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Abstract

Background: Cytometry of asynchronous proliferating cell populations produces data with an extractable time-based
feature embedded in the frequency of clustered, correlated events. Here, we present a specific case of general methodology
for calculating dynamic expression profiles of epitopes that oscillate during the cell cycle and conversion of these values to
the same scale.

Methods: Samples of K562 cells from one population were labeled by direct and indirect antibody methods for cyclins A2
and B1 and phospho-S10-histone H3. The same indirect antibody was used for both cyclins. Directly stained samples were
counter-stained with 496-diamidino-2-phenylindole and indirectly stained samples with propidium to label DNA. The S
phase cyclin expressions from indirect assays were used to scale the expression of the cyclins of the multi-variate direct
assay. Boolean gating and two dimensional, sequential regions set on bivariate displays of the directly conjugated sample
data were used to untangle and isolate unique, unambiguous expression values of the cyclins along the four-dimensional
data path through the cell cycle. The median values of cyclins A2 and B1 from each region were correlated with the
frequency of events within each region.

Results: The sequential runs of data were plotted as continuous multi-line linear equations of the form y = [(yi+12yi)/
(xi+12xi)]x + yi2[(yi+12yi)/(xi+12xi)]xi (line between points (xi,yi) and (xi+1, yi+1)) to capture the dynamic expression profile of
the two cyclins.

Conclusions: This specific approach demonstrates the general methodology and provides a rule set from which the cell
cycle expression of any other epitopes could be measured and calculated. These expression profiles are the ‘‘state variable’’
outputs, useful for calibrating mathematical cell cycle models.

Citation: Avva J, Weis MC, Sramkoski RM, Sreenath SN, Jacobberger JW (2012) Dynamic Expression Profiles from Static Cytometry Data: Component Fitting and
Conversion to Relative, ‘‘Same Scale’’ Values. PLoS ONE 7(7): e38275. doi:10.1371/journal.pone.0038275

Editor: Jean Peccoud, Virginia Tech, United States of America

Received December 2, 2011; Accepted May 4, 2012; Published July 12, 2012

Copyright: � 2012 Avva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants (R01CA73413 to James W. Jacobberger) and (P30CA43703 to Stanton Gerson at Case Comprehensive Cancer Center
Core Facility Support), both from the National Cancer Institute (http://www.cancer.gov). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jwj@case.edu

Introduction

The complexity of the cell cycle is apparent to anyone

attempting to teach it, describe it, or model it. From one point

of view, the cycle is a series of ordered chemical reactions,

regulated by feedback and feedforward control systems that are

also chemical reactions. For most investigators, the control system

is the interesting part of the cell cycle. The number of chemical

reactions involved is very large and due to the enzymatic and

spatiotemporal nature of these reactions, the complexity is vastly

larger. This level of information requires databases and in-

formatics, and the complexity of the network of reaction pathways

suggests the need for mathematical models to enable or facilitate

system-wide understanding of cell cycle regulation. Models based

on systems of ordinary differential equations (ODE) have been

developed previously and provide a foundation for larger, more

accurate models, e.g., [1,2].

Measurement of the relative expression of cell cycle regulated

epitopes in asynchronous cell populations by cytometry produces

data from which relative expression over relative time can be

extracted [3]. The general value of this is that, given the

appropriate set of markers, the shape or profile of expression

over the cycle for any epitope can be evaluated within the context

of any others. Often the timing of expression and the shape of the

expression profile say something about the period in which

a specific epitope is important and/or is a measure of the activities

that act on that epitope (proteases, kinases/phosphatases,

methylases/de-methylases, etc.). In general, most versions of cell

cycle expression profiles are cartoons based on synchronization

and bulk measurement methods, e.g., [4,5]. Since the shapes of

these relative expression profiles are equivalent to the outputs of
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state variables in mathematical models of the cell cycle, they could

be used to calibrate and validate mathematical models, if they

closely reflected reality - i.e., if they were based on quantitative

measurements. In the best case, mathematical models should be

calibrated in molecular units, and if not that, then relative units on

the same scale. The relative expression of parameters determined

from multi-color immunofluorescence cytometry assays, while

correlated, are not quantitatively related to each other, except

through a tortured path that is difficult to resolve (taking into

account fluorophore to antibody ratios, fluorescence quantum

yields, photomultiplier spectral responses, fractions of light

captured, and run-time instrument settings). Here we present

a method to convert multi-color (multi-variate) data to the same

relative scale. This is a step toward the goal of molecular scales.

We have previously published procedures for converting data for

one epitope, measured by cytometry, to molecular scales [6,7]. If

one of the epitopes in a multi-color assay can be converted to

a molecular scale, then the procedure described herein will work to

convert all of the epitopes in the assay to molecular scales.

The idea here is to measure more than one epitope with

indirect assays using the same secondary antibody and using

cells sampled from the same experimental pot in each

determination. By selecting a cell region in multi-variate data

space in which a significant range of expression occurs for each

epitope and correlating the assays through an additional

measurement, the relative quantities of each epitope can be

put on the same relative scale. For the work presented here, we

calculated this scale for cyclins A2 and B1, using S phase as the

region in which the two cyclins span ranges of expression large

enough to be useful, and we used DNA content as the

correlating variable. We then calculated the relative expression

profiles for cyclins A2 and B1 in a multi-color assay of the same

cells in which we measured cyclins A2, cyclin B1, phospho-S10-

histone H3 (pHH3), and DNA content. The expression profiles

for the cyclins were then converted to the same relative scale.

The results show that the two cyclins are expressed at peak at

about the same levels. The caveats here are (1) we assume the

difference between recognition of the cyclin A2 and cyclin B1

monoclonal antibodies by the secondary polyclonal antibody is

negligible; (2) we assume that the differences in affinity for each

epitope by the two monoclonal antibodies are negligible, and (3)

we assume that epitope exposures are approximately the same -

i.e., they are not masked in a biased manner. Given these

caveats, this approach is inexact, but likely to not be far off, and

in absence of other relatively good approaches, this is a first

step.

Results and Discussion

K562 cells from an exponentially growing culture were fixed

then stored in single sample aliquots. One sample was stained with

directly conjugated antibodies for cyclins A2 (cycA-PE) and B1

(cycB-A647), phospho-S10-histone H3 (PHH3) and DAPI (49,6-

diamidino-2-phenylindole). Two other samples were stained

indirectly for either cyclin A2 or B1 with the same cyclin

antibodies (unconjugated), the same anti-mouse Alexa Fluor 488-

conjugated secondary, and propidium iodide (PI). We term the

sample stained with direct conjugates of cyclin antibodies as

‘‘multi-color’’ and the samples stained indirectly as ‘‘single color’’

samples.

Data Pre-processing
For multi-color samples, we corrected for spectral overlap

between Alexa Fluor 488 (A488) and R-Phycoerythrin (PE) and

subtracted background fluorescence using G1 phase immunoflu-

orescence and light scatter (cyclin A2 and cyclin B1 are not

expressed in early G1 phase). The latter transformation has the

effect of setting the fluorescence of negative cells close to zero.

Using DNA content pulse-height and integral, we eliminated

events that represent sub-cellular debris and aggregates. Finally,

we limited analysis to cells of the 2C stemline by using a gate on

a bivariate plot of cyclin A2 vs DNA content of interphase cells.

These preprocessing procedures have been previously described in

detail [3].

The next section demonstrates segmentation of the continu-

um of multi-color data that represent cells at all stages of the

cell cycle, and thus, the segments or regions are ordered

contiguously in one direction from G1 through to cytokinesis.

We used pHH3 expression to separate interphase from mitosis,

then a bivariate of DNA content vs. cyclin A2 to separate G1,

S, and G2 cells. ‘‘Movement’’ through S phase was accom-

plished by setting contiguous regions on the same bivariate plot.

G1 and G2, identified in this manner do not contain bivariate

information, but rather point to single parameter histograms for

cyclin A2 and cyclin B1. Determination of expression from

these histograms was performed by multi-Gaussian modeling,

essentially as previously described [8]. There are alternative

methods to segmenting these data in which multi-Gaussian

modeling is unnecessary [3].

Extraction of Expression Profiles from Multi-color Data
Isolation of mitotic and interphase cell data. We divided

the cell cycle into interphase and mitotic events by gating bivariate

plots of pHH3 versus DNA. We classified as interphase the cells

with pHH3 that cluster together from a low value in G1 (2C DNA

content) to approximately twice that value in G2 (R3, Figure 1).

Cells with higher pHH3 intensity and 4C DNA content were

classified as mitotic cells (R2, Figure 1).

Segmentation of interphase. The objective here was to

assign data in a statistically significant, non-redundant manner

Figure 1. Gating Interphase and mitotic cells. Region R2 defines
mitosis and R3 is the first interphase gate.
doi:10.1371/journal.pone.0038275.g001
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with respect to an average cell traversing the data space. There are

two aspects to the problem. The first is to isolate in a bivariate plot

a track of data that spans an expression range through which cells

can be thought to move. The rule is that an individual cell, if it

could be tracked, cannot enter a region twice within one cell cycle.

Another view is that the data constitute a uni-directional vector

with variation about that vector. The second aspect is to determine

the two-dimensional variation that defines a unit of information.

The approach for the first aspect is to filter the data through a gate

as described in the previous paragraph. Thus, the gate, R2, on

a bivariate display of PHH3 vs. DNA content isolates interphase

cells (Figure 1), and the gate, R4 (Figure 2A), on a bivariate plot

of cyclin A2 vs. DNA content isolates the 2C stem line interphase

cells (eliminates 4C, cyclin A2 negative, G1 cells). This last

procedure also eliminated outliers (e.g., S phase cells that are

negative for cyclin A2). The division of interphase into significant

segments is shown in Figure 2B. The average cell ‘‘moves’’ from

the lower left to the upper right through successive regions starting

with region 5, which is equivalent to G1 cells, through to region

18, which is equivalent to G2 cells. The G1 cluster (region 5),

identifiable as a two dimensional, approximately normal Gaussian

distribution, represents background staining [9–11]. The G2

cluster (region 18), unlike the G1 cluster (composed of cells without

cyclin A2 expression), represents the distribution of cyclin A2

expression at high levels. The regions 6–17 have adjacent

boundaries that started orthogonal to the immediate slope of the

bivariate data but were adjusted to obtain as much Gaussian

character in both cyclin A2 and DNA content single parameter

distributions as possible (Figure 2C, 2D). The regions that

segment S phase (6–17), in which both DNA and cyclin A2

increase in value, are arbitrary in number with the only constraint

being to include a statistically effective number of events. This is

not true for the regions that enclose G1 and G2 in which the

values of DNA and cyclin A2 either represent measurement

variation alone (region 6) or the values of only one parameter that

had significant biological variation (region 18). In the case of G1

(region 6), the value of cyclin A2 is approximately zero, and DNA

is also a unit value equal to the DNA content of the 2C genome –

therefore, the two dimensional distribution is statistical. In the case

of G2 (region 18), the two dimensional distribution is statistical for

DNA but contains real biological variation for cyclin A2.

Extraction of G2 interphase cyclin A2 expression. To

calculate the change in cyclin A2 over the span of the G2 cyclin A2

distribution, we fit the sum of multiple Gaussian functions to the

G2 distribution. This prevents inclusion of statistical error as

expression values. The distributions of cyclin A2 at the entry and

exit ‘‘points’’ of G2 were the basis for the Gaussian component

variables (coefficient of variation (CV)). These ‘‘points’’ (regions)

are illustrated in Figure 2B (green oval region = G2 entry) and

Figure 4A (green oval = G2 exit). The corresponding cyclin A2

distributions are plotted in Figure 3A and 3B. The G2 cyclin A2

distribution is plotted in Figure 3C with the multiple Gaussian fit.

The entry and exit points are denoted by dotted lines. To find the

signal in the G2 phase, a constrained optimization problem was

framed to minimize the mean squared error between the data

histogram of cyclin A2 (Figure 3C) and the sum of multiple,

weighted Gaussian components. The means and standard

deviations of the ‘‘entry’’ and ‘‘exit’’ components were calculated

by fitting Gaussian functions to the cyclin A2 distributions from

the S/G2 and G2/M regions (Figure 3A and 3B). The center

component was constrained to the center of the distance between

the entry and exit points. The standard deviation was allowed to

vary. The integrals of each component were constrained to

achieve an approximate continuity of the expression line plotted in

Figure 3D. Here, the reasoning is the idea behind Occam’s razor.

It should be noted that rates of cyclin accumulation in K562 G2

cells are less than is observed in other common cell lines (e.g.,

Molt4), and that here, the G2 cyclin A2 or B1 distributions have

a unimodal Gaussian shape (without distinct shape features like

multiple modes or skewness), and thus have several solutions as

a series of three Gaussian sub-components with variable integral

values. Therefore, the guide we used was the expected extrapo-

lation of the trajectory of expression from S phase (Figure 3D).

Finally, the expression profile for interphase was calculated and

plotted as in Figure 3D. The G1 and S values were calculated

directly from the regions 5–17 in Figure 2A. The G2 values were

the means of the Gaussian fitting sub-components.

Segmentation of M. Mitotic cells were analyzed by contig-

uous regions in a similar but more complex manner as that for

interphase S cells. In this case, contiguous regions cross bivariate

views of the data (Figure 4A–C). Starting with region 20

(Figure 4A), the regions follow the rise in PHH3 as cells enter

mitosis, pass through the state of maximum PHH3 and cyclin A2

(region 27), and then follow the cells that were actively degrading

cyclin A2 at the time of fixation (regions 28–33). At that point, we

reach an ambiguous state from the cyclin B1 point of view.

Therefore, we switch to a bivariate plot (Figure 4B) of cyclin B1

vs. cyclin A2 gated on R2 (Figure 1) to follow the cells that were

actively degrading cyclin B1 (regions 34–36). Subsequent to region

36, we again reach a state of ambiguity from a PHH3 point of

view. Segmentation is resumed again on a bivariate plot of PHH3

vs. cyclin B1 (Figure 4C), and regions 37–39 complete the

trajectory through mitosis. If gates in three dimensions (PHH3,

cyclin A2, and cyclin B1) could be drawn, these gates would be

contiguous within one 3D histogram. The bounding and transition

regions (27, 34, 37, and 39) are equivalent problems to the G1 and

G2 regions (5, 18) for interphase. Both of these regions need to

account for statistical variation rather than significant biological

change. Given the shape of the cluster within region 27, it is likely

that the programmed expression of both cyclin A2 and PHH3

increase and then decrease, but this is a guess and without further

support this cluster represents one point in time for both

parameters. To pursue the idea, we need another marker that

would separate the rise and fall in the same manner that cyclin A2

separates the rise and fall of PHH3.

For the preceding statements, there is abundant support in the

literature. First, phosphorylation of histone H3 at serine 10

increases dramatically either at the end of G2 or the beginning of

mitosis [12]. This is likely a function of aurora kinase B [13,14].

Second, the degradation of cyclin A2 occurs after nuclear

membrane breakdown, mediated by Cdc20 and the anaphase

promoting complex/cyclosome (APC/C). This process produces

data that vary for cyclin A2 but not B1. In a third step, cyclin B1 is

degraded through a similar process, initiated by Cdc20 and

enforced by Cdh1. Finally, histone H3 is incompletely depho-

sphorylated by phosphatases, and cells divide with residual

phosphorylation [15]. For more detail on this complex, and as

yet incompletely understood process, see [16–18]. At the end of M

(region 39), both cyclins are below the threshold of detection, and

PHH3 is also about 26 it’s initial G1 level.

Although the M phase data for cyclins A2 and B1 create an

orthogonal pattern shown in Figure 4B, this is not always the

case. If the onset of cyclin B1 degradation occurs prior to the

complete loss of cyclin A2, then a more curved relationship will be

observed. In that case, region setting would be as shown for S

phase (Figure 2B) - i.e., the regions would follow the local

bivariate slope.

Cell Cycle Expression
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Extraction of mitotic cyclin A2 expression. After segment-

ing M, expression of cyclin A2 is read directly from regions 20–36

and indirectly from regions 37–39. Indirect reading of parameter

values tacitly assumes that the relationship between the exposed

and hidden parameters is orthogonal. In this case, that assumption

is true. However, we have found that the error involved in making

this assumption when orthogonality is not true is acceptable. This

is likely because the center values that are derived are not heavily

dependent on the exact shape of the region. An alternative is that

the relationships are not sufficiently deviated from orthogonality to

make a large difference. The expression of cyclin A2 in mitosis is

shown in Figure 4D.

Extraction of cyclin B1 expression. Figure 5 illustrates the

same logic for extracting the Cyclin B1 expression information as

shown in Figure 3 for cyclin A2. In this case, since cyclin B1 is

expressed in late G1 [19,20], both G1 and G2 require

Figure 2. Gating and segmenting interphase. Data were first gated on single cells cells from 2C to 4C in DNA content (not shown) AND
(Boolean) R3 (Figure 1). (A) R4 creates the final gate for interphase. The purpose is to eliminate endoreduplicated or binucleate G1 cells, cyclin A2-
negative S phase cells, and outliers. (B) Region 5 has been set on G1 cells. S phase has been segmented into regions 5–17, which follow the two
dimensional modal backbone of the data. The adjacent boundaries of each region were originally set to be orthogonal to the local slope of the data
and then adjusted to create Gaussian character, observed in single parameter histograms of DNA content (C) and cyclin A2 (D). G2 cells are bounded
by region 18 (blue), and thin, oval regions (G1/S, S/G2) were set on the boundaries between G1 and S and S and G2 (green).
doi:10.1371/journal.pone.0038275.g002
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deconvolution. Figure 5A shows the G1 exit cyclin B1

distribution gated from the bivariate plot of cyclin A2 vs. DNA

and region, G/S (Figure 2B), and the Gaussian function fit to the

data. Figure 5B shows the G1 distribution, gated similarly from

region 5 (Figure 2B). In this case, we do not have entry and exit

information, but there is sufficient shape information to allow

a constrained Gaussian at the G1 exit point, a lower Gaussian fit to

the peak, and a centered function between the lower and upper

means. Figure 5C and 5D shows entry and exit distributions

gated from the border regions (S/G2, G2/M) shown in

Figures 2B and 4A. Fitting the regions to the G2 distribution,

gated from region 18 (Figure 2B) is shown in Figure 5E. The
same fitting problems and solutions as were encountered in fitting

Gaussian functions to the G2 distribution of cyclin A2 apply here.

Additionally, since we gated interphase from bivariate plots of

parameters other than cyclin B1, the orthogonality assumption

(discussed earlier) applies. Another solution would have been to

independently set regions on a bivariate of cyclin B1 vs. DNA.

Using current software, the benefit in accuracy does not outweigh

the cost in trying to obtain a one-to-one match for the G1 and G2

regions (5 and 18 in Figure 2B). Extraction of cyclin B1

information by both direct and indirect methods was performed as

for cyclin A2. Interphase expression is shown in Figure 5F and

mitosis expression in Figure 5G.

Same Scale Correction
Correction method. To put each cyclin on the same relative

scale, we used identical samples of K562 cells indirectly stained for

each cyclin using the same secondary antibody. Both primary

cyclin antibodies had been previously titered and were used at

optimal (slightly subsaturated) concentrations. Both antibodies

saturate within a 2 fold dilution of each other and bound

antibodies have very long half-lives (6 and 15 days for GNS1 and

11B2G3, respectively). See the Introduction for a brief discussion

of the logic and assumptions made here.

To put the correlated multi-color data on a single color scale,

we used single parameter, DNA content histograms for both

single color experiments and the multi-color data to map the

cyclin data in the same relative data space in each file. The

high precision with which DNA content can be measured

allowed us to map the same data regions in three separate files

with confidence. To do this, we determined the G1 and G2

modes, then using linear regression, we transformed the DNA

data in each file to stretch from modal values of 350 to 700.

That allowed us to create a series of seven gates, centered in S

phase and spanning the S phase rise in each cyclin. The process

is illustrated in Figure 6.

The correlations for each cyclin in multi- and single color modes

are shown in Figure 7A and 7B. Scaling the cyclin data changes

the meaningless amplitudes (Figure 7C) to values that are

estimates of the relative ratios between cyclins A2 and B1 through

the cell cycle (Figure 7D). In this case, putting the cyclins on the

same scale shows that they are expressed at ,equivalent peak

levels.

Cell cycle expression of cyclins A2 and B1. Each of the

defined regions or model components in the preceding analyses

has an associated frequency of events that is proportional to the

time that the nominal or average cell spends in that state [21–23],

with state defined by the levels of expression of DNA, pHH3,

cyclin A2, and cyclin B1. To create expression profiles, we

calculated the region/component associated cumulative frequency

for each as previously described [3,7]. A plot of the frequencies

and associated same-scale expression levels of cyclins A2 and B1 is

shown in Figure 7D. To convert frequency to relative cell cycle

Figure 3. Modeling G2 cyclin A2 expression. The G2 entry (A) and
exit (B) cyclin A2 distributions were gated from the G2/S region
(Figure 2B) and G2/M region (Figure 4A), respectively, and displayed as
log values. Fitting Gaussian functions to each provided the means and
deviations for the multi-Gaussian fit for the G2 distribution (C) open
symbols = data, gray lines = component Gaussian functions, and black
line is the sum of the component functions). The center function mean
was constrained to the middle between the entry and exit means. The
deviation was allowed to vary. The amplitudes in the multi-Gaussian
model were constrained such that the position of the three points
within G2 followed the expression line (D) composed of cyclin A2
values derive from the S phase regions in Figure 2B. The amplitude
constraints allowed variation as needed for fitting. For the fit in C,
R2 = 97%. The data presented in D represents the expression of cyclin
A2 in interphase. The values for G1 (gray symbol) was obtained directly
from region 5 (Figure 2B); the values for S phase (black symbols) were
obtained from regions 6–17 (Figure 2B), and the values for G2 (open
symbols) were obtained as shown in this Figure A, B, and C.
doi:10.1371/journal.pone.0038275.g003
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time, we have to correct the frequency values by the population

age distribution, which in the perfect case follows an exponential

decline from a factor of 2 to 1 from the beginning of the cycle

(t = 0) to the end of the cycle (t = 1) in units of cell cycle time. The

reason for this is that 1 mitotic cell gives rise to 2 G1 cells. In

Figures 7E and 7F, the cyclin expression data are plotted

transformed to a time scale. These figures show that the two

cyclins peak together in late G2 and that cyclin A2 decreases prior

to cyclin B1 (Figure 7F).
Final heuristics. Since we calculate the center frequency

and expression values for each region/component, the bound-

aries at transitions along the expression profile can be improved.

Figure 4. Gating and segmenting mitosis. To segment mitotic cells stained for cyclins A2, B1, and PHH3, it is necessary to view the data in three
different bivariate plots. (A) mitosis begins with a sharp rise in PHH3. Region 20 marks the start of mitosis. Successive regions can follow the rise in
PHH3 to peak levels and the subsequent degradation of cyclin A2. After region 33, cell classification becomes ambiguous, viewed through plots of
cyclin A2 vs. PHH3. Color coding of data is arbitrary with colors assigned by combinations of region and gate values. Clusters with ambiguous
assignment display as multi-colored clusters. (B) The ambiguity in (A) is resolved by a plot of cyclin A2 vs. B1, gated on R2 (Figure 1). Regions 34–36
track the degradation of cyclin B1 and end at the next ambiguous cluster. (C) The last ambiguous cluster is resolved with a plot of PHH3 vs. cyclin B1.
The rules for drawing regions are described in the text and in the legend of Figure 2. The expression of cyclin A2 through mitosis was calculated,
either directly or indirectly from the mitotic regions, 20–36, as described in the text and plotted in (D). The white symbol represents the last G2 value
(Figure 3). Gray symbols represent mitotic values.
doi:10.1371/journal.pone.0038275.g004
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For example, for cyclin A2 measurement in G1, we calculate

only one central value. However at frequency or time equal to

zero (f = 0. t = 0), the same value holds. Therefore, we improve

the profile by adding that value at f = 0, t = 0. Equally to

improve the profile at the G1/S boundary for cyclin A2, we

have extrapolated from the first three values in S to the X

Figure 5. Modeling cyclin B1 expression in G1 and G2. This figure is analogous to Figure 3. (A) The distribution of cyclin B1 expression at the
exit point for G1 was gated from the G1/S region (Figure 2B), converted to log values, and fit with a Gaussian function to determine mean and
deviation. (B) The values obtained from the fit in (A) were used to constrain the position and width of the exit position in the distribution of cyclin B1
fluorescence of G1 (gated from region 5, Figure 2B). The peak position of this distribution was set as the lower (background) level position, using the
CV of the exit function. A center component was constrained with the same CV and a middle position between the lower and exit components.
Amplitudes were loosely constrained to achieve continuity within the cyclin expression curve, as in Figure 2. (C, D) The regions, S/G2 and G2/M,
(Figure 2B, Figure 4) were used to gate the cyclin B1 distributions for entry to and exit from G2. Each distribution was fit to a Gaussian function. (E)
The means and deviations of these functions were used to constrain the lower and upper Gaussian components of a three part function to fit the G2
distribution of cyclin B1. The same constraints on amplitude were applied as for the cyclin A2 distribution. (F) Interphase and (G) mitosis expression
plots for cyclin B1 were determined as in Figure 2 for interphase and as in Figure 4 for mitosis. Gray symbols = G1 determinations. Black symbols
= S phase values. White symbols – mitosis determinations. G1 and G2 values were from Gaussian fitting as shown in B and E.
doi:10.1371/journal.pone.0038275.g005

Cell Cycle Expression
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frequency or time point at Y= 0 and placed a value there.

Since we are not certain of the shape of cyclin A2 at the S/G2

boundary, we do not try to improve that transition point.

However, we can use the same logic to improve the S/G2

boundary for DNA content. The occasions when these

improvements add value are points where there is a large

number of events within a region, and therefore, the expression

data are sparse.

Expression of cyclins A2 and B1 in context. Figure 8

shows the scaled expression of cyclins A2, B1, DNA content, and

PHH3. The cyclins were scaled relative to each other. DNA

content was scaled in absolute terms (genomes), and PHH3 was

scaled in an arbitrary manner to show that the interphase levels

Figure 6. Equivalent regions set through S phase. DNA histograms from K562 cells stained for single cyclins A2 (B) or B1 (C) or stained for
both cyclin A2, B1, and PHH3 (A) were transformed by functions denoted on the X axes to place the mode of G1 in channel 350 and the mode
of G2 in channel 700. Each histogram was then segmented with 6 equally sized regions that expanded out from a middle point. The median
values for cyclin A2 and B1 were calculated from measurements gated on these regions. These values were then used to construct the plots in
Figure 7A, 7B.
doi:10.1371/journal.pone.0038275.g006

Figure 7. Expression profiles of cyclins on the same scale. The data presented piece-wise in Figures 3D, 4D, 5F, and 5G were transformed
to set the first and last values (frequency = 0 and 1) to zero in accord with the known low levels (below detection) of these cyclins at the end and
beginning of the cell cycle (C). The functions in (A) and (B) were then used to transform the data in (C) to the form in (D), which set them to the same
relative scale, and therefore, the amplitudes now have meaning. In (E) and (F) the frequency data were transformed from frequency to time as
explained in the text. Dotted line in (F) denotes the boundary between G2 and M.
doi:10.1371/journal.pone.0038275.g007
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are not zero [24] and the range of mitotic levels relative to that -

i.e., no magnitude relationship to the cyclins.

Final Comments
Here we have demonstrated how to extract cell cycle expression

profiles from flow cytometry data. The point to this exercise is the

generation of dynamic expression data from unperturbed,

asynchronous cell populations to support mathematical modeling

of the cell cycle [25]. The models that we have considered first,

and those to which this work clearly relates, are ODE models, e.g.,

[1,2]. We have recently examined the literature for such models

and identified 154 models [25] with a large subset listed in [26].

Most models focus on parts of the cell cycle (e.g., G1 transit), but

a small subset model complete cell cycle transition [1,2,27]. These

are the models that would most clearly benefit from availability of

profiles such as those presented here. While we consider the ability

to extract quantitative expression profiles a step in the right

direction, it is clear that modeling the molecular reaction network

that regulates the cell cycle needs to include movement of

molecules on and off substrates (in and out of compartments).

There are many examples of molecules translocating upon

activation, but even more demanding in terms of understanding

is the use of proteins, especially enzymes, that migrate and change

roles as a function of cell cycle progression. The chromosome

passenger complex, of which Aurora kinase B is a part, is one such

example of this, e.g., [28]. The ability to integrate the work here

with cellular localization can be done, albeit with some de-

velopment, by using laser scanning cytometry, e.g., [15]. Finally,

we would like to mention that it is possible using statistical methods

and large expression measurements on a few cells (e.g., RNA

expression arrays) to obtain similar expression profiles (Omar De

La Cruz Cabrera, unpublished work). This latter approach

appears to be a more formal general case of the empirical

approach employed herein.

Materials and Methods

Cells and Cell Culture
The human hematopoietic cell line, K562 [29], was obtained

from Keith Shults and cultured as previously described [30].

Fixation
Exponentially growing cells were washed with phosphate

buffered saline (PBS), resuspended at 2 million cells per 50 ul PBS

aliquots and fixed with 450 ul MeOH as previously described [31].

Antibodies
Anti-phospho-S10-histone H3 rabbit antibodies, conjugated to

Alexa Fluor 488 (#9708) was purchased from Cell Signaling

Technology, Waverly, MA) and used at manufacturer’s

recommended concentration. Anti-cyclin A2 unconjugated and

conjugated to R-phycoerythrin (PE) were gifts from Vince

Shankey (11B2G3, Beckman Coulter, Miami, FL) and used at

0.125 ug per reaction; anti-cyclin B1 (GNS1) was purchased

unconjugated from BD Biosciences and conjugated in the

laboratory to Alexa Fluor 647 with a kit from (Molecular

Probes/Invitrogen, Carlsbad, CA) and used at 0.0625 (conju-

gated) or 0.125 ug per reaction (unconjugated). Secondary

antibody was affinity purified goat anti-mouse conjugated to

Alexa Fluor 488 (Invitrogen, Carlsbad, CA).

Immunofluorescence Staining
2 million fixed cells were used per reaction. Direct, multi-color

staining has been described exactly for these markers [32]. Indirect

staining used the same antibodies with the following alterations.

Phospho-S10-histone H3 antibody was not used; cyclin A2 or

cyclin B1 antibodies were used in separate samples; secondary

antibody was used at 2.5 6 the primary antibody amount;

propidium di-iodide (Calbiochem-Behring, La Jolla, CA) at

25 ug/ml was used to stain DNA after treatment with RNase

(Sigma, St. Louis, MO) for indirect assays. In multi-color samples,

DAPI was used at 1 ug per sample in 1 ml PBS in multi-color

assays (Invitrogen).

Flow Cytometry
We used a BD Biosciences LSR II instrument with stock filters

supplied by the manufacturers and with ultraviolet (355 nm), violet

(405 nm), blue (488 nm), and red (633 nm) lasers. PE data was

compensated for spectral overlap from Alexa Fluor 488 offline.

Software
WinList 7.0 (Verity Software House, Topsham, ME) was used

as the primary data processing tool. ModFit LT 3.0 was used

for DNA analysis. CytoSys [33] running inside of MatLab 8.0

(MathWorks, Natick, MA) or Prism 5.0 (GraphPad Software, La

Jolla, CA) were used for multiple Gaussian fitting. Prism was

used for linear regression. CytoSys or Prism were used to

synthesize expression profiles with a uniform number of

Figure 8. Cyclin expression in context. The cyclin data from
Figure 7E, 7F, are co-plotted with PHH3 and DNA expression. The
cyclins are on the same relative scale. DNA is on an absolute scale
(Genomes) and PHH3 was transformed to an arbitrary relative scale that
denotes that interphase levels of PHH3 are not zero. Interphase is
shown in (top panel), and M is shown in (bottom panel). Dotted lines
mark the G1/S and S/G2 boundaries as calculated from DNA histograms
by conventional DNA analysis using a broadened polynomial to fit S
phase.
doi:10.1371/journal.pone.0038275.g008
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interpolated points, but the profiles amount to point to point

connections. Microsoft Excel (Redmond, WA) was used for all

other calculations.
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