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Abstract

The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures,
ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this
variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying
reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats,
provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble
method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to
taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence
and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed
strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying
inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which
themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina
demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual
interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the
subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic
groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades.
Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as
Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the
dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities
for future targeted mechanistic studies of the microbial ecology of the human microbiome.
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Introduction

In nature, organisms rarely live in isolation, but instead coexist

in complex ecologies with various symbiotic relationships [1]. As

defined in macroecology, observed relationships between organ-

isms span a wide range including win-win (mutualism), win-zero

(commensalism), win-lose (parasitism, predation), zero-lose

(amensalism), and lose-lose (competition) situations [2,3,4]. These

interactions are also widespread in microbial communities, where

microbes can exchange or compete for nutrients, signaling

molecules, or immune evasion mechanisms [4,5,6]. While such

ecological interactions have been recently studied in environmen-

tal microbial communities [7,8,9,10], it is not yet clear what the

range of normal interactions among human-associated microbes

might be, nor how their occurrence throughout a microbial

population may influence host health or disease [11].

Several previous studies have identified individual microbial

interactions that are essential for community stability in the

healthy commensal microbiota [12,13,14,15], and many are

further implicated in dysbioses and overgrowth of pathogens

linked to disease [16]. Each human body site represents a unique

microbial landscape or niche [17,18], and relationships analogous

to macroecological ‘‘checkerboard patterns’’ [3] of organismal co-

occurrence have been observed due to competition and cooper-

ation [5,9,19,20]. For example, dental biofilm development is

known to involve complex bacterial interactions with specific

colonization patterns [21,22,23]. Likewise, disruption of relation-

ships among the normal intestinal microbiota by overgrowth of

competitive pathogenic species can lead to diseases, e.g. coloni-

zation of Clostridium difficile in the gut [24]. However, no complete

catalog of normally occurring interactions in the human micro-

biome exists, and characterizing these co-occurrence and co-
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exclusion patterns across body sites would elucidate both their

contributions to health and the basic biology of their ecological

relationships. Thus, characterizing key microbial interactions of

any ecological type within the human body would serve as an

important first step for studying and understanding transitions

among various healthy microbial states or into disease-linked

imbalances.

As has been also been pointed out in macroecology, however,

the analytical methodology needed to comprehensively detect such

co-occurrence relationships is surprisingly complex [25]. Most

existing studies employ simple measures such as Pearson’s or

Spearman’s correlation to identify significant abundance relation-

ships [13,15,26]. These methods are suboptimal when applied

without modification to organismal relative abundances [27].

Since absolute microbial counts are not known and measurements

depend on sampling and sequencing depth, an increase in one

relative abundance must be accompanied by a compositional

decrease in another, leading to spurious correlations among non-

independent measurements [28]. In addition, sparse sequence

counts can cause artefactual associations for low-abundance

organisms with very few non-zero observations [27]. Conversely,

association methods such as log-ratio based distances [28] that

have been developed specifically for such compositional data are

difficult to assign statistical significance, a vital consideration in

high-dimensional microbial communities containing hundreds or

thousands of taxa.

Here, we have addressed these issues to catalog a baseline of

normal microbial interactions in the healthy human microbiome.

The Human Microbiome Project (HMP) [29] sampled a disease-

free adult population of 239 individuals, including 18 body

habitats in five areas (oral, nasal, skin, gut, and urogenital),

providing 5,026 microbial community compositions assessed using

16S rRNA gene taxonomic marker sequencing [29]. We have

developed a suite of methods to characterize microbial co-

occurrence and co-exclusion patterns throughout the healthy

human microbiome while suppressing spurious correlations.

Specifically, these were 1) an ensemble approach including

multiple similarity and dissimilarity measures, and 2) a compen-

dium of generalized boosted linear models (GBLMs) describing

predictive relationships, both assessed nonparametrically for

statistical significance while mitigating the effects of composition-

ality. Together, these methods provide a microbiome-wide

network of associations both among individual microbes and

between entire microbial clades.

Among the 726 taxa and 884 clades in the HMP data, we

examined both intra-body site and inter-body site relationships as

a single integrated microbial co-occurrence network. Each

relationship represents co-occurrence/co-exclusion pattern be-

tween a pair of microbes within or between body sites among all

subjects in the HMP (in contrast to studies within single subjects of

microbial co-occurrences across biogeography, e.g. [30,31]). This

ecological network proved to contain few highly connected (hub)

organisms and was, like most biological networks, scale-free. Co-

occurrence patterns of the human microbiome were for the most

part highly localized, with most relationships occurring within a

body site or area, and there were proportionally few strong

correspondences spanning even closely related body sites. Each

pair of organisms was assessed for positive (e.g. cooperative) or

negative (e.g. competitive) associations, and in many cases these

patterns could be explained by comparing the organisms’

phylogenetic versus functional similarities. In particular, taxa with

close evolutionary relationships tended to positively associate at a

few proximal body sites, while distantly related taxa with

functional similarities tended to compete. The resulting network

of microbial associations thus provides a starting point for further

investigations of the ecological mechanisms underlying the

establishment and maintenance of human microbiome structure.

Results/Discussion

We inferred a microbiome-wide microbial interaction network

by analyzing 5,026 samples from the Human Microbiome Project

(HMP) comprising 18 body sites, 239 individuals recruited at two

clinical centers, and 726 bacterial phylotypes detected by 16S

rRNA gene sequencing (Table 1). Our study aimed to determine

co-occurrence and co-exclusion relationships among the relative

abundances of microbial taxa across all individuals, potentially

indicative of their ecological relationships. We thus combined two

complementary approaches, namely an ensemble of multiple

similarity and dissimilarity measures (henceforth ‘‘ensemble

approach’’) and a compendium of generalized boosted linear

models (GBLMs, henceforth ‘‘GBLM approach’’). Both methods

were applied to the HMP data to produce microbial interaction

networks in which each node represented a microbial clade (taxon

or group of taxa) connected by edges that were weighted by the

significance of their association (positive or negative). Spurious

correlations due to compositional structure of relative abundance

data [27] were prevented by a novel bootstrap and re-normali-

zation approach assessing the degree of association present beyond

that expected by compositionality alone. We used Simes method

followed by Benjamini-Hochberg-Yekutieli false discovery rate

(FDR) correction to combine the resulting networks (Figure 1). A

detailed final network is provided in Figure S1, with a comparison

of all networks in Figure S7 and additional information in

Methods. This provided a single global microbial interaction

network capturing 3,005 associations among 197 phylotypes,

spanning all available body sites from the human microbiome

(Figure 2; Table S1).

Author Summary

The human body is a complex ecosystem where microbes
compete, and cooperate. These interactions can support
health or promote disease, e.g. in dental plaque formation.
The Human Microbiome Project collected and sequenced
ca. 5,000 samples from 18 different body sites, including
the airways, gut, skin, oral cavity and vagina. These data
allowed the first assessment of significant patterns of co-
presence and exclusion among human-associated bacteria.
We combined sparse regression with an ensemble of
similarity measures to predict microbial relationships
within and between body sites. This captured known
relationships in the dental plaque, vagina, and gut, and
also predicted novel interactions involving members of
under-characterized phyla such as TM7. We detected
relationships necessary for plaque formation and differ-
ences in community composition among dominant mem-
bers of the gut and vaginal microbiomes. Most relation-
ships were strongly niche-specific, with only a few hub
microorganisms forming links across multiple body areas.
We also found that phylogenetic distance had a strong
impact on the interaction type: closely related microor-
ganisms co-occurred within the same niche, whereas most
exclusive relationships occurred between more distantly
related microorganisms. This establishes both the specific
organisms and general principles by which microbial
communities associated with healthy humans are assem-
bled and maintained.

Human Microbiome Co-occurrence Relationships
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A global network of microbial co-occurrence and mutual
exclusion within and among body site niches of the
human microbiome

Global properties of the microbiome-wide network of microbial

associations are summarized in Figures 2 and 3. A dominant

characteristic of the network was its habitat-specific modularity.

After grouping the 18 body sites into five broad areas (oral, skin,

nasal, urogenital, and gut), the large majority of edges were found

clustered within body areas (98.54%), and these clusters were

sparsely connected through a minority of edges (1.46%). This is

confirmed by the network’s high modularity coefficient of 0.28 (as

defined by [32]) and Markov clustering of the network (see Methods

and Figure S2). It has long been observed that sites within the human

microbiome are distinct in terms of microbial composition [33], and

this proved to be true of microbial interactions as well: microbial

relationships within each body area’s community were largely

unique (Table 2). The microstructure of interaction patterns - and

thus in the underlying ecology - was different for different areas,

however. For example, all vaginal sites within the urogenital area

were interrelated in a single homogeneous community, whereas

interactions within the oral cavity suggested microbial cross-talk

among three distinct habitats [34]. This can be observed quantita-

tively based on the proportions of microbial interactions spanning

body sites within each area, e.g. 69.57% among the vaginal sites and

53.19% among the oral sites, both exceeding the microbiome-wide

baseline. The skin was further unique in that the large amount

(57.65%) of its associations related microbes in corresponding left

and right body sites (left and right antecubital fossae and retro-

auricular creases), reflecting consistent maintenance of bilateral

symmetry in the skin microbiome.

We began decomposing the network by categorizing microbial

associations within each body area into body-site-specific relation-

ships of two types: cross-site and within-site interactions. On average,

these two classes make up 53.11 and 46.89 percent of the total edges,

respectively (Table 2). First focusing on cross-site associations, a

majority (66.10%) of such relationships were co-occurrences

between the same or taxonomically related clades in proximal or

bilateral body sites. This reflects coordinated community structure

among ecologically related niches, such as similar dental plaques,

vaginal sites, and bilateral skin sites. Body sites specifically connected

by many positive associations were either in direct contact (e.g.

tongue and saliva), proximal (e.g. sub- and supragingival plaques), or

similar in terms of environmental exposure (e.g. bilateral skin sites),

thus providing mechanisms to support comparable microbiota and

exhibiting high levels of microbial co-occurrence. This pattern held

true for the minority (33.90%) co-exclusions as well, with many

Table 1. 16S rRNA gene sequencing data from the Human Microbiome Project used to assess microbial co-occurrence
relationships in the human microbiome.

Houston St. Louis

Body Area/Site Total Total Female Male Total Female Male

Oral 3022 2038 840 1198 984 456 528

Buccal mucosa 340 228 92 136 112 53 59

Hard palate 334 221 90 131 113 53 60

Keratinized gingival 337 226 95 131 111 51 60

Palatine Tonsils 340 225 92 133 115 54 61

Saliva 309 227 94 133 82 35 47

Subgingival plaque 341 228 92 136 113 53 60

Supragingival plaque 349 232 97 135 117 55 62

Throat 321 219 92 127 102 46 56

Tongue dorsum 351 232 96 136 119 56 63

Gut 351 228 94 134 123 58 65

Stool 351 228 94 134 123 58 65

Airways 282 190 82 108 92 37 55

Anterior nares 282 190 82 108 92 37 55

Skin 921 554 233 321 367 159 208

Left Antecubital fossa 158 85 37 48 73 25 48

Right Antecubital fossa 160 83 33 50 77 34 43

Left Retroauricular crease 303 198 87 111 105 50 55

Right Retroauricular crease 300 188 76 112 112 50 62

Urogenital 450 286 286 0 164 164 0

Mid vagina 149 93 93 0 56 56 0

Posterior fornix 150 95 95 0 55 55 0

Vaginal introitus 151 98 98 0 53 53 0

Total 5026 3296 2230 2324 1730 1292 1184

We considered microbial associations in a total of 5,026 samples from the Human Microbiome Project (HMP) comprising 18 body sites in 239 individuals recruited at two
clinical centers (Baylor College of Medicine, Houston, TX and Washington University at St. Louis, MO), which in total contained 726 reliably detectable bacterial
phylotypes. For details of HMP samples and data processing, see [29].
doi:10.1371/journal.pcbi.1002606.t001

Human Microbiome Co-occurrence Relationships
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occurring between bilateral skin sites or within subgroups of the oral

cavity [34]. This suggested that the first level of hierarchical co-

occurrence structure in this network corresponded with groups of

body sites representing distinct microbial habitats.

Conversely, within-site relationships showed a much more

balanced ratio of microbial co-occurrence (48.26%) vs co-exclusion

(51.74%) interactions. Many of the negative within-site relationships

were associated with the abundant signature organisms characteristic

of each body site [35], for example Streptococcus in the oral cavity and

Bacteroides in the gut. The relative abundances of these signature taxa

varied greatly among individuals, in some cases (e.g. Bacteroides)

spanning from 1% to 97% within a body site across the HMP

population. It is generally very difficult to determine from relative

abundance measurements alone whether these negative associations

represent true anti-correlation (e.g. one organism out-competing

another) or overgrowth of one organism while the rest of the

population remains unchanged (resulting in a negative correlation

due to compositionality of these data). This problem has a long

history in quantitative ecology [27,28]. Our methods generally

determine these relationships in the human microbiome to be

stronger than what would be expected from compositionality alone

(see Methods and Text S1), and the negative interactions detected

here are thus likely biologically informative. This is supported by the

fact that they are strongest in cases where distinct alternative

dominant community members occurred among different individ-

uals (e.g. Prevotellaceae vs. Lactobacillaceae in the vaginal area [36]

or Propionibacterium vs. Staphylococcus on the skin [35,37]). The increase

in negative interactions within habitats is also in line with the fact

that most competitive mechanisms require proximity or physical

contact [38], whereas positive interactions are likely to also occur

from microbiome-wide shared environmental exposures.

Association properties globally and within body sites
demonstrate the basic ecological organization of the
human microbiota

We further assessed several other measures of network

community structure. Globally speaking, the network followed a

scale-free degree distribution typical of biological systems,

meaning that most clades possessed few interactions but a few

clades possessed many (Figure 3A [39]), The network had a low

average path length of three (contrasted with six in randomized

networks), meaning that short paths existed between most clades

[40], and it possessed a low average per-node cluster coefficient

(0.1) measuring the local density of connections. Together, these

values indicate that the microbial association network is structured

to be scale-free and thus robust to random disruption [39], with

only sparse local multi-organism clusters. Since these data only

describe phylotypes at approximately the genus level, it remains to

be seen whether a greater degree of locally clustered functional

associations emerges among Operational Taxonomic Units

(OTUs), species, or strains within these phylotypes. As the cluster

coefficient distribution was not well described by the inverse node

degree distribution [41], the network possesses no strong

hierarchical modularity despite its scale-freeness, in contrast to

the strong habitat-centric modularity.

The diversity of microbial interactors (i.e. number of unique

phylotypes) within each body site also proved to directly dictate its

interaction density (Figure 3B). That is, communities with a

greater number of different organisms had a proportionally greater

number of positive and negative associations. Within these sites,

the number of relationships scaled directly with the number of

unique phylotypes (adjusted R2 of 0.75), the only body site with

more interactions than expected for its diversity being the tongue

dorsum (see also Table S2). This site also harbored the top-ranking

hub phylotype (Firmicutes, see Figure 3A). In combination with

the behavior of specific microbial hubs as discussed below, this

might argue that most microbial taxa form strong metabolic or

functional associations with adjacent taxa inhabiting the same

body site habitat, allowing consortia to specialize within highly

localized microbial niches [33].

When randomizing between rather than within body sites, no

body site pairs possessed more cross-site associations than expected

(with the slight exception of tongue dorsum), whereas most body

sites were significantly enriched for within-site relationships (the

Figure 1. Methodology for characterizing microbial interactions using a compendium of similarity measures. 16S data from the
Human Microbiome Project (HMP) were collected from 18 body sites in a cohort of 239 healthy subjects and assessed using 16S rRNA gene
sequencing. We analyzed microbial co-occurrence and co-exclusion patterns in these data by developing two complementary approaches: a
compendium of Generalized Boosted Linear Model (GBLMs) and an ensemble of similarity and dissimilarity measures. Each approach produced a
network in which each node represented a microbial taxon within one body site, and each edge represented a significant association between
microbial or whole clade abundances within or across body sites. The resulting association networks produced by each individual method were
merged as p-values using Simes method, after which FDR correction was performed. Associations with FDR q-values.0.05, inconclusive
directionality, or fewer than two supporting pieces of evidence were removed. This provided a single global microbial association network for taxa
throughout the healthy commensal microbiota.
doi:10.1371/journal.pcbi.1002606.g001

Human Microbiome Co-occurrence Relationships
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only exceptions being posterior fornix, mid-vagina, and antecu-

bital fossae, which tended toward too few phylotypes to reach

significance; see Figure 3D and Table S2), again confirming the

microbiome’s habitat-driven modularity. When calculating net-

work properties in a body-area-specific manner, we found that the

overall average path length between nodes in the oral cavity,

which contributes most of the samples, was much larger (,3.4)

than those of the other body areas (ranging from ,1.1 to ,2.0). In

addition to supporting the aforementioned degree of inter-site

habitat formation in the oral cavity, this intriguingly suggests that

other body sites in which fewer samples are currently available (see

Table 1) have not yet exhausted the detection of microbial

relationships in the human microbiome. More samples and greater

sequencing depth may further improve detection power.

Key taxa including members of the Firmicutes act as
network hubs coordinating many relationships
throughout the microbiome

We next examined the associations of individual clades with

respect to interaction degree, observing highly connected ‘‘hub’’

clades to be found within each body area. Two classes of hubs

appeared in the association network: clades highly connected

within one body site, and clades acting as ‘‘connectors’’ between

multiple body sites. Hubs included both specific taxa (e.g.

Porphyromonas, see Figure 3A, Table S3) and larger taxonomic

groupings (e.g. the phylum Firmicutes). Within-site hubs were

often, although not always, abundant signature taxa (detailed

below), high-degree exceptions including Atopobium on the tongue

(28 total associations, 16 within-site) and Selenomonas on both tooth

plaques (20 total/19 within and 7 total/3 within for supra- and

subgingival, respectively). The latter provides a striking example of

the niche-specificity of these low-abundance within-site interac-

tors, as Selenomonas averages only 1.1% and 1.2% of the sub- and

supragingival plaque communities, respectively, but associates

preferentially (20 of 27, 74%) with members of the greater oxygen

availability supragingival community. The clade’s detection as a

within-site hub thus corresponds with the ecology that might be

expected of an organism known to be oxygen-sensitive, fastidious,

and grown best in co-culture [42].

Between-site hubs typically operated among body sites within

the same area as described above, with two of the five most

Figure 2. Significant co-occurrence and co-exclusion relationships among the abundances of clades in the human microbiome. A
global microbial interaction network capturing 1,949 associations among 452 clades at or above the order level in the human microbiome, reduced
for visualization from the complete network in Figure S1. Each node represents a bacterial order, summarizing one or more genus-level phylotypes
and family-level taxonomic groups. These are colored by body site, and each edge represents a significant co-occurrence/co-exclusion relationship.
Edge width is proportional to the significance of supporting evidence, and color indicates the sign of the association (red negative, green positive).
Self-loops indicate associations among phylotypes within an order; for a full network of all phylotypes and clades, see Figure S1. A high degree of
modularity is apparent within body areas (skin, urogenital tract, oral cavity, gut, and airways) and within individual body sites, with most communities
forming distinct niches across which few microbial associations occur.
doi:10.1371/journal.pcbi.1002606.g002

Human Microbiome Co-occurrence Relationships
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connected hub clades in the network falling into this connector

category linking multiple body sites, Firmicutes and Proteobacteria

on the tongue (see Figure 3A). The Firmicutes and Porphyromonas

(phylum Bacteroidetes) hubs in the tongue also had the largest

numbers of negative connections among all phylotypes, and all of

these highly interactive clades centered on the tongue and spanned

multiple related oral habitats. Signature clades such as the

Firmicutes are of course highly functionally diverse, and this

network suggests that the few abundant members in any one

habitat [35] might instead serve as ‘‘information processors’’

throughout a body area. In contrast to the low-abundance within-

site hubs, this would allow them to provide baseline functionality

complemented by distinct, less abundant clades with which they

co-occur within differing body site habitats.

Correspondingly, Firmicutes and other inter-site hub nodes

showed a higher connectivity than the clades with highest intra-site

degree (e.g. Bacteroidales in the subgingival plaque). Such clades

with unusually frequent inter-site associations are thus outliers

relative to the network’s overall habitat-specific trend and suggest

that inter-site hubs are particularly critical for associating similar

sites within the same body area. In the oropharynx, for example,

Streptococcus spp. with a modest degree of functional variation might

be present throughout the habitat, interacting with distinct, more

specialized clades within each body site [13]. Almost all such high-

connectivity hubs occurred among oral sites (e.g. Porphyromonas,

Streptococcus, Veillonella, and others), the first notable exception

being the Propionibacterium hub on skin sites (left and right

retroauricular crease). All of these follow the same pattern,

Figure 3. Global network properties summarizing key microbial hubs and interaction patterns. A) Node degree distributions of overall,
co-occurrence, and co-exclusion associations in the human microbiome. This is well-fit by a power law with slope 21,7 (dotted red regression line,
adjusted R2 = 0.9). Node degree indicates the number of links that connect a node to others in the network. Power law degree distributions, referred
to as scale-free, mean that most nodes have only a few edges and are often connected by a few high-degree hub nodes. The top five most connected
hubs as indicated in callouts, mainly signature oral taxa including Porphyromonas in the tongue dorsum. B) and C) Node proportions after division of
the network into body sites (B) or classes (C). Both pie charts show that the composition of the network (in agreement with underlying data) is
skewed towards the oral cavity (B) and its constituent Firmicutes (including Bacilli and Clostridia) (C). (B) further agrees with published measures of
body sites’ alpha diversity [84]. D) and E) Composition of relationships among microbes grouped according to body site (D) and taxonomic class (E).
In E), the first two bars (green and red) include the fraction of all possible edges incident to at least one node representing a class or one of its
members (root scaled for visualization). The second two bars (lime and orange) only include pairs of microbes that are members of the same class,
again normalized as a fraction of total possible interactions and root scaled. The Bacilli, Bacteroidia, and Fusobacteria contain significantly more
negatively associated microbes than expected by permutation testing (see Table S2), and classes overall are depleted for negative associations,
indicating that members of the same class tend not to compete strongly with each other in these communities.
doi:10.1371/journal.pcbi.1002606.g003

Human Microbiome Co-occurrence Relationships
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however, in which abundant phylotypes likely possessing within-

clade functional diversity are distributed among related habitats

within each individual.

Marked differences in ecological behavior between
phylogenetic clades

We additionally examined the phylogenetic rather than biogeo-

graphical distribution of these associations, testing whether clades

tended to support more phylogenetically related (within-clade) or

diverse (between-clade) interactions. We first investigated purely

quantitative degree distributions by summarizing clades at the class

level. Associations were summarized as the fraction of all possible

interactions that were observed to occur, separated into positive and

negative bins (Figure 3E). In addition, clade-specific over-represen-

tation of these bins was tested for significance by randomization (see

Methods and Table S2). The only classes that showed significantly

more negative (and, simultaneously, cross-clade) associations than

expected were the Bacteroidia, Bacilli, and Fusobacteria. Most of the

common classes in the human microbiome had more intra-clade

edges than expected by chance (Actinobacteria, Bacilli, Bacteroidia,

Betaproteobacteria, Clostridia, Epsilonproteobacteria, Fusobacteria,

Gammaproteobacteria, Mollicutes, and Spirochaetes), most of which

also have high cluster coefficients (Figure S3). Taken together with the

biogeographical interactions assessed above, the enrichment for

within-class associations likely indicates a phylogenetic aspect of the

same behavior. Specifically, if one member of such a class is abundant

in one body site within an individual, it (or closely related class

members) also tends to be enriched in related body sites.

We next considered relationships between class-level clades

throughout the microbiome, summarized in Figure 4. Surprisingly,

the Actinobacteria and Bacilli form only co-exclusion relationships

with other classes, most strongly with Bacteroidia and Fusobac-

teria, and primarily within the oral cavity. These clades (which

include the extremely abundant streptococci) might thus be largely

self-sufficient in the functional diversity needed to maintain an oral

community, excluding other clades when appropriately supported

by e.g. environmental factors. Although a few classes were linked

by positive as well as negative interactions (e.g. Clostridia and

Bacteroidia), none of these reached significance on randomization.

Classes connected by both positive and negative links might

suggest either that the clades exhibit co-occurrence only in some

environments or that some members of the two classes co-occur

while others co-exclude. As the oral communities are both the

most data-rich and the most alpha-diverse in the human

microbiome [35], it is not surprising that most relationships are

observed within and among them. For instance, 97% of the

specific mutual exclusions between Bacilli and Bacteroidia

members occur in oral sites, as do 81% of the members of the

Clostridia and Bacteroidia. The second largest contribution to the

latter exclusion (,18%) comes from the gut, reflecting the

frequently discussed Bacteroides/Firmicutes ratio observed in

Western populations [15,43], and similar tradeoffs (with few

positive associations) were observed in other habitats such as the

skin (e.g. Staphylococcus in the Bacilli and Propionibacterium in the

Actinobacteria [37]).

Co-exclusions such as these have previously been observed in

the human microbiota to induce distinct alternative community

configurations, which may differ across persons [15,36] as well as

time points (e.g. early and late colonizers in community

establishment or repopulation after disturbance). Although our

methodology does not explicitly describe alternative community

configurations, co-occurrence networks can in some cases capture

them as extreme exclusion relationships between key microbial

taxa. For instance, Ravel et. al reported five different vaginal

communities in an independent cohort of healthy women, four

dominated by Lactobacilli and the fifth diverse and featuring

members of the Actinobacteria, Clostridia, Bacteroidia, and other

classes. These alternative configurations occur as mutual exclu-

sions in our genus-level phylotypes between Lactobacillus and

members of this fifth diverse community (particularly anaerobes

such as Anaerococcus and the Prevotellaceae). Furthermore, we

see a strong negative correlation in stool samples between

Bacteroides and members of the gut community, including the

Ruminococcaceae and other Firmicutes. In other body sites, the

clade relationship network (Figure 4) features a negative interac-

tion between Bacilli and Bacteroidia classes that mostly occurs in

the oral cavity, and oral Porphyromonas (a member of the

Bacteroidia) is among the most highly connected negative hubs.

Porphyromonas is abundant (avg. 3.3% s.d. 3.9%) in oral habitats but

not in most cases the dominant clade; the clade also includes

potential oral pathogens [44], and this may be one of the more

striking examples of functional competition and co-exclusion

occurring with a specific clade among several oral communities.

Microbial relationships within digestive tract niches
including Fusobacterium and Prevotella support known
microbiology

The digestive tract is home to one of the most diverse and

densely populated microbial communities in the human body [11].

Oral sites made up half of the body sites surveyed here, as well as

exhibiting the greatest within-subject microbial diversity [35].

Correspondingly, associations between microbes within and

among oral sites likewise comprised the majority (86.46%) of all

edges in our co-occurrence network, also forming its largest

connected component. This consisted of two clusters of organisms

from the mouth soft tissues (gingiva, mucosa, and palate) and distal

areas (tongue, throat, tonsils, and saliva); the oral hard surfaces

(sub- and supra-gingival plaques) formed an additional isolated

habitat that showed significantly fewer microbial associations with

the remainder of the oral cavity (Figure 5). A complementary

analysis of the HMP microbiomes has revealed evidence of three

sub-habitats within the oral cavity based on overall similarity of

Table 2. Summary statistics of microbial associations in the
normal human microbiota.

Edges # of edges Percent

Within same body area 2961 98.54%

Within same body site 1409 (47.59%)

Among skin sites 196 6.52%

Between left and right skin sites 113 (57.65%)

Within the airways (anterior nares) 31 1.03%

Among oral sites 2598 86.46%

Between different oral sites 1382 (53.19%)

Within the gut 67 2.23%

Among vaginal sites 69 2.30%

Between different vaginal sites 48 (69.57%)

Total 3005

Microbial co-occurrence and co-exclusion relationships summarized within the
five major body areas and relationships spanning different body sites within
these areas. Percentages are fractions of the total number of edges in the
network, while percentages in parentheses represent fractions of edges within
each body area.
doi:10.1371/journal.pcbi.1002606.t002

Human Microbiome Co-occurrence Relationships

PLoS Computational Biology | www.ploscompbiol.org 7 July 2012 | Volume 8 | Issue 7 | e1002606



their microbial communities [34], and these results demonstrate

that the shared community structures of these habitats were to a

lesser degree recapitulated in terms of specific microbial associa-

tions (see Figure 5 below).

Although the current study is associative and does not by itself

establish causative mechanisms of interaction for these microbial

associations, many that we detect in the oral cavity in particular

are supportd by known metabolic or biochemical interactions. For

instance, in the context of cell to cell interaction, Fusobacterium

species are known to be bridging organisms in the development of

oral biofilms by co-aggregation through physical contact [45]. This

bridging occurs during biofilm maturation, allowing a more

complex use of resources including sugars (the predominant

carbon source for early colonizers) and proteins (used by late

colonizers). In the hard palate, for example, positive associations

were found between Fusobacterium and Capnocytophaga, Peptosptrepto-

coccus, and Porphyromonas, which are in agreement with previously

published cell-to-cell interactions [46,47], and these predictions

additionally implicate Leptotrichia and Parvimonas. Dental plaque

associations included Parvimonas, Prevotella, and Treponema, also in

agreement with existing evidence [48]. However, those previously

published aggregations are strain specific and, this study may be

observing broader effects than the direct cell-cell contact

preferences in previously described associations.

Conversely, metabolic shifts may explain negative associations

detected between other co-habiting microbes, e.g. Tannerella and

Streptococcus in the subgingival plaque. The anaerobic Tannerella

requires a much lower pO2 than Streptococcus and is proteolytic,

while Streptococcus is a saccharolytic colonizer of the tooth surface

that uses sugars as its primary source of carbon and is oxygen

tolerant [49,50]. This continuous nutritional, metabolite (e.g.

hydrogen peroxide), and oxygen gradient between the supraging-

val and the subgingival biofilms, along with differential exposure to

host factors in saliva, is reflected through the gradual drop of the

abundance of Tannerella as the streptococci increase (Figure S4). A

similar example can be found in the Prevotella and species from the

Flavobacteriaceae (represented here by Capnocytophaga; mean

abundance 1.6862.76%) in the tonsils. Less exposed surfaces of

tonsillar crypts offer an anaerobic micro-environment favoring

species like Prevotella, while other areas support the growth of

carbon dioxide-dependant Capnocytophaga, a tradeoff that we detect

here as a specific negative association.

Figure 4. Co-occurrence of microbial clades within and among body areas. Nodes represent microbial classes colored by phylum, with
edges summarizing aspects of their interactions over all body sites. Classes are linked when the number of edges between them is significantly larger
than expected (randomization p,0.05, see Methods). Edge type (solid or dashed) indicates the body area contributing the most edges to the total
interactions between two classes, with the label specifying the percentage contributed by this dominant body area. For instance, 80% of the edges
between Bacilli and Actinobacteria come from skin sites. Green indicates co-occurrence, red exclusion. Most inter-class interactions occur in the
mouth, with the Actinobacteria and Bacilli forming negative hubs.
doi:10.1371/journal.pcbi.1002606.g004
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Phyla such as the TM7 and Synergistetes have only recently

been characterized at the genetic level in the oral cavity [51,52],

and little is yet known about their roles in this microbial ecosystem.

We identified a number of novel co-occurrences between members

of these under-characterized phyla, including a positive association

between members of the TM7 phylum (mean abundance

0.6261.14%) and Moryella genus members (mean abundance

0.2960.47%) in the tongue dorsum and a positive relationship

between members of the Synergistetes phylum and Treponema in

the subgingival biofilm. Since limited data on metabolic

byproducts or requirements for these clades in the oral community

are available, these newly identified putative interactors provide

specific hypothesis for follow-up studies (e.g. by co-culture

experiments).

The degree to which microbial shedding from the oral cavity

along the digestive tract might seed the distal commensal gut

microbiota is as yet unclear [53]. We found few (7) relationships

between organisms in the two areas meeting our significance

criteria, none of which were consistently supported by a majority

of available data (Figure S5), suggesting no such direct microbial

seeding within our level of detection in the healthy adult

microbiome. Interactions detected within the gut itself consisted

primarily of negative associations between Bacteriodes and Clostridia,

especially members of the Ruminococcaceae family. These

negative relationships reflect the tradeoff between Bacteroides (mean

abundance 48.79622.94%, range 1.47–97.14%) and Firmicutes

(mean abundance 27.04616.52%, range 1.49–91.78%), the two

dominant gastrointestinal taxa and the subject of previous close

study [15,54]. While oral microbial transit is clearly important

during founding of the microbiome in infancy and in extreme

cases such as illness [55,56], these data suggest that it occurs at low

levels in the normal adult microbiome. In such hosts, the naturally

dense microflora of the lower gut may serve to further exclude the

few bacteria that survive gastrointestinal transit [53].

Similarities among niches in the microbiome determined
by microbial associations spanning body sites

It is common practice to group microbial communities by

ecological similarity [33,35], and we extended this analysis method

by summarizing relationships among similar habitats based on

microbial cross-talk (Figure 5). Specifically, we organized pairs of

body sites by the frequency with which they demonstrated co-

occurring (or excluding) microbes (see Methods). Overall, this

network recapitulates similarities in community structure among

these microbial habitats as assessed by beta-diversity [35], with the

added information of which microbes might drive these similar-

ities. Conversely, co-exclusions spanning multiple habitats might

represent cases in which competitive relationships or differing

responses to host environment might bridge multiple habitats.

Stool microbes (representing the gut microbiota), as above, did not

demonstrate any detectable associations with inhabitants of the

mouth; the airways microbiota (nares) likewise associated mini-

mally with other body sites, although they were detectably

structurally similar to the skin communities. The sub- and supra-

gingival plaques were distinct from other mouth sites, and the

vaginal communities and skin were again all highly similar. The

sparsity of this body site network again illustrates that phylotypes

rarely participate in detectable ecological relationships spanning

distal body site habitats.

Functional and phylogenetic similarities among
associated organisms suggest competitive and adaptive
explanations for interactions

We hypothesized based on previous findings in environmental

communities [19] that patterns of microbial co-occurrence and

exclusion might be explained by their evolutionary relatedness and

functional similarity. For example, closely related microbes might

compete for limited resources, while functionally complementary

bacteria would exhibit mutualism. To test this hypothesis, we

compared two genomic properties of all microbial clades

appearing in our network, their phylogenetic similarity (i.e.

evolutionary relatedness) and a ‘‘functional’’ similarity score based

on counting shared orthologous gene families (i.e. a measure of

shared pathways and metabolic capacity). Phylogenetic distances

were calculated as evolutionary divergence based directly on 16S

sequence dissimilarity between all pairs of microbes. We compared

this with a ‘‘functional’’ distance calculated as the Jaccard index of

non-shared COG families between all pairs of microbial genomes

(see Methods). For most pairs of microbes, these measures were

highly correlated (Figure 6), not necessarily surprising in that both

are influenced by gradual sequence change driven by molecular

evolution.

However, several exceptions to this pattern were apparent

among the interacting organisms of our study. First, a dramatic

Figure 5. Related microbial niches as determined by associa-
tions spanning habitats at multiple human body sites. Each
node represents a body site, with edge width indicating significant
cross-site correlations (randomization p,0.05, see Methods). Green
edges show co-occurrence, red co-exclusion. Skin, vaginal, oral soft
tissue, and tooth plaque moieties are apparent, with the gut and
airways notably lacking significant interactions with other available
body site niches. However, most relationships between microbial
relative abundances occur specifically within, rather than between,
individual body sites.
doi:10.1371/journal.pcbi.1002606.g005
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separation of phylogenetic and functional distances occurred

between positively and negatively associated clades (Figure 6,

green lower left vs. red upper right): positive associations were

enriched for both phylogenetic and functional similarity, while

negative associations showed the inverse pattern. This was

partially explained by the basic observation that similar organisms

occupy similar niches, as most relationships among similar

organisms occurred between clades at different body sites and

often between the same clade at two proximal (e.g. oral) or

bilateral sites (e.g. left and right retroauricular creases). Converse-

ly, the preference for negative correlations to occur between

phylogenetically and functionally different organisms (top right)

suggests that the wide range of co-exclusion mechanisms, not only

direct competition but also toxin production, environmental

modification, and differential niche adaptation [57] required

substantial time to develop throughout evolution. Furthermore,

interactions in the same body site were primarily negative,

suggesting that competition or subniche differentiation were more

prevalent in these data than were collaboration or niche sharing.

Exceptions to both of these trends did occur, however, in that

related organisms occasionally showed within-site competition,

and phylogenetically distant clades sometimes co-occurred. A

highlighted example of the former was the negative association

between Bacteroides and Prevotellaceae family members (also

phylum Bacteroidetes) in the gut, reflecting the recurrent tradeoff

of this genus with the Prevotella as previously linked to enterotypes

[15] and/or dietary patterns [58]. As these organisms are closely

related, this might reflect alternative metabolic specializations in

an otherwise fairly similar gut environment. Conversely, the

Aggregatibacter were positively associated with members of the highly

dissimilar Flavobacteriaceae family in the saliva. As mentioned

above, the Capnocytophaga (dominant members of the Flavobacter-

iaceae in these data) are highly metabolically dependent, and

positive correlations among organisms are enriched in oral biofilm

associated organisms generally (see Figures 3 and 4).

In addition to these on-diagonal outliers (Figure 6), several

additional groups of organisms lay off the trend of functional and

phylogenetic similarity. That is, some co-occurring/co-exclusive

Figure 6. Functional and phylogenetic similarities between co-occurring microbes. Evolutionary (phylogenetic) distances among microbial
clades were compared to the clades’ functional potentials as defined by the Jaccard index of orthologous gene (COG) families shared between
genomes (see Methods). Each point represents a pair of significantly associated microbes colored by direction of the association (green positive, red
negative) and shaped by the type of relationship (triangle: between body sites, square: within site). Phylogenetic distances were inferred by FastTree
[82] using species-level 16S sequences. Most interactions lie along the diagonal, reflecting the baseline correlation between these functional and
evolutionary distances, with highly related clades co-occurring among related habitats (e.g. bilateral skin sites, proximal oral sites) in the lower left.
Off-diagonal examples include potential competition among dominant gut signature taxa (e.g. Prevotellaceae/Bacteroides) and functional
complementarity between distinct oral pathogens (e.g. Treponema/Prevotella).
doi:10.1371/journal.pcbi.1002606.g006
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microbes were evolutionarily distant but functionally more similar

than expected (below trend), while others were evolutionarily close

but functionally distinct (above trend). Several relationships in the

upper-left represent single functionally diverse clades that are also

widely co-distributed among bilateral or related body sites, such as

the Actinobacteria (skin) and Fusobacteriaceae (oral). Such clades’

functional distances reflect a relatively high level of within-clade

diversity, raising the possibility that a combination of environ-

mental perturbation with a highly structured microenvironment

might help to maintain a tension of high functional diversity within

a limited phylogenetic range.

In the oral cavity, co-occurrence of such outliers, appearing off

the trend of functional and phylogenetic similarity (Figure 6) was

limited to low-abundance community members, with some

exceptions. Abundant signature taxa such as Streptococcus and

Neisseria often excluded clades with more stringent environmental

oxygen requirements regardless of their specific degree of

relatedness. Prevotella - evolutionarily distant from the Neisseria

but sharing much functional potential as defined by orthologous

gene clusters - exhibited a negative association in the tonsil.

Because of their functional similarity, particularly their shared

metabolic requirements (both with varying degrees of saccharolytic

and proteolytic activities at the species level [59,60]), this strongly

suggests a co-exclusion due to competition for resources, again in

addition to their environmental oxygen requirement. At the family

level, Pasteurellaceae (composed of Actinobacillus, Aggregatibacter,

Haemophilus, and Pasteurella) negatively correlate with several other

members of the microbiota. Co-occurrence is more common with

pairs of functionally similar microbes able to co-exist through

combinations of complementarity, commensalism, and cross-

feeding of vitamins, amino acids, and other cofactors. Here, the

Prevotella produce hydrogen, which influences the growth of

Campylobacteria [61]. Prevotella can also be supported by glycine

and pyruvate produced from glutathione by Treponema species in

the periodontal pocket. The most extreme case of organisms both

related and correlated were the Bacteroides and Parabacteroides in the

anterior nares. While these clades are not always well-resolved

[62], this trend occurred in nine distinct samples (of 282 total), the

only ones in which Bacteroides occurred nasally at .5% abundance.

While a trivial explanation might be misclassification of a small

portion of Bacteroides, this trend might instead suggest co-

occurrence in a metabolic niche that rarely favors either organism

but, in the rare occasion of favoring one, permits both.

Conclusions
We analyzed ecological interactions among bacteria in the

human microbiome using 16S marker gene abundance data from

the Human Microbiome Project. Our methods for building a

microbiome-wide microbial association network combined two

complementary approaches: an ensemble of similarity/dissimilar-

ity measures and a compendium of generalized boosted linear

models. Relationship significance was assessed using a novel

nonparametric approach to compositional data analysis, resulting

in a network of co-occurrence and co-exclusion relationships

representing potential microbial interactions and incompatibilities

within and across body sites. Analysis of the network demonstrated

strong organization of the human microbiota into body area

niches, mostly among closely related individual body sites

representing microbial habitats. A few ‘‘hub’’ microbes were

observed to act as signature taxa driving the composition of each

microcommunity. Many of these were also the dominant species

within a body area, for example Streptococcus in the oral cavity and

Bacteroides in the gut, and these highly abundant taxa also

frequently co-occurred as connectors among multiple related

body sites. In vivo mechanisms were available from prior work for

many of these associations, and more generally the phylogenetic

and functional relatedness of pairs of co-occurring microbes often

explained their associations. In particular, phylogenetically related

microbes tended to co-occur at proximal or environmentally

similar body sites, while distantly related microbes with shared

functional capacities tended to compete.

This microbial association network was described from obser-

vational data, and the mechanisms underlying any of these

putative interactions may be quite diverse. Positive co-occurrence

association types could include nutritional cross-feeding, co-

aggregation, co-colonization, signaling pathways, and co-survival

in similar environments [4,63]. Negative exclusion interactions

likewise might span toxin or small molecule production, environ-

mental modification (to the detriment of microbial neighbors),

immunomodulation, or gross overpopulation of a niche. Ecolog-

ically, these data alone do not resolve variations of mutualism,

commensalism, amensalism, or predator-prey relationships [4,63].

Further, all of these ecological relationships, detected here based

on microbial abundance patterns across many subjects, are

themselves distinct from the biogeographical ‘‘co-occurrence’’

patterns observed by previous studies of individual microbes

within subjects [30,31]. To distinguish between these, future work

could include perturbation experiments (e.g. the removal of a

species from a defined habitat such as the gut of a gnotobiotic

mouse), as these are becoming less difficult to sustain technically

[64]. Analytic refinements might instead include defining direc-

tionality of relationships in higher-resolution (e.g. temporal) data;

for instance, we expect a strict mutualistic relationship (where both

partners cannot exist without the other) to be symmetric, whereas

the relationship between a prey and a specialized predator is

expected to be asymmetric (the prey can occur without its

predator, but not vice versa). Negative co-exclusions may have

fewer possible initial interpretations, comprising the types of

competition outlined above, or they may indicate different,

exclusive microbial community states occurring temporally or as

linked to host environment [15,36,58].

Methodologically, it is again important to emphasize that

detecting significant co-occurrences among members of a popu-

lation assayed as relative abundances can be surprisingly difficult

due to compositionality [27]. That is, an absolute increase in one

organism’s abundance can result in an apparent relative decrease

of all other abundances, leading to spurious correlations. Extensive

prior work has explained the problem in microbial and

macroecological settings [65], and we have mitigated potential

issues in these data through our ensemble approach and by

principled calculation of significance thresholds using null

distributions that incorporate the degree of similarity due solely

to compositional effects (see Methods and Text S1). GBLMs were

the most distinct method included in this ensemble and share some

similarities with recently proposed genetic regulatory network

(GRN) reconstruction techniques [66]. GBLMs do provide

methodology for discovering GRN-like higher-order interactions

in microbial communities, but the accuracy needed to overcome

the associated multiple hypothesis testing problems is not yet

achievable from available 16S data [67,68]. We anticipate that

future studies with species- or strain-level classification of deep

shotgun metagenomic sequences may provide sufficient resolution

for more detailed networks including such cooperative microbial

associations.

While it might be hoped that easily sampled microbiomes such

as the saliva would serve as proxies for e.g. the broader oral

microbiome, these results suggest that this is not generally the case.

There are few strong correspondences among organisms even at
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closely related body sites, let alone distal sites, and very few cases

where microbial abundance is quantitatively predictable from a

proxy sample. In the HMP, this may be a feature of a healthy

population, and additional relationships (or disruption of existing

ones) might emerge in the presence of disease. Environmental

factors that strongly impact the healthy microbiome may

additionally not be captured for this population (e.g. diet) and

can be further investigated by targeted methodology in future

cohorts.

This catalog of microbial co-occurrence and co-exclusion

relationships thus provides an initial glimpse of potential

mechanisms of community organization throughout the human

microbiome. While this computational methodology can be

applied to any communities assayed using marker gene sequenc-

ing, it is interesting to conclude by noting that the resolution of the

resulting network is limited by the specificity of 16S sequence

binning. The network discussed here, for example, leverages two

specific hypervariable regions for taxonomic classification, each

with strengths and weaknesses, and neither individually adequate

for sequence classification at the species level [69,70]. Since it is

likely that additional microbial associations will occur at the

species or strain level, we anticipate that further community

structure will emerge during analysis of metagenomic shotgun

sequences taxonomically binned at a finer level of detail.

Community shotgun sequencing will also provide functional

information regarding metabolism, signaling, and, again, potential

physical mechanisms of interaction, which can in turn be matched

against complete reference genomes for co-occurring strains.

Perturbation analyses in co-culture or, eventually, longitudinal

studies in human cohorts will provide an intriguing means of

investigating the impact of these microbial ‘‘wiring’’ diagrams on

human health.

Methods

Two complementary approaches, an ensemble of multiple

similarity/dissimilarity measures and a compendium of general-

ized boosted linear models (GBLMs), were used to interrogate

significant associations between microbial abundances. These

were drawn from 18 body sites assayed by the Human

Microbiome Project at two clinical centers using 16S rRNA gene

sequencing. Simes method and Benjamini-Hochberg-Yekutieli

false discovery rate (FDR) correction were used to combine the

resulting networks. From this merged, global network, we

summarized overall network properties (degree distribution,

modularity, etc.), assessed patterns of microbial connectivity

within and among body sites, and identified highly connected

(hub) microbes. Phylogenetic and functional distances were

calculated based on 16S rRNA gene sequence similarity and

shared orthologous gene families, respectively, and combined with

the network.

Please see Text S1 for an extensive discussion of the

methodology used to assess relationship significance in composi-

tional data, which is presented in summary below.

16S data acquisition and processing
The 16S rRNA gene-based dataset of the normal (healthy)

human microbiome was made available through the Human

Microbiome Project (HMP) and is detailed in [29]. Briefly, it

consists of 454 FLX Titanium sequences spanning the V1 to V3

and V3 to V5 variable regions obtained for 239 healthy subjects

enrolled at clinical sites in Houston, TX and St. Louis, MO. These

cover 18 body sites covering five areas: the oral cavity (nine sites:

saliva, tongue dorsum, palatine tonsils, keratinized gingiva, hard

palate, buccal mucosa, throat, and sub- and supragingival

plaques), the gut (one site: stool), the vagina (three sites: introitus,

mid-vagina, and posterior fornix), the nasal cavity (one sample:

anterior nares), and the skin (four sites: left and right antecubital

fossae and retroauricular creases). Sequences of both 16S windows

were processed separately using mothur [71] into phylotypes using

the RDP taxonomy as described in [29] and [68], with full

protocols also available on the HMP DACC website (http://

hmpdacc.org/HMMCP). Genus level and above phylotypes were

used for this analysis, for which the datasets from both windows

were combined.

This resulted in more than 5,000 samples comprising 910 taxa

made available as part of the HMP (http://hmpdacc.org/

HMMCP). These were further processed for this study by

excluding any phylotype not supported by at least two sequences

in at least two samples. Samples were removed as suspect if the

most abundant taxon was detected by fewer than 1% of the

sequences supporting it in the sample in which it was most

abundant, and counts for the remaining 726 taxa were converted

to relative abundances in each of the resulting 5,026 samples. Due

to potential differences between clinical centers, the dataset was

conservatively split into two subsets for further analysis, subjects

recruited in Houston (3,296 samples) and those recruited in St.

Louis (1,730 samples).

Generalized Boosted Linear Models
GBLM definition and construction. For each resulting

dataset, a compendium of generalized boosted linear models

(GBLMs) was constructed by selecting all 324 combinations of

source body sites ss and target sites ts. Each GBLM was fit using

the abundances of all source taxa st within the source site to

predict the abundance of each target taxon tt within the target site

using a sparse linear model of the form:

xtt,ts~�xxtt,tsz
X

st

btt,ts,st,ssxst,ss

All additional non-leaf clades in the RDP [72] taxonomy (i.e.

families, orders, etc. up to the bacterial and archaeal domains)

were included as source and target taxa. For ss equal to ts, i.e.

predicting the abundance of a taxon tt when the abundances of all

taxa in the same body site are known, the abundances of all parent

and descendant clades of tt were excluded from the available

source taxa st. That is, when ss = ts and tt was of the form

domain|phylum|class|…|clade, all source taxa of the form domain,

domain|phylum, domain|phylum|class, etc. or of the form domain|phy-

lum|class|…|clade|subclade, domain|phylum|class|…|clade|subclade|

subsubclade, etc. were excluded from the source taxa st. This

prevented the abundances of xtt,ts from being predicted using

abundances xst,ss on which they were directly dependent, while

allowing the detection of predictive relationships between distinct

clades within the same body site.

The linear model was generalized to include binary categorical

target taxa (in this case only gender and ethnicity) using standard

logistic regression:

logit(xtt,ts)~�xxtt,tsz
X

st

btt,ts,st,ssxst,ss

As this is clearly an extremely high-dimensional problem,

multiple a priori and post hoc steps were taken to enforce model

sparsity and to avoid overfitting for each (ss, ts, tt) tuple. The first of
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these was to exclude from the available st any taxon not correlating

with tt at a Spearman correlation of nominally p,0.05. The

second was to boost linear model fitting rather than attempt to fit

all btt,ts,st,ss simultaneously [73]. Boosted linear models retain the

usual L2 least squares penalty, but are constructed in a manner

similar to sparse forward variable selection or the LASSO [74]. bs

are considered for inclusion in the model one at a time and the

parameter minimizing sum of squared error selected and included.

However, each subsequent round of parameter fitting operates on

the residuals of all previous rounds, thus ‘‘upweighting’’ poorly fit

examples, and the inclusion of further non-zero bs stops after a

fixed number of iterations.

This tuning parameter and the model fitting process was 10-fold

cross-validated and selected from the most accurate (by root mean

square error for continuous tt and AUC for binary) of 50, 100, or

150 boosting iterations using the caret [75] and mboost [76] R

packages. This resulted in a compendium of 764.9 non-zero

parameters b, each evaluated with a 106cross-validated R2/AUC

and a nominal R2/AUC on the full dataset. Final model quality

scores were assigned by A) subtracting AUCs below 0.5 from

one, since caret does not calculate AUCs directionally, and B)

retaining the minimum of the cross-validated and nominal

R2/AUC. Any continuous model not achieving an R2 above

zero after adjustment for the number of non-zero parameters

(AR2~1{(1{R2)
n{1

n{p{1
), parameters p, training samples n) was

discarded (55,424 retained).

GBLM filtering and significance. Even from cross-validat-

ed goodness-of-fit scores, the compositional structure of relative

abundance data prevents straightforward assessment of model

significance (see Text S1). We thus additionally fit twenty models

per (ss, ts, tt) tuple after bootstrap re-sampling the values of tt across

samples. The AR2/AUC of these bootstrap models provided a

confidence interval around the observed AR2/AUC. Any model

for which the 90% confidence interval failed to include the

observed AR2/AUC was discarded. To construct the null

distribution of associations due to compositionality alone, we fit

twenty additional models after permuting the values of tt across

samples and renormalizing them sample-wise, thus retaining

compositional effects but breaking true associations. The GBLM

was re-fit and the resulting null distribution of AR2/AUC values

used to assess significance of the true model. The mean and

standard deviation of the bootstrap distribution was z-tested

against this null distribution using the jointly pooled standard

deviation, providing one p-value per model per clinical center.

Any model with FDR adjusted p-value greater than 0.05 was

discarded (18,286 retained).

Ensemble scoring
Data preprocessing. The 16S data described above were

first normalized by dividing each sample by its total phylotype

sum. Mislabeled samples were removed [77] and samples were

again processed as two subsets, one per clinical center (Houston

and St. Louis). These were encoded as a matrix in which each row

represented a phylotype in a specific body site and each column

represented an individual during one sampling visit. Rows with

more than 2/3 zero counts were removed, leaving matrices of

1,217 (Houston) and 1,408 (St. Louis) phylotype-bodysite com-

posite features collected for 248 and 144 subject-visit points,

respectively.

Ensemble score calculation. We built on composite co-

occurrence scores as described in, for example, [78] (for protein

functions) and [19] (graph clustering) to find groups of microbial

lineages co-existing across a large number of environments.

Specifically, we combined four diverse measures in order to

overcome two major challenges in the inference of co-occurrence

networks, particularly appropriateness of scoring measures to

sparse count data and determination of statistical significance. The

first is exemplified by the double-zero problem, in which a zero

indicates either that an organism is absent or that it is below

detection limit [25]; Pearson and Spearman correlations are

sensitive to this, while the Bray Curtis dissimilarity is not. The

latter issue arises from the need to normalize across samples with

unknown absolute abundances, either by relativizing or by

downsampling; either procedure results in constrained sample

sums, which introduce artificial correlations [27].

We thus employed an ensemble approach combining four

diverse measures: two measures of correlation (Pearson and

Spearman) and two measures of dissimilarity (Bray-Curtis (BC)

and Kullback-Leibler (KLD)). For BC and KLD calculations, rows

were divided by their sum prior to computation. Additional

measures were considered for our ensemble, including the

Hellinger, Euclidean and variance of log-ratios, but these proved

to be well-represented by the smaller final ensemble (see Figure

S6).

Ensemble network building. After running each of the

above measures on the two 16S data matrices, one per clinical

center, we set measure-specific thresholds as a pre-filter such that

each measure contributed 1,000 top-ranking and 1,000 bottom-

ranking edges to the network. Edge scores were computed only

between clade pairs without parent-descendant relationship (e.g.

without pairs of the type Actinobacteridae|Actinomycetales or

Actinomycetales|Propionibacterineae) for clades in the same body

site. To assign statistical significance to the resulting differently-

scaled scores, we first computed edge- and measure-specific

permutation and bootstrap score distributions with 1,000 iterations

each. In order to address the compositionality issues discussed

above [27], we re-normalized the data in each permutation,

providing a null distribution that captures the similarity introduced

by compositionality alone (see Text S1). We then computed the p-

value as above by z-scoring the permuted null and bootstrap

confidence interval using pooled variance. P-values were tail-

adjusted so that low p-values correspond to co-presence and high

p-values to exclusion. For BC and KLD, we did not compute re-

normalized permutations, because these measures are intrinsically

robust to compositionality [28]. Instead, we calculated their p-

values using the bootstrap interval compared to a point null value

that was computed by permutation.

Finally, to remove unstable edges, we removed all edges whose

score was not within the 95% confidence interval (limited by the

2.5 and 97.5 percentiles) of the bootstrap distribution. Addition-

ally, a number of BC-supported negative links were removed

because they were due to abundance profiles including one

extreme outlier. This affected the following clades for St. Louis:

Actinomycetales in stool, Corynebacterium and Corynebacteriaceae

in the tonsils, Lactobacillus and Lactobacillaceae in the anterior

nares and for Houston: an unclassified Neisseria in the left

retroauricular crease.

Mitigating the compositional effect in relative
abundance analysis

Data summarized as relative abundances are referred to as

compositional [28]. Because they sum to one, their elements are

not independent and may exhibit spurious correlations regardless

of the true underlying relationship. To mitigate this effect, we

assessed the significance of our ensemble scores and GBLMs as

described above, each by comparing a bootstrap confidence

interval around the observed score with a permuted null
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distribution that includes repeated renormalization to account for

compositional effects alone. In each permutation, only the target

taxon row was randomized and all samples subsequently

renormalized to a constant sum. Because permutation breaks

correlation structure while renormalization reintroduces compo-

sitionality, a null distribution coupling these elements induces

correlation from compositional structure alone. Comparing this

null distribution to a standard bootstrap confidence interval

around the observed value provided a straightforward nonpara-

metric test of association accounting for compositionality. Simu-

lation studies showed that the bootstrap-renormalization scheme

was successful in discounting compositional effects while preserv-

ing true correlations (see Text S1).

Network merging by Simes method and FDR correction
Simes method was used to combine all ten networks (5

methods62 study centers) into one final network, as it is robust

against non-independent tests [79]. A strict intersection of the two

clinical centers’ networks, rather than a p-value combination, was

also examined and found to be over-stringent due to systematic

differences in the data (Figure S8). After merging, p-values on each

final edge were corrected to FDR q-values using the Benjamini-

Hochberg-Yekutieli method and a q-value cutoff of 0.05 was

applied. The positivity or negativity of each relationship was

determined by consensus voting over all integrated data sources,

ranging from 210 (most negative) to 10 (most positive, see

Figure 2). Edges with indeterminate directionality (direction score

of zero) were removed. Finally, only edges with at least two (out of

ten) supporting pieces of evidence were retained.

Computation of network modularity
The formula by Clauset et al. [32] compares the fraction of

edges within input clusters with the fraction of within-cluster edges

that would be expected for a randomized network. We clustered

the network using the Markov cluster algorithm (MCL) [80] and

computed network modularities for a range of inflation parame-

ters. The strongest modularity (0.28) was measured for an inflation

of 1.3 and is slightly below the cut-off recommended by Clauset et

al.. This modularity was, however, higher than any measured for

100 randomized networks (which preserved node and edge

number, but in which edges were randomly re-assigned) and was

therefore retained as significant.

Assessment of significant connectivity density within and
among body sites and classes

To assess whether specific body sites were more connected than

expected by chance, we repeatedly (1,000 times) selected as many

nodes as a body site contains from the global network at random

and counted their edge number. This resulted in a distribution of

edge numbers for random node sets. To retain only plausibly

significant edges for further calculation, we corrected for multiple

testing by multiplying the nominal p-value from this distribution

with the number of tests carried out and retaining values below

0.05. We repeated this test separately for positive, negative, intra-

and cross-edges. For visualization, the network itself was also

separated into within-site, within-area, and between-area subsets

for further inspection (Figure S9).

Assessment of relationships between body-site-specific
and class-specific clade groups

To assess the interaction strength between body site and clade

groups (Figures 4 and 5), the number of relationships between

nodes in each group pair was counted and normalized by the

group member product, which represents the number of links two

groups can potentially form. This was repeated in 1,000

randomized networks (generated as described for the computation

of network modularity). A p-value was computed from the count

distribution and node group relationships with p-values above 0.05

were discarded, retaining only the fractions of total possible

relationships which were significantly higher than those expected

by chance.

Phylogenetic and functional similarity scores
Phylogenetic distances. Genome sequences of 1,107 organ-

isms were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/

genomes/lproks.cgi, December 2010) and 16S sequences were

extracted. These 16S sequences were aligned using MUSCLE

3.8.31 [81] and a full phylogenetic tree reconstructed by

maximum likelihood using FastTree 2.1 [82]. A matrix of all

pair-wise distances was created from this cladogram and distances

between any two nodes (e.g. families, orders, etc.) calculated by

taking the median of all distances (as provided in units from

FastTree) between all pairs of leaf taxa descending from the two

nodes.

Functional distances. Functional complements of the same

genomes were summarized using COG [83] families as assigned

by NCBI annotations. This resulted in an abundance matrix with

4,685 columns (corresponding to COG families) and one row per

genome. Columns summing to less than 10% of the number of

genomes were removed, resulting in 3,514 usable COG families.

Pairwise scores between genomes were calculated using Jaccard

index, with distances for higher-level clades computed using

medians in the same manner as described above. Final functional

distances were represented as the Jaccard index of non-shared

COG families between pairs of genomes.

Supporting Information

Figure S1 Significant co-occurrence and co-exclusion
relationships among the abundances of clades in the
human microbiome. The network displays all significant

phylotype associations within and across the 18 body sites sampled

by the HMP. Nodes represent phylotypes (colored according to

the body site in which they occur) whereas edges represent

significant relationships between phylotypes. Edge thickness

reflects the strength of the relationship, and edge color its

directionality (green co-occurrence, red co-exclusion).

(PDF)

Figure S2 Markov clustering of the complete phylotype
network. Markov-clustered network (inflation parameter: 1.3).

When clustering the cross-body site network with this inflation

parameter giving optimal modularity, the network splits into the

set of depicted clusters (75 in total). Many of them are specific to

body sites (stool, anterior nares) or areas (mouth, vagina, skin).

(TIF)

Figure S3 Cluster coefficients of association networks
within individual body sites and clades. Average cluster

coefficients (computed with tYNA [85]) of body-site-specific (A)

and class-specific (B) sub-networks. The ‘‘cliquishness’’ of each

node within a body site or class is expressed by the average cluster

coefficient, which is higher when the neighbors of each node are

also connected among themselves. It can be zero if none of the

nodes in the sub-network has inter-linked neighbors. The cluster

coefficient was computed for all edges of a sub-network (gray bars)

and for positive (green bars) and negative edges (red bars)

separately. Strikingly, almost none of the negative-edge-only sub-
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networks had cluster coefficients above zero. In the case of the

negative class sub-networks, this is a consequence of the low

number of intra-class negative edges (see Figure 3E). If a negative-

edge-only sub-network has a cluster coefficient of zero, it means

that neighbors of a node are either not interconnected at all or that

they are interconnected only by positive edges. Within the body

sites, groups of phylotypes linked by negative edges likely reflect

alternative communities. Members of these communities are

linked among themselves by positive edges. Thus, if the positive

edges are removed, the neighbors of negative nodes are no longer

interlinked and the average cluster coefficient becomes zero. The

high positive-edge-only cluster coefficients in classes correspond

well to the high positive intra-edge number in these classes (see

Figure 3E) and mean that if one member of the class is present in

an individual, the other members are also likely present.

(TIF)

Figure S4 Co-exclusion of Tannerella and Streptococcus
in the subgingival plaque. The anaerobic and proteolytic

Tannerella requires a lower pO2 than Streptococcus, while Streptococcus

is an asaccharolytic colonizer of the tooth surface that uses sugars

as its primary source of carbon [49,50]. Between the supragingival

and the subragingival plaques, as well as within the subgingival

plaques, a gradient of nutrition and oxygen is present. The gradual

drop of the abundance of Tannerella as the streptococci increase

reflects the continuous nutritional and oxygen gradient between

and within the supragingival and the subgingival biofilms.

(TIF)

Figure S5 Abundances of 18 putative associations
between oral and gut microbes. Quality control plots of

the raw data for all putatively significant oral/gut microbial

associations showed no strong evidence for microbial transfer from

the oral cavity along the digestive tract at the available level of

detection. For GBLM associations, plots show predictions from the

full linear model (x axis) against observed values (y axis) with the

line of unity drawn as a guide, with data from the two clinical

centers distinguishable by color (orange = Baylor College, pur-

ple = Washington University). None of the significant associations

proved to be substantially robust from any of the nine oral body

sites to gut microbes.

(TIF)

Figure S6 Repeatability of network inference using
seven individual similarity/dissimilarity measures with
the Houston data subset. The 2,000 most extreme (1,000 top-

and bottom-scoring) edges were computed for each measure in the

Houston sample subset. Measure similarity was then computed as

the Jaccard index of edge overlap. Abbreviations: KLD = Kull-

back-Leibler dissimilarity, Var-Log = variance of log-ratios, a

measure recommended by Aitchison to compute associations

between parts of compositions [28].

(TIF)

Figure S7 Agreement between association networks
produced by individual similarity measures and data-
sets. Heat map depicting the edge overlap as measured by the

Jaccard index between the different methods and sample sets

(Houston versus St. Louis) employed. By design from our ensemble

of scoring measures, which were chosen to capture different types

of microbial co-occurrences, the networks are first grouped by

measure into correlations (Pearson, Spearman), GBLMs, and

dissimilarities (KLD, Bray-Curtis). Each of these clusters then

differentiated further according to sample set (e.g. Spearman and

Pearson in Houston versus Spearman and Pearson in St. Louis).

(TIF)

Figure S8 Intersection of networks generated indepen-
dently for the Houston and St. Louis clinical center
sample subsets. Our co-occurrence/exclusion network built on

the combination of p-values for microbial interaction from 10

distinct networks, generated by five methods in each of two sample

subsets from the HMP’s Houston and St. Louis clinical centers. We

examined the feasibility of treating these two clinical centers as

replicates rather than semi-independent observations by performing

a hard intersection, i.e. applying Simes method to each set of five

methods separately and retaining only the edges significant in both.

This intersection retained only 499 nodes and 938 edges, almost all

of which (902, 96%) were contained in the complete network. This

represents approximately 30% of the edges in the complete

network, with the remainder made up of significant relationships

confidently detected at only one clinical center. As the two clinical

centers differed systematically in minor technical details such as

input DNA concentration and chimerism during 16S sequencing

[68], treating these as non-independent but non-replicate observa-

tions likely represents a more complete model of the HMP data’s

microbial co-occurrence and exclusion networks.

(TIF)

Figure S9 Co-occurrence and exclusion relationships
within each body site, within body areas, and between
body areas. Sub-networks consisting of (A) 1,409 edges among

clades within one body site, (B) 1,552 edges spanning body sites

within the same area (such as the oral cavity or vagina), and (C) 44

interactions between distinct body areas.

(TIF)

Table S1 Complete network of co-occurrence and co-
exclusion relationships among clades in the human
microbiome. Each row represents an association between two

clades in specific body sites, together with their supporting

methods, sign of association (positive or negative), and FDR-

corrected significance.

(XLSX)

Table S2 Over-representation of associations between
organisms in body-site- and clade-specific subnetworks.
Over-representation of edges within and between body-site- and

clade-specific sub-networks was assessed at the class level by

computing edge numbers in 1,000 randomly selected sub-networks

of equal node number to the sub-network(s) of interest. This table

gives the Bonferroni-corrected p-value and the median edge

number of the random sub-networks in brackets in the form (total,

p-value, random). Nominally significant values below 0.05 are

highlighted in green. Tongue dorsum is the only body site with a

significant over-representation of negative edges, and the Bacilli,

Bacteroidia and Fusobacteria are the only clades with significant

negative relationships.

(XLSX)

Table S3 Negative and positive association degrees of
individual body site clades’ nodes. For each clade in the

network, the number of total, positive and negative links to other

clades is listed in descending order. In addition, each clade’s

number of intra- and cross-body-site links is given. The top hub

nodes highlighted in Figure 3A thus appear as the first four table

rows.

(XLSX)

Text S1 Description of ReBoot. Detailed description of the

permutation-renormalization and bootstrap (ReBoot) method,

which is designed to assess the significance of associations in

compositional data.

(DOCX)
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