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Abstract
Interferon-β (IFN-β) is a current effective treatment for multiple sclerosis (MS) and exerts its
therapeutic effects by down-modulating the systemic immune response and cytokine signaling. In
clinical practice there are several formulations of interferon including a low dose of IFN-β 1a
formulation of 30μg IM once weekly (Avonex) and a high dose formulation of 44 μg SC three
times weekly (Rebif). Recent studies suggest that Rebif is more efficacious compared to Avonex
in preventing relapses and decreasing MRI activity in relapsing remitting MS (RRMS) patients.
This study examines whether there are quantitative gene expression changes in interferon-treated
RRMS patients that can explain the difference in efficacy and side effects between Rebif and
Avonex. Herein, RRMS patients were treated for three months with IFN-β 1a and the levels of
plasma cytokines and gene expression in peripheral blood mononuclear cells were examined.
Thirty-two normal subjects were compared to thirty-two RRMS patients, of which ten were
treated with Rebif and ten with Avonex. Rebif and Avonex both significantly and equally
suppressed plasma TNF-α and IL-6 levels. Rebif suppressed IL-13 significantly more than
Avonex. Rebif also significantly suppressed the levels of the chemokines CCL17 and RANTES,
the protease ADAM8, and COX-2 at a higher degree compared to Avonex. The STAT1-inducible
genes IP-10 and caspase 1 were significantly increased with Rebif compared to Avonex. In
conclusion, the higher dosed, more frequently administered IFN-β 1a Rebif when compared to
IFN β-1a Avonex has more potent immunomodulatory effects. These quantitative results might
relate to efficacy and side-effect profile of the two IFN-β 1a formulations and provide prospective
practical clinical tools to monitor treatment and adjust dosage.
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INTRODUCTION
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central
nervous system (CNS) that remains a major cause of disability (1). However, disease-
modifying agents that decrease exacerbation rates and slow progression of disability are now
available for use in treatment (2–6). One of these agents is interferon-β 1a (IFN-β 1a), which
reduces the frequency of clinical exacerbations, reduces magnetic resonance imaging (MRI)
disease activity, and slows disease progression (7–9).

IFN-β is a pleiotropic cytokine with diverse mechanisms of action including antiviral,
immune-stimulating and immunosuppressive actions (10, 11). IFN β primarily signals by
phosphorylating the tyrosine residues of the Janus kinase (JAK) and signal transducers and
activators of transcription (STAT) proteins like STAT1 and STAT3, which leads to
transcription factor translocation into the nucleus promoting gene expression (12). Multiple
mechanisms in which IFN-β modulates the immune response have been reported, including
down regulation of class II major histocompatiability complex (MHC) molecules and
limiting the migration of immune cells across the blood brain barrier (BBB) (13–16).
Furthermore, IFN-β acts to decrease the elevated blood levels of T cell-derived cytokines
IFN-γ, IL-4/IL13 and TNF-α seen in MS (17–20), which otherwise act to increase the
proinflammatory transcription factors STAT 1, STAT 6 and NF-κB in MS patients (12, 14,
21–24).

IFN-β 1a treatment of patients with RRMS in vivo and also in vitro leukocyte cultures can
reduce the activation of the transcription factors NF-κB and STAT6 and decrease
downstream inflammatory gene expression regulated by those transcription factors (25).
However, IFN-β 1a (Rebif) treatment signals directly to activate the transcription factor
STAT1 and increase the expression genes containing STAT1 responsive sites in their
promoter. Additionally, IFN-β induces the activation of intracellular regulatory proteins.
The inhibitory effects of IFN-β 1a treatment on cytokine signaling are at least partly
mediated by the induced expression of the tyrosine phosphatase SHP-1 that acts as a broad
negative regulator of STAT-1, STAT6, and NF-κB signaling and results in decreased
inflammatory gene expression (25).

IFN-β 1a is approved to treat MS patients with two different dosages and delivery methods.
The Interferon-β 1a Avonex is delivered at 30 μg intramuscularly (im) once a week (7),
while Interferon-β 1a Rebif is delivered at 44 μg subcutaneously (sc) three times a week (3).
Clinically comparative studies have shown that the high-dosed, more frequently
administered Rebif is significantly more effective than the low-dosed, less frequently
administered Avonex (9, 26). Specifically, after 24 weeks of treatment 75 % of Rebif
patients did not have a relapse versus 63% of patients taking Avonex, with an odds ratio of
1.9 (1.3–2.6) and 48% of Rebif treated patients had no new MRI activity versus 33% of
patients treated with Avonex (p=0.0001). This superior efficacy of Rebif over Avonex could
still be demonstrated at an additional medium time on study of up to 64 weeks (27). In
addition, disease activity in the low dosed IFN-β 1a Avonex group could be partially
suppressed by switching subjects to the high dosed IFN-β 1a Rebif (28). On the other hand,
Rebif is associated with increased side effects compared to Avonex such as injection site
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irritation and mild flu-like symptoms (26, 29). Importantly, some studies demonstrate that
different formulations and dosages of IFN-β treatment elicit different gene and protein
expression profiles that might relate to treatment efficacy (30–32).

The present study investigates whether the pronounced clinical efficacy of high-dosed IFN-β
1a Rebif compared to the low-dosed IFN-β 1a Avonex is reflected in plasma cytokine and
inflammatory gene expression levels in PBMCs that have been previously implicated in the
pathogenesis of MS and are regulated by interferon treatment. Furthermore, we evaluated
whether we could detect deferential and quantitative gene expression changes that could
provide a reliable marker for IFN-β 1a response or dosage adjustment. Here we demonstrate
that three-month treatment with Rebif had more potent immunomodulatory activity
compared to Avonex. Rebif was more effective compared to Avonex at reducing expression
of several NF-κB-responsive inflammatory genes including the chemokines CCL17 and
RANTES, the protease ADAM8, and COX2, which are implicated in MS pathogenesis.
Furthermore, Rebif was significantly more effective compared to Avonex at inducing the
STAT1-inducible chemokine IP-10 and caspase 1. The differential modulation of these
genes could at least partially contribute to the pronounced clinical efficacy of the high-dosed
IFN-β 1a in RRMS and also provide novel molecular tools to monitor therapeutic effects
and adjust dosage.

METHODS
Patient selection

Patients were clinically diagnosed as having definite MS (33) of the relapsing-remitting
(RR) type (34). All patients selected had not received any disease modifying treatment, IFN-
β, glatiramir acetate, steroids, or other immunosuppressive agents, at least three months
prior to donating blood. RRMS patients gave blood before and after a three-month treatment
with recombinant IFN-β 1a (Rebif or Avonex). Table I provides additional information on
the patients and normal subjects used in this study. The average age of the patients was 40
years old, 70% female patients, an average age at onset of 35 years, and an average EDSS
score just before treatment of 2.5. There was no significant difference among the various
groups and patient characteristics were similar to previous relevant studies (9). The
Institutional Review Board of SUNY Upstate University approved all studies and both
patients and normal controls granted informed consent before providing blood.

PBMC isolation
Patients and normal subjects donated 60 ml of blood collected in heparinized tubes. Blood
was diluted 1:1 with HBSS and overlaid onto lymphocyte separation medium (Cellgro,
Herndon, VA). After centrifugation, the plasma was collected and used to quantify cytokine
levels, while the 10 ml of the interface containing the PBMCs were collected and washed
twice with HBSS (12). Freshly isolated cells were suspended in STAT- 60 (Tel-Test,
Friendswood, TX) for RNA extraction. Plasma was used for cytokine analysis using ELISA.

Real-Time RT-PCR
Total RNA was isolated using RNA STAT-60. RNA was quantified spectrophotometrically
and 0.5 μg of total RNA was converted into cDNA. Briefly, total RNA and random primers
(Invitrogen, Carlsbad, CA) were incubated at 72 degrees for 10 minutes and Superscript II
RT enzyme (Invitrogen, Carlsbad, CA) was used for reverse transcription (35). cDNA was
used for quantitative real time PCR using SYBR Green kit (Abgene, Epson, UK). Serial
dilutions of cDNA containing a known copy number of each gene were used in each
quantitative PCR run to generate a standard curve relating copy number with threshold
amplification cycle (36). A blank/negative control (cDNA reaction without RNA) was run
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with each RT-PCR assay and the samples always had lower threshold amplification cycle
than the negative control. Gene expression levels were calculated during the logarithmic
amplification phase by determining the initial mRNA copy number using the standard curve
(37). Amplification of each gene specific fragment was confirmed by examination of
melting peaks, by agarose gel electrophoresis, and DNA sequencing. The primers used in
the study were previously documented (12, 25).

Cytokine ELISA
The levels of the cytokines IFN-γ, IL-4, IL-13, TNF-α and IL-6 were measured using R&D
Systems DuoSet ELISA kits (R&D Systems) following the manufacturer’s protocol.

Statistical Analysis
Data are presented in means with standard error values. The p-values were generated using
the unpaired Student’s t-test value of less than 0.05, which was chosen to indicate statistical
significance between two sample means.

RESULTS
Normal subjects and RRMS patients who were treated with either Rebif or Avonex donated
blood before and three months after treatment. First, we quantified the levels of the plasma
cytokines by ELISA in normal subjects, untreated RRMS, Rebif-treated RRMS, and
Avonex-treated RRMS patients (Table II). The levels of IFN-γ, a cytokine that induces
STAT1 activation, were significantly higher in the plasma of untreated MS patients
compared to normal subjects, and IFNβ-1a treatment failed to significantly alter IFN-γ
levels. The levels of IL-4 and IL-13, cytokines that signal through STAT6, were
significantly higher in the plasma of untreated MS patients as compared to normal subjects
and treatment with IFN-β 1a had no effect on IL-4 levels. However, treatment with Rebif
caused a significant two-fold decrease in IL-13 levels, while Avonex did not, and
importantly there was a significant difference between Rebif-treated and Avonex-treated MS
patients. Furthermore, the levels of the NF-κB-inducible cytokines TNF-α and IL-6 were
significantly higher in untreated MS patients as compared to normal controls. Both Rebif
and Avonex significantly reduced IL-6 and TNF-α levels, but there was not a significant
difference between the two treatments.

Next, it was important to quantify the levels of several cytokine-inducible genes that where
shown to be modulated in MS by interferon treatment (25, 38, 39). Several genes were
quantified by real time RT-PCR in freshly isolated PBMC of normal subjects, RRMS
patients and in three-month treated Rebif or Avonex RRMS patients (table II). First, we
quantified the expression levels of the STAT1-inducibe genes the chemokine IP-10
(interferon gamma-induced protein)/CXCL10 and caspase 1, which were elevated in PBMC
of MS patients as compared to normal subjects, in accordance with previous reports (40–42).
Treatment with either IFN-β 1a Rebif or Avonex significantly increased the expression of
IP-10 and caspase 1, which is not surprising since IFN-β signals primarily to activate
STAT1. Importantly, Rebif significantly induced higher levels of IP-10 mRNA compared to
Avonex treatment.

Furthermore, we examined the expression of NF-κB responsive genes: the chemokine
RANTES (Regulated upon Activation, Normal T-cell Expressed)/CCL5, and Secreted, the
metalloprotease MMP9, cyclooxygenase-2 (COX-2), and vascular cell adhesion protein 1
(VCAM1) (Table II). All these genes have been previously implicated in the pathogenesis of
MS and have been shown to be elevated in leukocytes and in the CNS of MS patients (12,
43–46). As expected, RANTES, MMP9, COX-2, and VCAM1 were significantly elevated in
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leukocytes of untreated MS patients as compared to normal subjects. The levels of RANTES
and COX2 were suppressed following treatment with either Rebif or Avonex compared to
untreated patients. Importantly, Rebif treatment reduced RANTES and COX2 to a greater
degree compared to Avonex treatment. MMP9 and VCAM1 mRNA levels were
significantly reduced by Rebif treatment but not by Avonex treatment compared to untreated
patients.

We also quantified the expression of the STAT6/NF-κB responsive genes, the chemokine
TARC (Thymus and Activation Regulated Chemokine)/CCL17 and the MBP-cleaving
protease ADAM8, and the STAT6 responsive gene arginase I (12, 47–50). The expression
levels of these genes were significantly higher in untreated MS patients as compared to
normal subjects (Table II). Rebif-treated MS patients had significantly lower levels of
CCL17, ADAM8 and Arginase I as compared to untreated MS patients. Avonex-treated MS
patients had significantly reduced ADAM8 and Arginase 1 levels as compared to normal
subjects. Importantly, the reductions seen in CCL17 and ADAM8 were significantly greater
in Rebif-treated MS patients as compared to Avonex-treated MS patients.

The phosphatase SHP-1 is deficient in untreated MS patients (12) and Rebif and Avonex
treatment resulted in a significant upregulation of SHP-1 (Table II). Although no significant
differences were observed between the two different treatments, there was a trend showing
Rebif treatment inducing higher levels of SHP-1 compared to Avonex treatment. In addition,
we did not observe any differences in the expression levels of the chemokine receptors
CXCR3 or CCR4, which are not directly regulated by STAT1, STAT6 or NF-κB. Finally,
the levels of the housekeeping control genes beta-actin and GAPDH were similar in all
groups serving as an important internal control.

DISCUSSION
The high-dosed, high-frequency IFN-β 1a Rebif is more effective than low-dosed, low-
frequency IFN-β 1a Avonex in reducing relapses and MRI activity in patients with RRMS
(9, 26). This study aimed to establish an immunological/molecular basis for this difference
in efficacy and document collectively possible biomarkers that can potentially explain the
difference in efficacy and can be monitor treatment and adjust dosage.

Multiple sclerosis is an immune-mediated disease and leukocytes in the blood and in CNS
lesions have increased activation of the transcription factors STAT1, STAT6, and NF-κB
that might be the result of increased plasma levels of the corresponding cytokines IFN-γ,
IL-4/IL13, and TNF-α (12, 14, 20–24, 51–57). In turn, these elevated transcription factors
drive the expression of several inflammatory genes that might contribute to the enhanced
demyelinating activity of CNS-infiltrating leukocytes. Here, we demonstrate that three-
month treatment of RRMS patients with Rebif compared to Avonex results in differential
and quantitative changes in cytokines and their downstream inflammatory gene expression.

First, we examined and quantified the levels of the plasma cytokines that were shown to be
upregulated in MS and correlated with the acute phase of MS (17–20). IFN-β 1a treatment
significantly decreased TNF-α and IL-6 levels but there were no significant differences
between Rebif and Avonex treatment. The levels of the cytokines IFN-γ and IL-4 were not
significantly affected following treatment with either agent. However, Rebif treatment
caused a significant reduction in plasma IL-13 compared to Avonex treatment. Importantly,
IL-13 is highly elevated in lymphocytes of MS patients during relapse and return near
baseline during remission (54). Interestingly, mast cells are a main source for IL-13 and are
believed to play a major role in lesion formation in MS and EAE (58, 59).
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In addition to cytokine levels, IFN-β modulates the activation of the transcription factors
STAT1, STAT6, and NF-κB and their downstream inflammatory gene expression (25). IFN-
β signals to primarily activate STAT1, which is widely considered an inflammatory
transcription factor inducing several genes that mediate CNS demyelination (25). This
seems paradoxical in the light that IFN-β has therapeutic effects in MS; however the
activation of STAT1 might be related to the incomplete action of IFN-β and its side-effect
profile. Importantly, unlike IFN-γ, IFN-β also activates the transcription factor STAT3 (10,
11). In turn, STAT3 signaling could mediate many of the anti-inflammatory effects of IFN-β
treatment in MS though mediating and augmenting the anti-inflammatory IL-10/STAT3
signaling pathway, inducing expression of intracellular molecules like SHP-1 that can
inhibit cytokine signaling, and mediate NF-κB and STAT6 inhibition (60–63). Furthermore,
augmented NF-κB activation through either increased TNF-α, IL-1b, IL-17 levels or
aberrant signaling is considered to be central in MS pathogenesis and an important target of
IFN-β therapy (12, 64, 65). Therefore, the fact that Rebif has more potent inhibitory effect
on NF-κB-inducible genes might contribute to enhanced clinical benefit through decreased
immune cell infiltration and activation, dismissed expression of neurotoxic molecules, and
reduced oligodendrocyte injury.

We examined the expression of STAT1 responsive genes, the chemokine IP-10 that chemo-
attracts primarily T-cells into CNS, and caspase 1 that is involved in apoptosis and
proteolytic processing of IL-1β (40, 66). Expression levels of IP-10 and caspase 1 were
elevated in leukocytes of RRMS patients compared to normal subjects. IP-10 levels were
significantly further increased following three-month Rebif treatment as compared to
Avonex treatment. These data suggest that the higher frequency and high-dosed of Rebif
translates into more potent long-term immunomodulatory effects compared to low-dosed
Avonex. Interestingly, the increased levels of the chemokine IP-10 following IFN-β
treatment closely correlated with the flu-like symptoms occurring in treated MS patients
(40) and several studies report that that Rebif treatment is associated with slightly more
frequent flu-like symptoms compared to Avonex (26, 29).

Both Rebif and Avonex treatment had a suppressive effect on the mRNA levels of several
inflammatory genes regulated by the transcription factors NF-κB and STAT6 in leukocytes
from RRMS patients. However Rebif treatment resulted in a significantly greater reduction
in the expression of RANTES, COX2, CCL17 and ADAM8 compared to Avonex. In
addition to serving as biomarkers to disease activity, these genes play a major role in MS
pathogenesis. For example chemokines play an important role in attracting immune cells
into the CNS, enzymes like COX-2 process neurotoxic molecules, and proteases like
ADAM 8 can directly degrade myelin (46, 49, 67). The genes that showed differential
regulation among Rebif and Avonex are induced through the NF-κB activation, suggesting
that Rebif treatment more effectively inhibits the NF-κB activation. These data in all suggest
that Rebif treatment is associated with an augmented immunosuppressive response
compared to Avonex, which is likely to translate into clinical benefits and at least partly
explain the increased efficacy seen in treating MS patients (9).

This study demonstrated that indeed there are underling gene expression changes that
parallel the difference in clinical efficacy between the two interferon-β 1a formulations,
Rebif and Avonex. At the same time, the study has certain limitations including the small
sample size of patients, the fact that gene expression was examined only at a single three-
month time point after treatment, and the lack of direct correlation of gene expression levels
to clinical outcomes of the patients used in this study. These limitations might partially
explain why not all the results were homogeneous and why significant differences were not
reached with all the genes examined. Nonetheless, this study clearly demonstrates that Rebif
and Avonex treatment result in differential gene expression changes that correlate to
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previously documented clinical responses. More studies are needed to firmly establish a
direct correlation between clinical outcomes and gene expression profiles following
interferon-β 1a treatment. Therefore, it is important that this study can provide the
groundwork and contribute in developing molecular tools that can objectively and promptly
monitor the therapeutic effects of interferon β-1a treatment and possibly help adjust dosages
in clinical practice.
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