extensively threaded math routines. NVIDIA offers CUBLAS,
an implementation of BLAS on top of the NVIDIA CUDA
driver for GPU optimization of linear algebra routines.

Generally, EEG equipment represents electrode data as
a time series of single-precision floats. Nevertheless, all
implementations of Infomax ICA use double-precision floats
to ensure numerical stabilities and avoid numerical error
propagation due to precision. Thus, a GPU with CUDA
compute capability 1.3 (or greater) must be used, in order
to support double-precision float operations.

3.2. Testing Hardware. Performance tests of ICA computa-
tion have been made on several hardware configurations.
Three different CPUs where used: i7-2600, i5 430M, and
Xeon E541a. For GPU technology, we used a Tesla C2070 and
GTX 560. To compare the performance of our solution, we
chose the high-end equipment: the Intel Core i7-2600 with
16 GB of RAM and the Nvidia Tesla C2070 video card. Some
tests have been done with an Nvidia Quadro 4000 which
showed a comparable performance to Tesla hardware.

Performance comparisons were made using real datasets
with the number of channels varying from 32 to 256 in 32
channel steps. The amount of samples vary from 15 minutes

experiments to 105 minutes in 15 minutes steps, with a
sampling rate of 512 Hz.

3.3. Testing Datasets. The testing experiment consists of 70
trials where the subject freely explores between a set of dots
distributed along the horizontal line. The trial starts with
the participant fixating in a small dot in the bottom half of
the screen, and the set of dots appear in the top half of the
screen. Participants have 5 seconds to explore and typically
perform 15 saccades in each trial. Participants are instructed
to explore in random order and are free to blink. We
purposely gave this instruction to have data contaminated by
typical eye-movement and blinking artifacts. Simultaneous
eye movement and EEG were recorded using eye tracker
Eyelink 2K, SR-Research, and Active-Two EEG with 128-
channel, Biosemi system.

4. Results

4.1. Infomax ICA Profiling. We performed a detailed analysis
of all the operations involved in the execution of ICA using
callgrind, a tool for sequential profiling and optimization
[31]. We executed the method for different datasets and pro-
filed the function calls, observing that BLAS routines dgemv
and dgemm consumed more than 80% of total calculation
time. For instance, dgemv and dgemm take, respectively,
47.9% and 40.78% of the total amount of time used to
calculate ICA for a 136 channels dataset and 22528 samples,
recorded at 512 Hz. Thus, we selected these as the most
relevant candidates for GPU optimization. The dgemv and
dgemm symbols correspond to BLAS functions for matrix-
vector and matrix-matrix multiplication, respectively.

4.2. MKL Implementation. The easiest way to achieve signifi-
cant performance increment in applications with substantial
amounts of BLAS operations is using the available optimized
libraries developed by the processor manufacturers, the
Intel MKL Libraries. These libraries use multithreaded
implementations of BLAS operations and exploit all features
of installed processors. This upgrade is extremely simple
since no code or compiler commands are needed to be
modified. Instead, simply compiling and linking to MKL
libraries provides a more efficient execution of Infomax ICA
with multithreaded BLAS operations.

Using this multithreaded version, we compared the
performance of MKL Infomax ICA versus the standard
one, on a Intel Core i7. ATLAS implementation takes 1.5
seconds per step on the smallest experiment (32 channels,
15 minutes of experiment) and grows almost linearly as
channels and total time increase, reaching 620 seconds per
step on the biggest experiment (256 channels, 105 minutes of
experiment), as shown in Figure 3(a). MKL implementation
shows a significant increase of performance, showing a
maximum of 142 seconds per step of experiment (see
Figure 3(a)). We obtained a maximum speedup of 4.5 using
the MKL libraries for the experiments with more channels
(see Figure 3(b)).
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4.3. CUDAICA Implementation. The time series nature of
data, make GPU computing a very promising approach for
EEG processing optimization. A naive and simple optimiza-
tion can be done using CUBLAS—NVIDIA implementation
of BLAS on top of the NVIDIA CUDA driver—replacing
symbols dgemv and dgemm with CUBLAS symbols cublas-
Dgemv and cublasDgemm, respectively. This approach was
first used for a basic optimization of FastICA [21].

4.3.1. CUBLAS Approach. CUBLAS uses a different memory
space than standard sequential calculations, that is, the
video card RAM. Thus, before starting computation, data
must be transferred from CPU memory to video memory.
This results in a few additional calls to memory movement
operations.

Performance measurements revealed that replacing the
BLAS routines to their corresponding CUBLAS routines did
not increase processing speed. The amount of time required
to process the experiment was longer than ATLAS. In 32 and
64 channels, CUBLAS-implementation took 6.5x and 2.4x
times longer than the ATLAS implementations. Only with
128 channels, the CUBLAS-implementation performance
equals to ATLAS implementation, suggesting that if no effort
wants to be invested in an ad-hoc solution, MKL is the best
solution.

This lack of improvement is caused by the constant
overhead of running the parallel kernels on GPU. Before
starting each iteration, Infomax ICA creates a vector with a
random permutation of the indexes, from 0 to N − 1, being
N the number of samples in the dataset. Then, matrix W
is multiplied by the column of x as indicated by the index
in the random permutation vector using the corresponding
BLAS matrix-vector operation. This results in as many
matrix-vector multiplication as the numbers of samples in
the dataset instead of a small number of matrix-matrix
multiplications. The execution of each iteration results in
an accumulated overhead that is only compensated with
high dimensional datasets, where each step involves many
operations.

As mentioned before, we observed matrix-vector and
matrix-matrix multiplications consumes about 50% and
40% percent of the total amount of time required to
compute Infomax, respectively. We performed performance
tests comparing ATLAS against CUBLAS routines on matrix-
matrix and matrix-vector operations using scenarios from
Infomax algorithm. The results were conclusive: matrix-
matrix operations were faster using CUBLAS, but matrix-
vector operations were the bottleneck in this computation.
Due to the actual dimensions of matrix W and the size of
the column of x, ATLAS performed faster. The performance
increase achieved with CUBLAS for the matrix-matrix
operations (40% of total time) was opaqued by the overhead
involved in execution of GPU functions and the lack of
performance gain in the matrix-vector computation.

4.3.2. Hybrid Approach: CUDAICA. Based on this profil-
ing, we implemented an hybrid solution of the method
using CUDA (CUDAICA). The main objective of this

Input = x

Generate
perm1

Generate
permi+1

YU = YU + I

CPU
GPU (CUDA)
GPU (CUBLAS)

Change (W) >10−6
Change (W) <10−6

Output =W

Y = tanh(U/2)

U =W∗permi(x)

YU = Y∗U

W = lrate∗YU∗W + W

Figure 1: Flow diagram of hybrid implementation. We divide
operations in three groups: CPU (blue box), GPU using standard
CUBLAS libraries (orange box), and GPU using own CUDA
implementation (green box).

implementation was to keep the original algorithm intact:
reduce the computation time of the same operations. All
the matrix-matrix operations are computed using CUBLAS
and the remaining operations are solved by an ad-hoc
implementation based on CUDA (see Figure 1).

Initially, all matrix and vectors are copied into the
GPU device global memory. In the process, single precision
floats—from the EEG time series—are converted to dou-
ble precision. The optimizations applied to Infomax ICA
consisted on two main optimizations: (1) optimizations on
memory access and kernels executions in particular matrix
operations (U = W ∗ perm(x),Y = − tanh(U/2), and
YU = YU + I) and (2) combining asynchronous execution
in CPU and GPU to generate each step permutation permi+1

of vector x, while GPU is computing step i.
Taking advantage of CUDA shared memory space, this

optimization first copies the vector indexed by the permuta-
tion into shared memory. Once transferred, U is computed
by an ad-hoc matrix-vector multiplication implementation.
In the same kernel, as matrix U is being calculated, matrix Y
is computed by computing − tanh(z/2), where z represents
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the values being computed in U . This combined operations
reduce significantly the number of kernels launched and
therefore the overhead involved in kernel initialization.

The amount of shared memory depends on GPU com-
pute capability version. Since version 2.0, CUDA supports
double-precision floating points operations and 48 KB of
shared memory. These features allow to compute matrix-
vector operations for dimensions up to 6144 elements at
a time. By optimizing the algorithm implementation to
use aligned memory, we obtained optimum memory access
resulting in 128 Byte transactions to main memory without
discarding any data.

Other significant improvement is made when computing
YU = YU + I : instead of using the generic sum function, a
specific CUDA kernel is used to modify only the elements in
the diagonal of YU .

Random permutations can be performed by generating
an index vector of random indexes in CPU while GPU
computation is being performed. Then, when permutation is
needed the random vector is used to index in the data matrix
to locate the corresponding randomly permuted vector.

Combining these tweaks, we obtained an optimized
version of Infomax ICA, with a processing time of less than
0.5 seconds per step in the 30-minute experiment with 32
channels (see Figure 2(a)).

In Figure 2(a) we show the performance comparison
in a 30-minute experiment between CUDAICA and both
Infomax implementations: ATLAS and MKL based. We
observe an exponential growth of time per step (note de log
scale in y-axis) in the MKL and CUDAICA implementations.
ATLAS show a decrease of slope as channels increase, but
always bigger than MKL and CUDAICA. Starting from
96 channels, MKL and CUDAICA show a similar slope,
indicating an almost constant increase of performance of
CUDAICA over MKL of 4.5x (Figure 2(b)). We obtained
a maximum performance increase of CUDAICA versus
the ATLAS implementation of more than 20x, for the
experiments of 192 channels or more. Interestingly, we
found that CUDAICA performed best versus MKL for 128
channels, the most typical configuration of our EEG setup.

All performance comparisons were performed in the
best available hardware: i7 and Tesla C2070. In Figure 2(c),
we show the time per step of the method in the different
hardware available, with several channel configurations. As
expected, we observe an almost linear increase of all runs
as number of channels grow. Comparison between standard
CPU and GPU processing shows a significant performance
increase using any GPU (top-of-line Tesla or standard
GTX560 card) against the non-GPU hardware tested.

4.4. Reliability of CUDAICA Relative to Previous Algorithms.
The new optimization involves reordering of operations
which may potentially affect the numerical stability of the
calculations. Thus, we verified that CUDAICA produces
results which are not distinguishable from previous imple-
mentations. For this purpose, we removed the random vector
generation used in the first part of the method. After each

step, we compared the output for the same inputs and the
exact same result was achieved.

Then, we compared the output of the full algorithm
using the original code (ATLAS based) and CUDAICA,
executing both implementations and estimating the inde-
pendent components of the same dataset. In Figure 3 we
show the first 12 independent components calculated with
both implementations (Figures 3(a) and 3(b)). As expected,
executions show similar (but not identical) independent
components, due to its random nature—that is, some ICs
were in different order or with inverted weights. The first
3 components show almost the exact same behavior. As
an example, in Figures 3(c) and 3(d) we plot the spectra
and eye-movement artifact locked to saccade offset for
IC1 and IC7-IC6 of both implementations. Difference are
indistinguishable (correlation coefficient R = 1, p <
0.0001); we also show an amplified region where is possible
to appreciate that there are, indeed, two curves in each
plot in magenta (original code) and red (CUDAICA).
We calculate the average trial-by-trial correlation between
pairs of ICs of ATLAS and CUDAICA runs (Figure 3(e)).
Almost all rows have a single white spot corresponding to
the matched IC calculated by the other implementation.
This spots are not necessarily aligned in the diagonal,
as order could be switched and even weights could be
inverted.

5. Discussion and Conclusions

ICA is one of the de-facto standard methods for source sep-
aration and removal of noise and artifacts. In neuroscience,
it has been widely used for EEG [7, 8], fMRI [12, 14], and
invasive electrophysiology [32].

In all these neuroimaging methods, technology has
increased the data volume, improving spatial and temporal
resolution. With current standards, analyzing data with ICA
requires a vast, often intractable amount of computing
power.

In practical EEG analysis, this computer power require-
ments impedes the rapid exploration of different methods
since each implementation of ICA runs overnight or even
taking more than one day. A rapid iteration and examination
of different procedures becomes completely impractical.
Even more, ICA is difficult to use for online access of the
data. Over the last years there has been an exponential
development of brain computing interfaces which require
online access to the relevant dimensions of the data [13, 33–
35].

ICA constitutes a formidable tool for finding relevant
directions and BCI procedures [36] which use ICA to present
participants with different components to determine which
are easier to control is a timely necessity. For this, it is
imperative to implement ICA at much faster speeds than is
being implemented with current CPU and here we present a
major advancement in this direction.

Our aim here was purely methodological: improve the
speed of Infomax ICA by at least 10x. We performed a
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Figure 2: Execution time of Infomax step using ATLAS, MKL, and CUDAICA for 30-minute experiments (a). This short experiments may
last more than 4 hours of computation time in the standard BLAS implementation with 256 channels. MKL shows significant performance
improvement over BLAS, and CUDAICA behaves the best. Comparison between ATLAS and MKL versus CUDAICA (b). CUDAICA shows a
maximum speedup of 4.7 over MKL, and more than 20x over standard ATLAS implementation. In (c), we show the time per step of different
implementations of Infomax with several channel configurations, running under the available hardware.

detailed profiling and detected the bottleneck in the cal-
culation of independent components, showing that vector-
matrix and matrix-matrix operations take almost all com-
putational time. Based on these results, we implemented an
hybrid ad-hoc solution for GPU optimizations: CUDAICA.
With this solution, we compared CUDAICA to the original
BLAS (compiled with standard ATLAS and the optimized
MKL libraries) and CUBLAS implementations. We observed
a 25x performance increment using CUDAICA, over the
standard ATLAS implementation, and 4.5x performance
increment compared to the MKL implementation.

With this calculation time, a 128-electrodes EEG of 1-
hour experiment would take 1500 seconds approximately to
compute the independent components. This timing opens
up new possibilities of the method, for instance for Brain
Computer Interface applications, making possible to think
of an experiment where Independent components may be
calculated during the experiment and use them as a feedback
feature.

CUDAICA was developed under the GNU General
Public License, and is freely available from our wiki with
a description of application features, FAQ and installation
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Figure 3: Comparison between CUDAICA and original code estimated components (ICs): (a, b) first twelve ICs of CUDAICA corresponds to
the first twelve ICs, note that the order could be switched and the weights could be inverted (IC4). (c, d) Example of two pairs of components,
IC1-IC1 and IC7-IC6, respectively. Both spectra (top-left panels) and eye-movement artifact locked to saccade offset (top-right panels) are
indistinguishable by naked eye. We also show an amplified regions where it is possible to appreciate that there are two curves in each plot
(bottom panels). Black and red lines: CUDAICA, and grey and magenta lines: Infomax ICA. (e) Average trial-by-trial correlation between
pairs of ICs. Almost all rows have a single white spot corresponding to the matched IC calculated by the other implementation, and these
spots are not necessarily aligned in the diagonal. Note that there are some subsets of components that do not have the correspondent ICs as
these subsets correspond to a subset in other implementation.

instructions (http://calamaro.exp.dc.uba.ar/cudaica/doku
.php?id=start). CUDAICA woks as a standalone application
and integrates to the EEGLAB Toolbox adding an option
to process ICA using CUDAICA, just like any other ICA
implementation. It was designed for standard EEGLAB users,
with no extra effort needed to run this implementation. It
works under CUDA enabled hardware, that is, almost every
modern graphic card, making CUDAICA widely available
and easy to use.
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