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Abstract
The general availability of reliable and affordable genotyping technology has enabled genetic
association studies to move beyond small case-control studies to large prospective studies. For
prospective studies, genetic information can be integrated into the analysis via haplotypes, with
focus on their association with a censored survival outcome. We develop non-iterative, regression-
based methods to estimate associations between common haplotypes and a censored survival
outcome in large cohort studies. Our non-iterative methods—weighted estimation and weighted
haplotype combination—are both based on the Cox regression model, but differ in how the
imputed haplotypes are integrated into the model. Our approaches enable haplotype imputation to
be performed once as a simple data-processing step, and thus avoid implementation based on
sophisticated algorithms that iterate between haplotype imputation and risk estimation. We show
that non-iterative weighted estimation and weighted haplotype combination provide valid tests for
genetic associations and reliable estimates of moderate associations between common haplotypes
and a censored survival outcome, and are straightforward to implement in standard statistical
software. We apply the methods to an analysis of HSPB7-CLCNKA haplotypes and risk of
adverse outcomes in a prospective cohort study of outpatients with chronic heart failure.
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1 Introduction
Genetic association studies often focus on estimating the association between haplotypes—
combinations of alleles at adjacent loci on a chromosome—and a disease trait. A haplotype-
based analysis may offer an attractive data reduction and efficiency gain compared to an
analysis based on individual single-nucleotide polymorphisms (SNPs). However, linkage
phase is typically unknown, so that there may be more than one pair of haplotypes that is
consistent with the observed genotype for each individual. Thus, haplotype risk estimation is
frequently based on sophisticated iterative algorithms that iterate between haplotype
imputation and risk estimation. Currently, there exist reliable haplotype-based estimation
methods for a binary trait in case-control studies and for continuous or discrete traits in
cohort studies (e.g., Schaid et al., 2002; Schaid, 2004; Venkatraman et al., 2004). We focus
on large, population-based prospective cohort studies with a censored survival outcome, for
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which the development of estimation methods is ongoing and their application to clinical
research is increasing.

Several iterative estimation methods exist for population-based cohort studies in which
primary interest lies in a censored survival outcome. Lin (2004) and Tregouet and Tiret
(2004) introduced an expectation-maximization (EM) algorithm for estimation based on a
proportional hazards regression model. Tan et al. (2005) developed estimation procedures
for longevity studies based on a proportional hazards regression model, and estimated
haplotype hazard ratios from population survival information. Lin and Zeng (2006)
established semi-parametric maximum likelihood estimation for cohort studies. Chen et al.
(2004) developed a haplotype-based score test for detecting the association of a disease with
a genomic region of interest using prospective information and unphased genotype data
collected from cohort studies with a censored survival outcome. Subsequently, Chen and
Chatterjee (2006) examined the statistical properties of alternative EM-based procedures for
haplotype risk estimation in cohort studies. Souverein et al. (2008) extended EM-based
approaches to rare haplotypes using a penalized proportional hazards regression model.
Recently, Scheike et al. (2010) introduced estimation for haplotype effects in survival data
based on estimating equations.

We develop non-iterative, regression-based methods to estimate associations between
common haplotypes and a censored survival outcome in large cohort studies. Our
approaches enable haplotype imputation to be performed once as a simple data-processing
step, and thus avoid implementation based on complex algorithms that iterate between
haplotype imputation and risk estimation. We focus on moderate associations of common
haplotypes inferred from tag SNPs in small numbers of genes in large prospective studies.
Our goal is to allow haplotypes to be integrated into the analysis of a censored survival
outcome, so that analyses combining genetic and environmental information can be
conducted in standard software by researchers expert in the relevant subject matter, rather
than by statisticians using specialized software.

Our non-iterative methods—weighted estimation and weighted haplotype combination—are
both based on the Cox regression model, but differ in how the imputed haplotypes are
integrated into the model. French et al. (2006) introduced non-iterative weighted estimation
in the context of case-control data. The method is based on creating multi-record data, in
which the data for each individual consist of multiple records, one for each diplotype
consistent with the unphased genotype. Weighted logistic regression is used to relate the
haplotypes to the binary disease outcome, in which the weights are set to the conditional
probability of each diplotype given the observed genotype. A robust or ‘sandwich’ variance
estimator is used for standard error estimation. For a case-control outcome, weighted
estimation provides valid tests for genetic associations and reliable estimates of moderate
effects of common haplotypes. For analyses of case-control data, weighted estimation is
implemented in the R package haplo.ccs (French and Lumley, 2007). Recently, Neuhausen
et al. (2009) applied non-iterative weighted estimation to an analysis of insulin-like growth
factor variants and incidence of breast cancer.

Weighted haplotype combination is based on creating single-record data from the set of
diplotypes consistent with the observed genotype. For each individual, a weighted
combination of the set of diplotypes consistent with the observed genotype is determined, in
which the weights are determined by the conditional probability of the diplotypes given the
observed genotype. We have applied weighted haplotype combination to collaborative
research projects regarding haplotypes of BRCA1- and BRCA2-interacting genes and
incidence of ovarian and breast cancer (Rebbeck et al., 2009; Rebbeck et al., 2011). The
approach is similar to that of Zaykin et al. (2002) in that diplotype probabilities are used as
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predictors. However, Zaykin creates a multi-record dataset with unaveraged diplotype
probabilities.

In Section 2, we detail non-iterative weighted estimation and weighted haplotype
combination in the context of a censored survival outcome. In Section 3, we use a simulation
study to evaluate their statistical properties. In Section 4, we apply the methods to
investigate associations between HSPB7-CLCNKA haplotypes (Cappola et al., 2010; Stark
et al., 2010) and risk of adverse outcomes in a prospective study of chronic heart failure
patients. We provide concluding discussion in Section 5. In the Appendix, we provide
instructions for implementation in Stata (StataCorp, College Station, Texas).

2 Statistical Methods
2.1 Notation and model

Let Ti and Ci denote the event time and censoring time, respectively, for individual i = 1,
… , n such that Yi = min(Ti, Ci) denotes the possibly censored event time. Let δi denote the
event indicator such that δi = 1 if Yi = Ti and δi = 0 if Yi = Ci. Let Gi denote the unphased
genotype and Zi denote a set of environmental exposures. Thus, {Yi, δi, Gi, Zi} compose the
observed data for individual i.

The survival model is specified as a function of Zi and Di, the unobserved diplotype (or pair
of haplotypes). We assume that if the diplotypes were known, then we would fit a Cox
regression model (Cox, 1972) to estimate the association between {Di, Zi} and {Yi, δi}.
Recall that the Cox regression model employs a log function to relate the hazard function to
a linear combination of the diplotypes and environmental exposures:

(1)

where: λi(t) is defined as the instantaneous rate at which failures occur for individuals that
are surviving at time t:

(2)

λ0(t) is an unspecified baseline hazard function, possibly stratified by an exposure of
interest; βD are regression parameters that correspond to diplotypes Di, and βZ are
regression parameters that correspond to environmental exposures Zi. In the context of an
association study, β = {βD, βZ} represents the target of inference. Note that in our case
study, diplotypes and exposures are only measured at baseline and are hence constant over
time. In the situation of time-independent exposures, λi(t) is often referred to as a
‘proportional hazards’ regression model.

2.2 Haplotype imputation
Because linkage phase may be unknown, there may be more than one pair of haplotypes that
is consistent with the observed genotype. In this case, a set of diplotypes may be imputed
and corresponding posterior probabilities may be estimated for each individual. Let d(Gi)
denote the set of all possible diplotypes consistent with the unphased genotype Gi and pid
denote the population haplotype frequencies that correspond to each diplotype d in d(Gi).
Let πid ≡ πid(pid, β) denote the conditional probability of diplotype d given d(Gi).

We impute haplotypes and estimate population haplotype frequencies using haplo.em, an
implementation of an EM algorithm (Dempster, 1977) included in the R package haplo.stats
(Sinnwell and Schaid, 2009), which computes maximum likelihood estimates of haplotype
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probabilities from unphased genotypes measured on unrelated individuals. Unlike the
standard EM algorithm that attempts to enumerate all possible pairs of haplotypes before
iterating over the EM steps, the implementation in haplo.em is based on a ‘progressive
insertion’ algorithm that progressively inserts batches of loci into haplotypes of growing
lengths, runs the EM steps, trims off pairs of haplotypes per individual when the posterior
probability of the pair is below a specified threshold, and then continues the insertion, EM,
and trimming steps until all loci are inserted into the haplotype. Haplotype imputation and
estimation of population haplotype frequencies can also be performed using Bayesian
methods implemented in software such as PHASE (Stephens and Donnelly, 2003).

2.3 Non-iterative weighted estimation
Weighted estimation is based on creating multi-record data, in which each individual
contributes multiple records to the analysis, one for each diplotype consistent with the
unphased genotype. Let Xid denote the multi-record design matrix (or set of covariates) that
includes both diplotype information and environmental exposures. Diplotype information is
integrated into Xid as a vector of haplotype counts for all imputed haplotypes except the
referent. For example, consider the following imputed haplotypes and corresponding
conditional probabilities for four hypothetical individuals (i = 1, 2, 3, 4) based on our
simulation study (Table 1):

i A B C D E F* G H I πid

1 0 0 0 1 0 1 0 0 0 0.8

1 0 0 1 0 0 0 1 0 0 0.2

2 0 0 0 0 0 1 0 0 1 0.6

2 0 0 0 0 0 0 1 1 0 0.4

3 0 1 0 1 0 0 0 0 0 1.0

4 0 0 0 0 0 2 0 0 0 1.0

*
Referent

Two individuals (i = 3, 4) have one possible diplotype; two individuals (i = 1, 2) have two
possible diplotypes. Therefore, the latter two individuals would each contribute two rows to
Xid. The column indicating the reference haplotype (here, haplotype F) would be excluded.

Non-iterative weighted estimation is straightforward to implement in the context of a
censored survival outcome:

1. Impute haplotypes and estimate population haplotype frequencies p assuming
Hardy-Weinberg Equilibrium (HWE);

2. Create multi-record data for each individual:

a. Form a design matrix Xid containing the set of diplotypes d consistent
with the observed genotype d(Gi);

b. Set πid to the conditional probability of diplotype d given the observed
genotype d(Gi), and;

3. Estimate β using a weighted Cox regression model.

Appendix A provides instructions on implementing weighted estimation in Stata. Note that β̂
is obtained as the solution to an estimating equation based on the weighted Cox partial
likelihood:
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in which:

(4)

and R(ti) denotes the set of individuals at risk at time ti. Standard error estimates for
confidence intervals and hypothesis tests must be based on a robust variance estimator. By
estimating robust standard errors from multirecord data, weighted estimation accounts for
the uncertainty in phase, in addition to the sampling variability of the data. Inference for one
or more elements of β are based on univariable or multivariable Wald tests. Under the null
hypothesis, the estimator is valid and efficient, because the estimating function is the
expectation of the known-phase score function given all the available data.

2.4 Weighted haplotype combination
Weighted haplotype combination is based on creating single-record data from the set of
diplotypes consistent with the observed genotype for each individual. Let Xi denote the
single-record design matrix that includes both diplotype information and environmental
exposures. For each individual, diplotype information is integrated into Xi as a weighted
combination of the set of diplotypes consistent with the observed genotype, in which the
weights are determined by the conditional probability of the diplotypes given the observed
genotype. For example, the four sets of imputed haplotypes given in Section 2.3 would each
be averaged according to the conditional probability for each diplotype:

i A B C D E F* G H I

1 0 0 0.2 0.8 0 0.8 0.2 0 0

2 0 0 0 0 0 0.6 0.4 0.4 0.6

3 0 1.0 0 1.0 0 0 0 0 0

4 0 0 0 0 0 2.0 0 0 0

*
Referent

Therefore, each individual would contribute one record to the analysis. Note that the column
indicating the reference haplotype (F) would be excluded.

It is also straightforward to implement weighted haplotype combination in the context of a
censored survival outcome:

1. Impute haplotypes and estimate population haplotype frequencies p assuming
HWE;

2. Create single-record data for each individual:

a. Form a design matrix  as a weighted combination of the set of
diplotypes d consistent with the observed genotype d(Gi), in which the
weights are determined by πid, and;

3. Estimate β using an unweighted Cox regression model.
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Appendix B provides instructions on implementing weighted haplotype combination
approach in Stata. Note that β̂ is obtained as the solution to an estimating equation based on
the unweighted Cox partial likelihood:

(5)

in which:

(6)

Model-based standard error estimates may be used for confidence intervals and hypothesis
tests, because the data consist of one record for each individual. Because the set of possible
diplotypes for each individual are averaged using weights determined by their conditional
probability given the observed genotype, weighted haplotype combination also accounts for
the uncertainty in phase, in addition to the sampling variability of the data. Inference for one
or more elements of β are based on univariable or multivariable Wald tests. The estimator is
exactly valid under the null hypothesis.

3 Simulation Study
We designed a simulation study to evaluate the statistical properties of non-iterative
methods to estimate associations between common haplotypes and a censored survival
outcome. Simulated genotypes were based on haplotype frequencies for angiotensin II
receptor, type 1 (AGTR1), a gene in the renin-angiotensin system, which regulates blood
pressure (French et al., 2006; Merciante et al., 2007). Table 1 provides common AGTR1
haplotypes and their corresponding estimated population frequencies. Simulated AGTR1
diplotypes had moderate phase ambiguity: approximately 60% of individuals had an
unambiguous diplotype; and approximately 90% had a highest posterior probability of
having a particular diplotype greater than 0.75.

3.1 Parameters
At each of 1000 iterations, we generated event times for a sample of either n = 200, 500, or
1000 individuals from an Exponential distribution, in which the log-rate was determined by
a linear combination of the haplotypes according to an assumed genetic risk model with
additive inheritance: no genetic effects, moderate effects, strong effects characterized by a
single SNP, and strong effects not characterized by a single SNP. For effects characterized
by a single SNP, a haplotype was related to risk if and only if it had the minor allele at a
particular locus (here, the 12th locus). We defined moderate genetic effects as hazard ratios
between 1.0 and 2.0 (or between 1.0 and 1/2.0) relative to the reference haplotype (here,
haplotype F), and strong effects as hazard ratios equal to 4.0. We generated an independent
censoring process from an Exponential distribution and selected the rate such that either
10% or 25% of individuals were censored before their event time.

We used four metrics to compare weighted estimation and weighted haplotype combination.
First, to evaluate the performance of standard error estimation, we compared the average of
the estimated standard errors to the empirical standard deviation of the estimated log-hazard
ratios for each haplotype. Second, for each haplotype we created error intervals by
calculating the difference between the estimated and true log-hazard ratios at every iteration
and calculating the 5th, 50th, and 95th percentile. These error intervals approximate the bias
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in the estimated log-hazard ratios. Third, we calculated percent coverage of estimated 95%
confidence intervals. Fourth, at every iteration we conducted a two-sided hypothesis test (α
= 0.05) for each haplotype effect based on its estimated log-hazard ratio and standard error.
Across all iterations, the rejection rate quantified the type-I error rate for null effects and
statistical power for non-null effects. We present results obtained assuming known phase to
illustrate that, due to sampling variability, there is error inherent in the log-hazard ratio
estimates obtained from the Cox regression model even when the haplotypes are known.

3.2 Results
Simulations with 10% and 25% censoring yielded similar results. Therefore, we only present
results assuming 25% censoring. For brevity, we only present results with n = 200 and 1000.

Table 2 provides average standard error estimates and the empirical standard deviation of
estimated log-hazard ratios under no genetic effects, i.e., all log-hazard ratios equal to 0
relative to the reference haplotype. When the sample size is small (n = 200), every
estimation method under-estimates the standard error; the average standard error estimate
for every haplotype is systematically smaller than the corresponding empirical standard
deviation. However, when the sample size is large (n = 1000), every estimation method
properly estimates the standard error; the average standard error estimate for every
haplotype is approximately equal to the corresponding empirical standard deviation.

Figure 1 presents error intervals, Table 3 provides estimated coverage of 95% confidence
intervals, and Table 4 provides the estimated rejection rate of two-sided hypothesis tests (α
= 0.05) for AGTR1 haplotype effects with n = 200 and 1000. In every scenario, estimation
based on the known phase provides approximately unbiased parameter estimates with proper
confidence interval coverage and the nominal type-I error rate. Under no genetic effects
(results not shown), every estimation method provides approximately unbiased parameter
estimates with proper coverage and the nominal type-I error rate. Under moderate genetic
effects, weighted haplotype combination provides approximately unbiased parameter
estimates, as shown by the green error intervals in Figures 1(a) and 1(b) centered at zero,
with proper coverage. However, weighted estimation may provide slightly biased parameter
estimates, as shown by the red error intervals in Figures 1(a) and 1(b) centered away from,
yet covering zero. Coverage is reduced due to the small amount of bias in the parameter
estimates, especially when the sample size is small due to under-estimation of standard
errors. Power is modest for all methods when the sample size is small.

Under strong effects characterized by a single SNP, every estimation method provides
approximately unbiased parameter estimates with proper confidence interval coverage. In
addition, the type-I error rate is near the nominal 5% level for null effects (haplotypes A, B,
C, H), and power is high for non-null effects (haplotypes D, E, G, I). However, under strong
effects not characterized by a single SNP, weighted estimation may provide heavily biased
parameter estimates, as shown by the red error intervals in Figures 1(e) and 1(f) that do not
cover zero. In this case, the approximate bias is negative, so that the bias is toward the null.
Due to the large bias in the parameter estimates, coverage is substantially reduced. The type-
I error rate is above the nominal 5% level for null effects (haplotypes A, B, D, I),
particularly when the sample size is large. Power is reduced for non-null effects (haplotypes
C, H), particularly when the sample size is small. Under strong effects not characterized by a
single SNP, weighted haplotype combination may provide slightly biased (toward the null)
parameter estimates, as shown by the green error intervals in Figures 1(e) and 1(f) centered
away from, yet covering zero. Coverage is reduced due to the small amount of bias in the
parameter estimates. Compared to weighted estimation, the type-I error rate is lower and the
power level is higher for weighted haplotype combination.
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Non-iterative, regression-based methods provide valid tests for genetic associations and
reliable estimates of moderate associations between common haplotypes and a censored
survival outcome. Weighted estimation and weighted haplotype combination provided
estimates with reasonable bias under moderate SNP effects. In addition, weighted haplotype
combination provided estimates with reasonable bias under large non-SNP effects.

4 Case Study
4.1 Background

The Penn Heart Failure Study is a prospective cohort study of outpatients with chronic heart
failure recruited from referral centers at the University of Pennsylvania (Philadelphia,
Pennsylvania), Case Western Reserve University (Cleveland, Ohio), and the University of
Wisconsin (Madison, Wisconsin). The primary inclusion criterion was a clinical diagnosis of
heart failure. Participants were excluded if they had a non-cardiac condition resulting in an
expected mortality of less than six months as judged by the treating physician, or if they
were unable to provide consent. At time of study entry, detailed clinical data were obtained
using standardized questionnaires administered to the participant and physician, with
verification via medical records, as previously described (Ky et al., 2009). Subsequent
adverse events, including all-cause mortality, cardiac transplantation, and placement of a
ventricular assist device were prospectively ascertained every six months via direct patient
contact and verified through death certificates, medical records, and contact with family
members by research personnel. All participants provided written, informed consent; the
study protocol was approved by participating Institutional Review Boards.

The goal of this analysis was to estimate associations between HSPB7-CLCNKA haplotypes
at 1p36 and risk of adverse outcomes. SNPs at 1p36 have been shown to be associated with
heart failure and dilated cardiomyopathy in case-control studies (Cappola et al., 2010; Stark
et al., 2010).

4.2 Materials and Methods
We limited our analysis to the combined outcome of all-cause mortality, cardiac
transplantation, or placement of a ventricular assist device to focus on the most serious
adverse outcomes associated with heart failure. Genotyping was performed using the IBC
cardiovascular SNP array (Keating et al., 2008), which includes 14 SNPs across the 1p36
locus. To account for potential population stratification, we used multi-dimensional scaling
of ~30,000 SNP genotypes to identify a homogenous subgroup of 1149 genetically inferred
Caucasians, as previously described (Cappola et al., 2011).

Cox regression models were used to estimate associations between common HSPB7-
CLCNKA haplotypes and the combined outcome. The EM algorithm was used to impute the
set of all haplotypes consistent with the observed unphased genotype for each participant.
Corresponding posterior probability estimates were either used as weights (weighted
estimation) or to obtain a weighted average of the imputed haplotypes for each participant
(weighted haplotype combination). Haplotypes with an estimated population frequency less
than 0.02 were defined as rare and recoded into one category. Because participants entered
the cohort at different stages of their disease progression, the baseline hazard function was
stratified by New York Heart Association (NYHA) functional classification (class I, II, III,
or IV), a standard system to classify severity of heart failure symptoms. Additional
adjustment was made for gender, age, heart failure etiology (ischemic or non-ischemic), and
clinical site. Age exhibited non-proportional hazards and was adjusted for using a time-
varying covariate, which was obtained by multiplying age by a linear term for the natural
log of time.
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4.3 Results
HSPB7-CLCNKA genotypes were available for 1149 genetically inferred Caucasians; 803
(70%) were male and the median age at study entry was 58.4 years (inter-quartile range,
49.7 to 66.4 years). Ischemic heart failure etiology was reported by 409 participants (36%).
Approximately 18%, 44%, 30%, and 9% of participants were classified as a NYHA class I,
II, III, and IV, respectively. Approximately 65% of participants had an unambiguous
diplotype; 90% had a highest posterior probability of having a particular diplotype greater
than 0.765. The median follow-up time was 2.9 years (maximum, 5 years), during which
251 participants (22%) experienced an adverse event: 152 deaths, 75 cardiac
transplantations, and 25 ventricular assist device placements.

In individual Cox regression analyses of 14 pre-selected SNPs in the HSPB7-CLCNKA
gene, adjusted for gender, age (time-varying), etiology, and site and stratified by NYHA
class, we found that only one SNP, SNP 5 (rs12083572), was associated with adverse
outcomes at the α = 0.05 level. Using the EM algorithm, we inferred 10 haplotypes with an
estimated population frequency > 0.02 from all 14 HSPB7-CLCNKA SNPs (Table 5). In
global tests of association, both analysis methods found marginally significant haplotype
associations with adverse outcomes (weighted estimation: p = 0.015; weighted combination:
p = 0.026). Using the most common haplotype (haplotype W, estimated frequency 0.299) as
the reference haplotype, we observed a decreased risk of adverse outcomes with carriage of
haplotype T (which differs from the referent at SNPs 1, 3, 4, 5, 6, 7, 8) and haplotype V
(which differs from the referent at SNPs 7, 8, 10, 14). However, neither of these associations
would be considered statistically significant after adjustment for multiple comparisons. Of
note, both analysis methods yielded very similar point estimates, 95% confidence intervals,
and p values.

5 Discussion
In this paper, we developed non-iterative, regression-based methods to estimate associations
between common haplotypes and a censored survival outcome in large cohort studies, such
that haplotype imputation is done once as a data-processing step. We focused on moderate
associations of common haplotypes inferred from tag SNPs in small numbers of genes in
large prospective studies. In our simulation study, we showed that non-iterative weighted
estimation and weighted haplotype combination provide valid tests for genetic associations
and reliable estimates of moderate associations between common haplotypes and a censored
survival outcome. Our case study provided an example in which the estimation methods
provided very similar results because there was modest phase ambiguity.

Our simulation study focused on effects of common haplotypes. Thus, our results do not
extend to estimating effects of rare haplotypes, nor to small cohort studies, in which
common haplotypes may appear to be rare. In our case study, we grouped together all
imputed haplotypes with an estimated population frequency < 0.02. In addition, our
simulation study focused on cohort studies of unrelated individuals. Thus, we did not
consider situations in which individuals are related. However, our methodology may be
applicable to studies of related individuals, and may in fact perform better, because phase
can be estimated much more accurately from related individuals. There are options for
estimating haplotype associations in family-based studies using FBAT/PBAT (Laird et al.,
2000).

An advantage of non-iterative estimation methods is their relative ease of implementation in
standard statistical software. For weighted haplotype combination, implementation only
requires the standard Cox regression model. For non-iterative weighted estimation,
implementation requires that the Cox regression model accommodate probability weights,
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and depends on the availability of a robust variance estimator. Both options are typically
available in standard software. In addition, because implementation of both methods
depends on the Cox regression model, it is straightforward to adjust for or specify
interaction with environmental exposures, construct confidence intervals for haplotype
associations, and generate inference via Wald tests. It is also straightforward to extend the
Cox model to include any requisite time-varying covariates and/or stratify the baseline
hazard function by a key factor. For example, in our case study, we included a time-varying
covariate for age and stratified the baseline hazard function by NYHA functional
classification. Given the reliability of non-iterative methods to estimate moderate
associations of common haplotypes, and their ease of implementation in standard software,
we continue to recommend them to applied researchers as a viable option for haplotype risk
estimation. In the Appendix, we provide instructions for implementing non-iterative
weighted estimation and weighted haplotype combination in Stata.
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Appendix

Stata Implementation
In this Appendix, we provide Stata commands for implementing non-iterative methods to
estimate haplotype associations with a censored survival outcome. We assume that a
program such as PHASE is used to impute the haplotypes and estimate population haplotype
frequencies. The commands below use the following notation: event time time; event
indicator event; exposure x; imputed haplotypes h1, h2, … , hk, with the referent
haplotype removed; estimated diplotype probability prob; subject identifier id.

A Non-iterative weighted estimation
Create a multi-record dataset by merging the imputed haplotypes with the outcome and
exposure data. Declare the data to be survival data with probability weights:

stset time [pweight=prob], failure(event)

Fit the Cox regression model with a robust variance estimator:

stcox h1-hk x, vce(cluster id)

See help stcox for additional options, including those for specifying stratification factors
and including time-varying covariates.

B Weighted haplotype combination
Collapse the set of imputed haplotypes for each individual according to the estimated
diplotype probabilities:

foreach var of varlist h1-hk {
quietly replace ‘var’ = ‘var’*prob
}

French et al. Page 10

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2012 July 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



drop prob
collapse (sum) h1-h10, by(id)

Create a single-record dataset by merging the resultant haplotype data with the outcome and
exposure data. Declare the data to be survival data and fit the Cox regression model:

stset time, failure(event)
stcox h1-hk x
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Figure 1.
Error intervals for AGTR1 haplotype effects, 25% censoring.
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Table 1

Common haplotypes and estimated population frequencies for AGTR1.

Label Haplotype Frequency

A ATTATGCATCTC 0.029

B ATTATGTGATCC 0.051

C TCCACGCATCTC 0.027

D TCCACGCATCTT 0.090

E TCTGTGCAACTT 0.029

F* TCTGTGCATCTC 0.223

G TCTGTGCATCTT 0.188

H TTTACACATCTC 0.038

I TTTACACATCTT 0.032

*
Referent
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