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Abstract
The purpose of this paper for four-dimensional (4D) computed tomography (CT) is threefold. (1)
A new spatiotemporal model is presented from the matrix perspective with the row dimension in
space and the column dimension in time, namely the robust PCA (principal component analysis)-
based 4D CT model. That is, instead of viewing the 4D object as a temporal collection of three-
dimensional (3D) images and looking for local coherence in time or space independently, we
perceive it as a mixture of low-rank matrix and sparse matrix to explore the maximum temporal
coherence of the spatial structure among phases. Here the low-rank matrix corresponds to the
‘background’ or reference state, which is stationary over time or similar in structure; the sparse
matrix stands for the ‘motion’ or time-varying component, e.g., heart motion in cardiac imaging,
which is often either approximately sparse itself or can be sparsified in the proper basis. Besides
4D CT, this robust PCA-based 4D CT model should be applicable in other imaging problems for
motion reduction or/and change detection with the least amount of data, such as multi-energy CT,
cardiac MRI, and hyperspectral imaging. (2) A dynamic strategy for data acquisition, i.e. a
temporally spiral scheme, is proposed that can potentially maintain similar reconstruction
accuracy with far fewer projections of the data. The key point of this dynamic scheme is to reduce
the total number of measurements, and hence the radiation dose, by acquiring complementary data
in different phases while reducing redundant measurements of the common background structure.
(3) An accurate, efficient, yet simple-to-implement algorithm based on the split Bregman method
is developed for solving the model problem with sparse representation in tight frames.

1. Introduction
Respiratory motion can degrade the image quality of computed tomography (CT), and
consequently cause substantial errors in the dose delivery for thoracic and upper abdominal
tumors in radiation therapy (Xing et al 2006, Jiang et al 2008). With time-resolved data
acquisition, four-dimensional (4D) CT possesses an unprecedented capability for accurate
patient imaging and treatment planning in spite of organ/tumor motion (Vedam et al 2003,
Low et al 2003, Keall et al 2004, Rietzel et al 2005, Li et al 2005).

Two methodologies for 4D CT algorithms exist. In the first one, different temporal phases
(each phase corresponding to a 2D or 3D spatial image) are essentially considered as
independent phases in image reconstruction. For example, with an external respiratory signal
for synchronization, the acquired projection data are binned into different phases according
to amplitude or phase-angle sorting (Lu et al 2006), after which the reconstruction is
performed for each phase. There is no correlation between phases in reconstruction to this
point. To alleviate the view-aliasing artifacts due to the reduced number of projections, the
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image registration based on a deformable model of respiratory motion can be used either in
image space (Rueckert et al 1999) or in data space with an artifact-free reference image (Li
et al 2007). The similar ideas also appear in other 4D imaging techniques (Schreibmann et al
2008), such as 4D positron emission tomography (PET) (Nehmeh et al 2003).

In contrast, in the second methodology, the ‘time’ dimension is explicitly incorporated into
the reconstruction algorithm. That is, all the phases are treated as a single entity. An
apparent reason for this temporal fusion is that the images at different phases are
intrinsically interconnected to each other due to some underlying physical or biological
mechanism. As a result, this spatiotemporal synthesis feature is highly desirable in any truly
4D algorithm. For example, a spatiotemporal regularization via non-local means is utilized
to enforce the temporal similarity between two consecutive phases in 4D CT (Jia et al 2010).
Another unified spatiotemporal strategy is also considered in 4D inverse planning for
intensity-modulated radiation therapy (Lee et al 2009).

In this paper, we will present a different spatiotemporal model for 4D CT from matrix
perspective, namely the robust PCA (principal component analysis)-based 4D CT model
(RPCA-4DCT model). That is, instead of viewing the 4D object as a temporal collection of
three-dimensional (3D) images and looking for local coherence in time or space
independently, we perceive it as a mixture of low-rank matrix and sparse matrix to explore
the maximum temporal coherence of spatial structure among phases. Here the low-rank
matrix corresponds to the ‘background’ or reference state, which is stationary over time or
similar in structure; the sparse matrix stands for the ‘motion’ or time-varying component,
e.g., heart motion in cardiac imaging, which is often either approximately sparse itself or can
be sparsified in the proper basis. Here the image sparsity is enforced in the wavelet tight
frame domain rather than itself (Ron and Shen 1997).

In addition, we will also introduce a dynamic data acquisition scheme to maximize the
utility of the RPCA-4DCT model and develop an efficient solution algorithm. Specifically, a
temporally spiral scanning procedure can potentially maintain the similar reconstruction
accuracy with far fewer projections of the data that are complementary at different phases to
avoid redundant measurements of the common background structure; while being accurate,
the split Bregman method offers an extremely efficient, yet simple-to-implement strategy for
solving a class of general l1-type problems, including the proposed RPCA-4DCT model
(Goldstein and Osher 2009, Cai et al 2009).

The RPCA-4DCT model is motivated by the recent work for data analysis in statistics, i.e.
RPCA (Candès et al 2009). That is, with the data matrix consisting of a low-rank part and a
sparse part, both can be (almost) exactly recovered by minimizing the sum of the nuclear
norm of the low-rank component and l1 norm of the sparse component subject to certain
assumptions (incoherence conditions). The similar models have been considered in several
applications, such as video surveillance (Candès et al 2009), face recognition (Candès et al
2009), video denoising (Ji et al 2010), and others (Peng et al 2010, Liu et al 2010, Min et al
2010, Zhu et al 2010, Zhang et al 2010, Wu et al 2010). A key difference between the
RPCA-4DCT model and RPCA and most existing applications is that the available data here
are tomographic measurements linked to the object through some ill-posed system matrix
rather than directly from the object itself. Although the required incoherence conditions for
guaranteeing the success of RPCA to exactly recover both low-rank and sparse matrices
cannot be rigorously justified in such an ill-posed inverse problem, we will show in this
paper that the RPCA-4DCT model indeed offers not only improved overall image quality for
4D CT, but also quite satisfactory decomposition into the background and the motion/
change. Moreover, the RPCA-4DCT model can be augmented when in conjunction with the
tight frame transform, a dynamic data acquisition scheme pertinent to 4D CT, and the split
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Bregman method. Finally, we remark that the proposed RPCA-4DCT model is a general
model that can be potentially applicable in other imaging problems aiming at motion
reduction or/and change detection besides 4D CT, such as multi-energy CT, cardiac MRI,
and hyperspectral imaging.

2. Models and algorithms
2.1. Model

The 4D object to be imaged can be viewed as a temporal sequence of 2D or 3D spatial
images, i.e.

(2.1)

where X is the 4D object with a temporal index j and xj corresponds to one of nt phases, that
is usually a piecewise-constantly discretized image in space. Note that the respiratory cycle
is generally assumed in order to acquire enough data for reconstructing each phase in the
cycle (Vedam et al 2003). However, this temporal periodicity is not necessary in the model
formulation; thus, it is not assumed in (2.1). The assumption we impose on the model in this
study is fairly natural and practical, i.e. the temporal variation of X in space is ‘sparse’
(under certain sparsifying transform) with respect to a ‘stationary’ background. Shortly, this
assumption will be quantified as a matrix decomposition model, i.e. the RPCA-4DCT
model, with each component characterized in the proper norm.

The available data at each phase are

(2.2)

Here yj is assumed to be the x-ray transform of xj with certain measurement noise Nj, and Aj
corresponds to the system matrix that can be assembled according to line integrals in the
image space between source–detector pairs (Buzug 2008). Originally, the system matrix
should be independent of the index j since it is usually determined solely by the scanning
geometry. In the following we will introduce a dynamic scanning strategy with the
consequent dependence on j to explore the possibility of 4D low-dose CT with fewer
projections of data. On the other hand, the model and the algorithm discussed later also
apply to other formulations of the system matrix, such as the Fourier-based one (Buzug
2008).

2.1.1. Existing models—In 4D CT, one tries to reconstruct the 4D object X from its
projection data Y. An apparent way is to reconstruct xj solely from yj for each phase, and
then post-process xj altogether for artifact reduction (if necessary), i.e.

(2.3)

The first equation of (2.3) represents the solution of xj through the minimization of a least-
squares data fidelity term and a regularization term R on the image xj. Here the
regularization is necessary for reducing the image artifact that may be due to the noise or the
insufficient number of projections. This is a well-known iterative reconstruction strategy
that is commonly used in algebraic reconstruction techniques (ART) when the system matrix
is underdetermined, i.e. the number of data is less than the number of unknowns (Buzug

Gao et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2012 July 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2008). For comparison of models, L2 regularization and total variation (TV) regularization
(Rudin et al 1992) will be employed, i.e. the following with i the spatial index:

(2.4)

In the second equation of (2.3), F represents the post-processing, for example, to alleviate
the view-aliasing artifacts or smooth the image variation between phases. A commonly used
method is based on the deformable model (Rueckert et al 1999). Alternatively, when an
artifact-free reference image is available, the image deformable model can also be used to
‘smooth’ the data first, and then followed by the phase-wise reconstruction (Li et al 2007).

An immediate benefit of the model (2.3) is that the problem is computationally minimal in
the sense that it is almost equivalent to solve a few CT problems with some extra cost for
pre-/post-processing. However, this model is fundamentally defective. That is, the interplay
between spatial images among different phases is considered a pure image registration
problem rather than a truly 4D reconstruction. As a result, the embedded features that are
available only through a 4D model can never be revealed otherwise, e.g., through (2.3).

Therefore, one should incorporate spatial images at different phases as a single entity into
the reconstruction model. The next question is what should the model look like?

A natural thought is to consider the following:

(2.5)

where the reconstruction of xj at different phases is performed simultaneously with an
additional regularization term in time, i.e. Rt(X). That is, the data fidelity term is enforced at
all phases, while the solution is regularized both spatially and temporally. Note that despite
the simultaneous consideration of all phases, the regularization is however independently
carried out locally in space and time. In section 3, we will adopt TV regularization in both
space and time for comparison of models (Weickert and Schnörr 2001). That is, with the
alternative representation of X in pixels rather than phases, e.g., xi consisting of all phases at
the ith pixel,

(2.6)

the temporal TV regularization is defined as

(2.7)

Then, the model (2.5) becomes the following with TV regularization in both space and time:

(2.8)

Although (2.8) is a way to model 4D CT as a 4D reconstruction problem, this model is still
not very satisfactory in the sense that the spatiotemporal regularization is enforced ‘locally’,
while in reality the 4D entity is a ‘global’ mixture in time and space.
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2.1.2. Robust PCA-based 4D CT model—The major contribution of this work is to
introduce a new spatiotemporal 4D model from the matrix perspective, i.e. the RPCA-4DCT
model in short. That is, X parameterized conventionally in space via (2.1) or in time via
(2.6) can be represented in a matrix with row dimension for the spatial variable and column
dimension for the temporal variable:

(2.9)

As mentioned earlier, the respiratory motion can be regarded as a sequence of spatial images
with different temporal sparse ‘motion’ or ‘change’ from a common ‘background’.
Motivated by this observation, we consider the following natural low-rank and sparse
decomposition of X:

(2.10)

In (2.10), X1 is the low-rank matrix component for modeling the stationary background of
X. Note that X1 is assumed to resemble each other rather than to be constant in time, which
can be naturally characterized as a low-rank matrix mathematically. On the other hand, X2 is
the sparse matrix component for modeling the sparse deviation from the background X1.
Here the sparsity can be the image itself or the image under the proper sparsifying transform
that will be discussed shortly.

Accordingly, when the temporal change of images is sparse in the original representation,
we consider the following matrix minimization problem for the RPCA-4DCT model:

(2.11)

where A represents a linear operator composed of system matrices {Aj}, the nuclear norm
for penalizing the rank of the matrix X1 (altogether for all phases) is defined as the sum of
its singular values {σk} with the regularizing parameter λ*, and the l1 norm for promoting
the sparsity of X2 (independently for each phase) is simply the absolute sum of its entries
with the regularizing parameter λ1, i.e.

(2.12)

Compared with (2.8), the RPCA-4DCT model via (2.11) offers a unified treatment in time
and space, while each 4D component is characterized via the proper norm, such as (2.12).
The gain of the overall reconstruction quality via the RPCA-4DCT model will be apparent
in section 3. In addition, the separation of X2 from the background X1 is a unique feature of
the RPCA-4DCT model with captured dynamic details that would sometimes be crucial but
hardly recognizable visually.

On the other hand, there may be concern that the computational cost would increase
dramatically due to the simultaneous reconstruction of X at all phases. In section 2.3, we
will address this question with an efficient algorithm, which shows that the collective
optimization via (2.8) or (2.11) costs roughly the same as independent optimizations via
(2.3).
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2.1.3. Connection with prior works—The RPCA-4DCT model is motivated by RPCA
for data analysis in statistics (Candès et al 2009). In Candès et al (2009), a model to recover
principal component X1 (modeled by a low-rank matrix) from data X with outliers X2
(modeled by a sparse matrix) is converted to the following minimization problem when
certain incoherence conditions are satisfied:

(2.13)

where r is shown to be the following for the matrix with n1 rows and n2 columns, so that no
tuning parameter is necessary:

(2.14)

2.1.4. RPCA-4DCT model revisited—Physical images usually have sparse structure
under some carefully constructed dictionary, if not in the original representation. In this
study, we find that the tight frame system derived from Ron and Shen (1997) and
Daubechies et al (2003) in general serves the purpose in terms of low-rank and sparse
decomposition. As a result, the RPCA-4DCT model via (2.11) is revised as

(2.15)

where W represents the framelet analysis operator with WTW = I. In this study, a multilevel
tight framelet decomposition without downsampling under the Neumann (symmetric)
boundary condition is used with piecewise linear framelets (Chai and Shen 2007, Cai et al
2008).

A key difference between our RPCA-4DCT model (2.15) and RPCA (2.13) and most
existing applications is that the available data set Y here is the tomographic data of X
generated by some system matrix rather than directly from X itself. As a result, the required
incoherence conditions for guaranteeing the success of RPCA cannot be rigorously justified
in such an ill-posed inverse problem. Another difference is that the sparsity of X2 is
enforced in the transform domain in the RPCA-4DCT model, while it is in the original
image domain in RPCA. Besides, the component X2 here is for modeling the motion or the
change which is often crucial for CT, and the data/image noise is controlled by the data
fidelity term; in contrast, in some applications of RPCA, the component X2 is considered to
be the noise that is of less interest.

The sparsity of images under tight framelets has been successfully used to solve many image
restoration tasks including image denoising, image deblurring, image inpainting, etc (e.g.
Cai et al 2008, 2009, Chai and Shen 2007). Most importantly, tight framelets are redundant
systems, which lead to robust image representations. Therefore, partial loss and noise of the
data in CT can be tolerated without adverse effects. Moreover, the filters in piecewise linear
B-spline framelets are the first and second discrete difference operators, respectively, and
the multiscale structure of the framelets enables their multilevel correspondences. These
difference operators are well organized in such a way that they have the unitary property
WTW = I. Altogether, the piecewise linear B-spline framelet can provide more difference
operators than traditional partial differential equation-based methods such as TV
regularization, and hence it can handle images with abundant structures.
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Another benefit using tight framelet systems is the availability of more efficient numerical
methods to solve the resulting minimization (2.15). We will use the split Bregman method to
solve (2.15), and there is a system of linear equations to be solved in each iteration of the
split Bregman method. Since A is usually underdetermined and WTW = I, it can be verified
that the coefficient matrix of the resulting linear system has clustering eigenvalues.
Therefore, the system of linear equations can be solved efficiently by the conjugate gradient
(CG) method, and CG gives the exact solution after only a few steps.

On the other hand, with a priori knowledge of the noise in (2.2), the RPCA-4DCT model
(2.15) can be further augmented by characterizing the first term (the data fidelity term) with
the appropriate norm. For example, if the data come with impulse noise, l1 norm is
particularly suitable for characterizing such outliers (Alliney 1992, Nikolova 2002, Chan
and Esedoglu 2005, Gao and Zhao 2010). In this study, for simplicity, we assume Gaussian
data noise and penalize the data fidelity term with L2 norm.

Finally, we remark that when the considered 4D object changes drastically in time, it can be
reformulated into a few overlapping 4D objects according to the properly chosen temporal
windows. Consequently, the overall reconstruction is with respect to the weighted sum of
4D components (Ji et al 2010).

2.2. Dynamic scanning
One of the major practical concerns of CT is its ionizing radiation dose. For instance, it has
been estimated that although CT studies constitute only 4%of all radiological procedures,
they account for 40% of the radiation dose delivered (Shrimpton and Edyvean 1998);
furthermore, ‘CT could account for as much as 60% of manmade radiation exposures to
Americans’ (Linton et al 2003). Tremendous effort has been devoted to dose reduction
(Xing et al 2006, Jiang et al 2008, Pan et al 2009, Fahimian et al 2010, Wang et al 2010).
For example, as a theoretically justified methodology, ‘interior tomography’, an internal
region of interest (ROI) can be exactly reconstructed only from local projection data directly
associated with this ROI, which would conventionally require the whole body x-ray
illumination (Wang et al 2010, Ye et al 2007, Kudo et al 2008).

Here we propose a dynamic scanning procedure pertinent to 4D CT that can potentially offer
further dose reduction through the reduced number of projections. This dynamic scanning is
temporally ‘spiral’ as illustrated in figure 1.

While figure 1(a) shows full views of data (‘full views’), figure 1(b) shows a temporally
stationary data acquisition scheme with the reduced number of views that is stationary over
time (‘partial views’). In contrast, figure 1(c) shows a dynamic scanning procedure
(‘dynamic views’). In ‘dynamic views’, the positioning of acquired views differs between
consecutive phases, however changes periodically so that each view is covered at least once
during a dynamic period of scanning. In this way, the redundant measurements of the
common background structure at different phases can be avoided. Note that we do not
assume the temporal periodicity of images.

The potential advantage of the proposed ‘dynamic views’ (figure 1(c)) is that it can achieve
comparable image quality with a fewer number of views than ‘full views’ (figure 1(a)), or
provide better image quality with the same number of views as ‘partial views’ (figure 1(b)).
A heuristic explanation is that the acquired views in one period can be fused into a dataset of
full views so that the tangible data for each phase are from full views rather than partial
views. What are missing in the data acquired from ‘dynamic views’ compared with ‘full
views’ mostly corresponds to the redundant measurements of the stationary background.
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Moreover, ‘dynamic views’ is practically feasible as long as the object to be imaged can be
regarded as a single temporal phase within the time period of each data acquisition. Next we
will use the reported parameters in Vedam et al (2003) to illustrate its applicability in 4D CT
for respiratory motion. That is, assuming that (1) the 4D object of interest is one respiratory
cycle with 6 s in time, (2) the scanner rotation time for full views is 1.5 s, (3) a fraction of
the entire views are to be used for each phase, i.e. one eighth, then it is safe to consider the
4D model with up to 32 phases.

In contrast, in the standard scanning procedure, the over-sampled views of data are first
acquired without pre-arrangement of the scanning according to phases, and then are binned
into different phases according to amplitude or phase-angle sorting using an external
respiratory signal (Lu et al 2006). Note that the 4D objects to be imaged have to assume
certain temporal periodicity in order to carry out the synchronized binning. Compared with
this standard scanning procedure, the proposed dynamic scanning scheme has the following
apparent advantages: (1) no external respiratory signal is necessary, (2) the 4D objects do
not have to be periodic, (3) most importantly, the carefully designed periodic data
acquisition scheme provides the almost equivalent image quality as the full-view
acquisition. On the other hand, it is synergetic with other potential scanning procedures for
dose reduction, such as multi-source interior tomography (Wang et al 2009).

2.3. Algorithm
In this section, we consider the solution of the RPCA-4DCT model via the following
optimization:

(2.16)

where r is defined by (2.14), and λ* is the only regularizing parameter to be determined.

Here we adopt an accurate, efficient, but simple-to-implement algorithm for solving the non-
differentiable l1-type problems, such as (2.16), namely the split Bregman method, that is
essentially equivalent to the augmented Lagrangian method; however, it was independently
developed from a different perspective to improve the ROF model (Goldstein and Osher
2009, Osher et al 2005). In particular, the tight frame regularized split Bregman method is
implemented here (Cai et al 2009). That is, equation (2.16) can be exactly solved through
the following simple iterative scheme with X1

0 = X2
0 = 0, f0 = 0, d1

0 = υ1
0 = 0 and d2

0 =
υ2

0 = 0:

(2.17)

The convergence of this iterative scheme when the variables are vectors has been established
in Cai et al (2009). Although the split Bregman method here by (2.17) is for matrix
variables, the convergence can be obtained by mimicking the proofs in Cai et al (2009).
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The first step of (2.17) corresponds to one iteration step in a typical differentiable L2
minimization, and the solution is simply from its optimal condition. In implementation, A
and W are regarded as linear operators rather than matrices. For efficiency, CG is utilized in
which only the evaluations of linear operators on Xj are necessary, such as Aj X1

j and WX2
j,

without the explicit formulation and inversion of the whole system. As we have mentioned
before, it can be verified that the considered matrix system has clustering eigenvalues.
Therefore, CG gives the exact solution after only a few iterations. Note that if only a single
iteration is used in CG, (2.17) can be viewed as a typical example of operator splitting
methods (Combettes and Wajs 2005, Hale et al 2008, Zhang et al 2009). However, it is
found here that the conventional CG with a few iterations is more realistic in terms of
reconstruction accuracy and convergence speed, which was also mentioned in Jia et al
(2010).

The second step of (2.17) can be exactly solved by the so-called singular value thresholding
(SVT) algorithm (Cai et al 2010). That is,

(2.18)

where the thresholding is with respect to singular values σ of the input matrix, i.e.

(2.19)

For this step, the major computational cost is from singular value decomposition (SVD),
which can be expensive in the overall scheme (2.17). However, it is sufficient to consider
this step by SVD in this study since the number of columns of the matrix considered here
(corresponding to the number of phases in 4D object) is so small that SVT (2.19) via SVD is
computationally negligible overall. In the case of a large number of phases, the fast SVT
without SVD can be used (Cai and Osher 2010).

The solution to the third step of (2.17) is given by the so-called shrinkage formula, i.e.

(2.20)

with

(2.21)

Note that the shrinkage formula (2.21) is a scalar operation for each entry of X, while SVT
(2.19) is a global operation on X.

Regarding the parameters in (2.17), the following are recommended:

(2.22)

where n1 (n2) are the number of rows (columns) of the matrix X. Here the choice of r is
supported by the rigorous analysis for RPCA (Candès et al 2009) although the theory
assumptions cannot be justified rigorously here due to the system matrix A. Furthermore, it
is found that λ* ∈[0.1, 10] generally provides the satisfactory performance in terms of both
accuracy and speed.
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In the proposed algorithm via (2.17), the dominant component is to solve L2 problems in the
first step. Due to its iterative nature, empirically it is not necessary to solve each CG step
with very high accuracy in order for the whole loop to achieve fast convergence besides the
fact that the system has a good condition number as mentioned before. We found that CG
with 10 to 20 inner iterations is adequate for (2.17) to have the acceptable reconstruction
accuracy within 50 outer iterations.

The similar split Bregman strategy as (2.17) can be used for solving other models in section
2.1. Another advantage of the split Bregman method is that the computation cost for the
RPCA-4DCT model (2.15) is similar to the corresponding L1-type 4D models, such as (2.8)
with TV regularization in both time and space, or a temporally independent sequence of 3D
models, such as (2.3) with TV regularization in space.

3. Results
The purpose here is twofold: (1) to compare different models and (2) to justify the proposed
dynamic scanning.

To simplify the discussion, let ‘L2’ (‘TV’) be the 3D model that solves 4D CT by each
individual phase, i.e. (2.3) with L2 (TV) regularization; let ‘TV+TVt’ be the 4D model that
solves 4D CT as a single entity, i.e. (2.8) with TV regularization in both space and time; let
the RPCA-4DCT model be the proposed matrix model that solves 4D CT as a single entity,
i.e. (2.15) with a low-rank component and a sparse component (in tight frames). Note that
we do not compare here with the standard filtered backprojection (without regularizing
solutions), which generally gives worse accuracy than ‘L2’ when reconstructing with
insufficient number of views.

In this proof-of-concept study, for simplicity, the spatial dimension is 2D rather than 3D, i.e.
a 128 by 128 spatial grid. Here 32 temporal phases are adopted for the justified reasons in
section 2.2. With the parallel scanning geometry, the length of the detectors with 256
detector pixels is equal to the side length of the spatial square domain, and ‘full views’
consist of 256 projections. The reconstructions with three different data acquisition schemes
(figure 1) will be compared: ‘full views’ corresponds to the use of all data; ‘partial views’
corresponds to the use of 32 projections that is temporally stationary in phases; ‘dynamic
views’ corresponds to the use of 32 projections that is dynamically adjusted among phases
so that any view is covered in some phase within a full dynamic period while avoiding
redundant measurements of the common background. Here one data acquisition cycle is
synchronized with eight phases and the data are acquired with four cycles.

Except ‘L2’, which is differentiable and therefore can be solved with iterations involving
only one step that is similar to the first step of (2.17), all aforementioned other models can
be solved through split Bregman iterations similar to (2.17). As a result, since the major
computational cost in all models is on the L2 step similar to the first step in (2.17), the total
computation time approximately only depends on the number of iterations. It is found that
roughly 20–50 iterations together with the parameters specified by (2.22) are sufficient. In
particular, all models except ‘L2’ are similar in computational cost, while ‘L2’ fails to
achieve the satisfactory accuracy (comparing with other models) regardless of the number of
iterations.

Two spatiotemporal phantoms are used for evaluation. Phantom 1 is utilized for evaluating
the reconstruction with motion, while the purpose of phantom 2 is for change detection.

Phantom 1 is to mimic a half respiratory cycle with the cardiac motion, which is based on
the modified Shepp–Logan phantom that consists of piecewise constant regions (figure 2).
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The cardiac phases are generated according to the model proposed in Wang et al (2002). The
temporal variations consist of (1) the cardiac model: the intensity increase and the area
change of the top circle (with a relatively large diameter); (2) the small deformation: the
vertical movement of the lower central circle (with a relatively small diameter), and (3) the
lung motion: the horizontal movement of two ellipses (with a relatively low contrast) apart
from each other.

Phantom 2 is to model the case with small temporal variations, which can be even hardly
recognizable by human eyes (figure 3). It is based on a MRI brain image and the temporal
variations consist of the horizontal movement of two ellipses (with a relatively very low
contrast) apart from each other.

3.1. Model comparison
In this section, a small fraction of full views are used, i.e. one eighth of the full data (32
projections). Specifically, we adopt ‘dynamic views’ as the data acquisition scheme (figure
1(c)).

For phantom 1, the result from the RPCA-4DCT model is shown in figure 4, which clearly
shows that the RPCA-4DCT model is not only able to recover images but also provide
automatic image decomposition into the background (that is mathematically low-rank) and
the variation (that is sparse under tight frame transform). In contrast, the results from other
models are shown in figure 5. Since phantom 1 is in favor of TV regularization due to its
components in piecewise constants, ‘TV’ and ‘TV+TVt’ offer the equivalent image quality
although the RPCA-4DCT model is slightly better in terms of reconstruction errors (table 1).

On the other hand, the result from the RPCA-4DCT model for phantom 2 is shown in figure
6, which again indicates that the matrix model is not only superior in the overall image
quality, but also able to capture these small features that would be impossible otherwise. For
comparison, the results from other models are shown in figure 7. With temporal TV
regularization, ‘TV+TVt’ provides better overall image quality than ‘TV’ both visually
(figure 7) and quantitatively (table 1), which however is worse than the RPCA-4DCT model.
The blurred or smoothed details are apparent for either ‘TV’ or ‘TV+TVt’. Besides, neither
clearly shows the temporal variations, which in contrast are available through the
RPCA-4DCT model without extra computational cost.

Note that although the decomposition via the RPCA-4DCT model is non-unique, the
variations are clearly captured as in figures 4 and 6. Furthermore, such a clear
decomposition with captured details via the RPCA-4DCT model is usually not available
through the post-processing of images from other models, such as the simple subtraction of
images with respect to the first phase.

3.2. Scanning comparison
The reconstructions are performed on phantom 2 with the RPCA-4DCT model to compare
three different data acquisition schemes (figure 1), i.e. ‘full views’ with 256 projections for
each phase, ‘partial views’ with 32 projections for each phase that are temporally invariant
in terms of positioning of projections, and ‘dynamic views’ with 32 projections for each
phase that are dynamically variant so that each view is available for some phase in a full
scanning cycle. Here one data acquisition cycle is synchronized with eight phases and the
data are acquired with four cycles.

The reconstruction results for ‘dynamic views’, ‘partial views’ and ‘full views’ are presented
in figures 6, 8 and 9, respectively, and the quantitative reconstruction accuracy is
summarized in table 2. The results clearly show that ‘dynamic views’ has a great potential
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for dose reduction since it offers a satisfactory accuracy with only a small fraction of the full
data.
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Figure 1.
An illustration example on scanning procedures for 4D CT. (a) ‘Full views’ corresponds to
full data acquisition with 32 projections for each phase; (b) ‘partial views’ corresponds to
partial data acquisition with 8 projections, which is temporally stationary in each phase; (c)
‘dynamic views’, again with 8 projections, is, however, dynamically variant among phases,
so that any view can be swept in some phase within a full dynamic cycle while avoiding
redundant measurements of the common background structure at different phases. In this
example one data acquisition cycle is synchronized with 4D images with four phases. Note
that no temporal periodicity of the images is assumed.
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Figure 2.
Phantom 1 for 4D CT; (a), (b) and (c) are the image X, the background of the image X1 and
the motion/change of the image X2, respectively, at phase 1, i.e. X = X1 + X2. Similarly, (d),
(e) and (f) correspond to X, X1 and X2 at phase 16, and (g), (h) and (i) correspond to X, X1
and X2 at phase 32.
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Figure 3.
Phantom 2 for 4D CT; (a), (b) and (c) are the image X, the background of the image X1 and
the motion/change of the image X2, respectively, at phase 1, i.e. X = X1 + X2. Similarly, (d),
(e) and (f) correspond to X, X1 and X2 at phase 16, and (g), (h) and (i) correspond to X, X1
and X2 at phase 32.
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Figure 4.
Reconstructed images with the RPCA-4DCT model for phantom 1; (a), (b) and (c) are the
total image X, the low-rank component X1 and the sparse component (in tight frames) X2,
respectively, at phase 1, i.e. X = X1 + X2. Similarly, (d), (e) and (f) correspond to X, X1 and
X2 at phase 16, and (g), (h) and (i) correspond to X, X1 and X2 at phase 32.
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Figure 5.
Reconstructed images with other various models for phantom 1; (a), (b) and (c) are from
‘L2’, ‘TV’ and ‘TV+TVt’, respectively, at phase 1. Similarly, (d), (e) and (f) correspond to
the above models at phase 16, and (g), (h) and (i) correspond to the above models at phase
32.
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Figure 6.
Reconstructed images with the RPCA-4DCT model for phantom 2; (a), (b) and (c) are the
total image X, the low-rank component X1 and the sparse component (in tight frames) X2,
respectively, at phase 1, i.e. X = X1 + X2. Similarly, (d), (e) and (f) correspond to X, X1 and
X2 at phase 16, and (g), (h) and (i) correspond to X, X1 and X2 at phase 32.

Gao et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2012 July 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Reconstructed images with other various models for phantom 2; (a), (b) and (c) correspond
to ‘L2’, ‘TV’ and ‘TV+TVt’, respectively, at phase 1. Similarly, (d), (e) and (f) correspond
to the above models at phase 16, and (g), (h) and (i) correspond to the above models at phase
32.
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Figure 8.
Reconstructed images with the RPCA-4DCT model for phantom 2 with ‘partial views’.
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Figure 9.
Reconstructed images with the RPCA-4DCT model for phantom 2 with ‘full views’.
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Table 1

Reconstruction accuracy from various models (with ’dynamic views’). The quantities are the quotient
differences between the ground truth X0 and the reconstructed images X, i.e. ‖X − X0‖/‖X0‖ with ‖·‖ L2 norm.

Phantom L2 TV TV+TVt LR+TF

1 0.314 0.008 0.006 0.004

2 0.197 0.076 0.040 0.022
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Table 2

Reconstruction accuracy from various data scanning schemes with the RPCA-4DCT model. The quantities are
the quotient differences between the ground truth X0 and the reconstructed images X, i.e. ‖X − X0‖/‖X0‖ with
‖·‖ L2 norm.

Phantom Partial views Dynamic views Full views

2 0.187 0.022 0.005
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