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Abstract

A combined experimental, individual-differences, and thought-sampling study tested the
predictions of executive attention (e.g., Engle & Kane, 2004) and coordinative binding (e.g.,
Oberauer, SuB, Wilhelm, & Sander, 2007) theories of working memory capacity (WMC). We
assessed 288 subjects’ WMC and their performance and mind-wandering rates during a sustained-
attention task; subjects completed either a go/no-go version requiring executive control over habit,
or a vigilance version that did not. We further combined the data with those from McVay and
Kane (2009) to: (1) gauge the contributions of WMC and attentional lapses to the worst-
performance rule and the tail, or T parameter, of response time (RT) distributions; (2) assess which
parameters from a quantitative evidence-accumulation RT model were predicted by WMC and
mind-wandering reports, and (3) consider intra-subject RT patterns — particularly, speeding — as
potential objective markers of mind wandering. We found that WMC predicted action and thought
control in only some conditions, that attentional lapses (indicated by TUT reports and drift-rate
variability in evidence accumulation) contributed to <, performance accuracy, and WMC'’s
association with them, and that mind-wandering experiences were not predicted by trial-to-trial
RT changes, and so they cannot always be inferred from objective performance measures.
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People tend to make mistakes when they think too much (e.g., Beilock & Carr, 2001) or too
little (e.g., Reason, 1990) about ongoing, routine activities. The present study explores
whether executive control over thought content — and over mind wandering, in particular —
contributes to individual differences in working memory capacity (WMC) and their
cognitive and behavioral consequences. Attentional theories of WMC argue that domain-
general, executive-control capabilities contribute to performance on both WMC and higher-
order cognitive tasks, as well as to their shared variance (e.g., Braver, Gray, & Burgess,
2007; Hasher, Lustig, & Zacks, 2007; Hasher & Zacks, 1988; Kane, Conway, Hambrick, &
Engle, 2007; Unsworth & Engle, 2007; Unsworth & Spillers, 2010). Some evidence for
these views comes from studies showing that WMC measures predict not only complex
cognitive skills, such as reasoning and reading (e.g., Daneman & Merikle, 1996; Kane,
Hambrick, & Conway, 2005; Oberauer, Schulze, Wilhelm, & S, 2005), but also more
simple attention functions, such as restraining habitual but contextually inappropriate
responses (e.g., Hutchison, 2011; Kane & Engle, 2003; Long & Prat, 2002; Unsworth,
Schrock, & Engle, 2004), or constraining conscious focus to target stimuli amid distractors
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(e.g., Colzato, Spapé, Pannebakker, & Hommel, 2007; Conway, Cowan, & Bunting, 2001;
Fukuda & Vogel, 2009; Heitz & Engle, 2007; Poole & Kane, 2009; but see Colom, Abad,
Quiroga, Shih, & Flores-Mendoza, 2008; Keye, Wilhelm, Oberauer & van Ravenzwaaij,
2009).

Our view of executive control, like others’ (e.g., De Jong, 2001; Braver et al., 2007; Cohen
& Servan-Schreiber, 1992; Jacoby, Kelley, & McElree, 1999; Roberts & Pennington, 1996),
is that self-regulation of thought and behavior is sometimes accomplished proactively, in
advance of stimuli or contexts that provoke distraction, conflict, or other challenges. We
have proposed that proactive control is accomplished by the active maintenance of goal
representations (Engle & Kane, 2004; Kane, Conway et al., 2007): If goals are not kept
accessible, then strong distractors or habits may inappropriately capture ongoing cognition
and performance, resulting in “goal neglect” errors (Duncan, 1995) and action slips.1 We
also argue that goal maintenance, which varies with WMC, is fragile and can be disrupted
by salient external stimuli or by task-unrelated thoughts (“TUTs”) that are mentally or
environmentally cued (McVay & Kane, 2009; 2010; in press). By this view, individual
differences in the ability to maintain on-task thoughts may contribute to WMC’s effects on
attention-task performance. The on-line assessment of TUTS, then, provides a potentially
powerful method to test our executive attention theory against those that do not hold
attention control to be a significant source of WMC variation or its covariation with other
capabilities (e.g., Colom et al., 2008; Mogle, Lovett, Stawski, & Sliwinski, 2008; Oberauer,
SR, Wilhelm, & Sander, 2007).

WMC, Goal Neglect, and Executive Control

Tasks requiring subjects to occasionally withhold prepotent responses in favor of novel ones
provided initial evidence that WMC predicted goal neglect. In the antisaccade task, for
example, subjects with higher WMC scores better resist the lure of a flashing visual cue in
order to orient their attention away from the cue and towards the target that always appears
in the opposite direction. On these antisaccade trials, higher WMC is associated with greater
target-identification accuracy and fewer erroneous, “juked,” saccades toward the cues
(Kane, Bleckley, Conway, & Engle, 2001; Unsworth et al., 2004). Higher WMC subjects
thus seem to keep goal representations more accessible than do lower WMC subjects,
allowing those goals to better guide behavior in the moment.

In subsequent work with the Stroop task, we manipulated the extent to which the task
context reinforced the color-naming goal. Our idea was that WMC should predict goal
neglect especially in situations that put a premium on proactively maintaining goal access
(Kane & Engle, 2003; see also Marcovitch, Boseovski, Knapp, & Kane, 2010). We therefore
presented mostly congruent trials (75 — 80% of trials), in which words were presented in
their matching colors (e.g., “RED’ in red), along with explicit instructions to continue
ignoring the words even if they often matched their color. This high-congruent context thus
allowed subjects who failed to maintain the color-naming goal to nonetheless respond
accurately on most trials based on a word-reading habit. Indeed, lower WMC subjects more
often slipped into word reading than did higher WMC subjects, leading them to commit
significantly more errors on infrequent incongruent trials (and to respond especially quickly
on congruent trials, also suggestive of word reading). We found no such accuracy
differences between WMC groups in low congruency contexts, where most trials presented
color-word conflict, thus reinforcing the ignore-the-word goal. We thus argued that, in the

1we have also proposed that control may be implemented reactively, by mechanisms specialized for resolving response conflict and
distractor inhibition (Engle & Kane, 2004; Kane et al., 2007; Kane & Engle, 2003; see also Braver et al., 2007; Hasher, Lustig, &
Zacks, 2007; Jacoby et al., 1999).
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absence of strong external support, subjects with lower WMC will more often lose access to
task goals and commit habit-based errors than will higher-WMC subjects.

Kane and Engle (2003) further suggested that, even though high-congruency contexts
yielded significant WMC differences in accuracy, evidence for goal neglect might also arise
in subjects’ longest reaction times (RTs; see also DeJong, 2001). That is, occasional long
RTs might reflect momentary, incomplete failures of goal maintenance that are corrected
just in time (perhaps in response to conflict-detection mechanisms; e.g., Botvinick, Braver,
Barch, Carter, & Cohen, 2001). These arguments paralleled those previously made in the
intelligence literature regarding individual differences in long RTs (i.e., the “worst
performance rule”; Larson & Alderton, 1990). The worst performance rule describes the fact
that the longest RTs that people sometimes commit in choice-RT tasks are more strongly
correlated with their cognitive ability (e.g., fluid intelligence) than are the shortest RTs that
they are able to commit. That is, when individual subjects” RTs are ranked from shortest to
longest and averaged into quantile bins, RT-intelligence correlations increase steadily with
increasing RT quantiles (for a review, see Coyle, 2003). According to many researchers,
fluctuations in WM maintenance (Larson & Alderton, 1990; Larson & Saccuzo, 1989) or in
attention to the task (Jensen, 1992) explain the worst performance rule (but see Ratcliff,
Schmiedek, & McKoon, 2008). Momentary lapses in task focus result in especially long
RTs to affected trials, and people with lower intelligence suffer more of these lapses. This
explanation is, of course, consistent with the executive-attention theory of WMC, according
to which high-WMC subjects have better goal-maintenance capabilities and therefore
commit fewer long RTs due to lapses of attention than do low-WMC subjects.

Unworth, Redick, Lakey, and Young (2010) tested whether the worst performance rule
applied to WMC by examining vigilance-task RTs by ranked bins, as is typical in such
studies. They also quantified worst performance by considering the tail of the positively
skewed RT distribution. Ex-Gaussian models represent individual subjects’ RT distributions
as a convolution of a Gaussian distribution and an exponential distribution; such models
have three parameters, the mean and standard deviation of the Gaussian component, mu ()
and sigma (o), and the mean of the exponential, tail component, fau (). By the worst
performance rule, Unsworth et al. expected WMC to predict the tail, or T, more strongly
than the leading edge, or p, of the RT distribution. Indeed, T is sensitive to experimental
manipulations of, and age-related differences in, executive control (e.g., DeJong, Berendsen,
& Cools, 1999; Tse et al. 2010; West, 2001); variation in the t parameter may therefore
reflect, at least in part, periodic lapses of attention to task goals. Unsworth et al. used latent-
variable analyses to derive a WMC factor from multiple tasks and to test its relation to
vigilance-task RT quintiles and ex-Gaussian parameters. WMC correlated more strongly
with longer than with shorter RT quintiles and more strongly with t than with . Unsworth
et al. thus concluded that WMC-related variation in “worst performance,” or long RTs,
reflected variation in susceptibility to attentional lapses or TUTS, consistent with executive
attention theory (e.g., Kane, Conway et al., 2007; Unsworth & Spillers, 2010).

An Alternative “Binding” View of WMC and Long RTs

Yet other interpretations are possible. For example, the coordinative binding theory
attributes individual differences in WMC, and WMC'’s relation to intellectual ability, to a
limited capacity for temporary, simultaneous bindings of distinct mental representations into
coherent cognitive structures (e.g., Oberauer, 2005, 2009; Oberauer et al., 2007). Oberauer
and colleagues argue that the evidence for a strong association between WMC and executive
control is not yet compelling, noting that individual differences in WMC variation only
weakly predict task-set-switching costs, which arguably mark deficiencies in executive
control (Oberauer et al., 2007; but for an alternative view, see Kane, Conway et al., 2007).
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Moreover, coordinative binding theory explains the empirical associations between WMC
and response-conflict tasks, such as antisaccade and Stroop, via the demands on stimulus-
response (S-R) binding, rather than on executive control (Oberauer, 2009; Wilhelm &
Oberauer, 2006). In such “attention” tasks, the critical trials require highly incompatible S-R
mappings (e.g., if a flash appears to the right, look left; if RED appears in blue, say “blue™).
According to Oberauer, lower WMC subjects’ difficulties here result from deficiencies in
temporarily binding the task-relevant stimuli onto arbitrary response rules and maintaining
those novel bindings throughout the task. Thus, binding deficits — and not control failures —
lead to problems in response selection and performance.

Based on this binding view, Schmiedek, Oberauer, Wilhelm, Sip, and Wittman (2007) also
presented an alternate account of the worst performance rule, whereby lapses of attention do
not contribute to the relation between long RTs and cognitive ability (e.g., WMC). Rather,
WMC-related differences in establishing and maintaining S-R bindings lead to differences in
the “efficiency of information transmission between stimuli and responses” (p. 425), and
generally poor efficiency produces occasionally long RTs (see also Martinez & Colom,
2009). Schmiedek et al. used a version of Ratcliff’s diffusion model to assess “information-
processing efficiency” (drift rate of the evidence-accumulation process; e.g., Ratcliff &
Rouder, 1998; Ratcliff & Smith, 2004) and then examined the association between the
efficiency/drift parameter and <. In brief, the diffusion model is a random-walk, evidence-
accumulation model that quantitatively accounts for choice-task accuracy and RT data
(including RT distributions), typically via seven or eight main parameters of interest that
correspond to between- and within-subject processing variables2; it thus models both group-
and individual-level data.

Schmiedek et al. (2007) derived p, o, and < latent factors from the ex-Gaussian parameter
estimates across eight choice-RT tasks and used structural equation modeling to test
relations of these factors to a WMC factor based on six tasks. Only the < factor predicted
unique variance in WMC (B = -.90). For diffusion modeling, however, given the limited
number of trials per RT task, Schmiedek et al. used a reduced, “EZdiffusion” model that
estimates only three parameters (Wagenmakers, van der Maas, & Grasman, 2007): (1) the
response criterion, or initial distance between the start point and decision boundaries; (2) the
nondecision parameter, or time spent on non-decision processes (e.g., stimulus encoding,
response execution), and; (3) the drift rate, or mean rate at which evidence accumulates
towards a boundary (for Schmiedek et al., drift rate reflected the general quality of the
information processing). The authors proposed that < is driven primarily by drift rate, and
that drift rate accounts for the WMC-< correlation. Indeed, Schmiedek et al. found that the
WMC-= association was of similar magnitude to the WMC-drift rate association. Moreover,
a subsequent simulation study took the EZdiffusion parameter values derived from the RT
data, simulated new RTs based on only those parameters, and successfully reproduced the
original WMC-< correlation. It appears, then, that only three parameters were necessary to
explain WMC-related variation in RT, none of which corresponded closely to attentional
lapses. The evidence thus suggested that WMC may predict long RTs in simple tasks
without appealing to any influences of attentional lapses or mind-wandering (TUT)
experiences.

Schmiedek et al. (2007) acknowledged that they could not rule out some (potentially minor)
contribution of attentional lapses to individual differences in <, worst performance, and

2The diffusion model parameters of most consistent interest across studies are evidence accumulation/drift rate (v), response criterion/
boundary separation (&), nondecision components ( 7¢y), drift starting point/response bias (2), across-trial variation in drift rate (v),
across-trial variation in nondecision components (sp), across-trial variation in starting point (s>, and, most recently, proportion of
contaminant RTs (pg; e.g., Ratcliff & Teurlinckx, 2002).
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WMC variation therein. They also argued, however, that additional positive evidence for
such an attentional contribution was needed because their EZdiffusion modeling results,
which required no attentional-lapse parameter, provided a more parsimonious account. The
main goal of the present study was to test for just that positive evidence for attentional
lapses influencing long RTs and WMC'’s association with them.

Our logic was that attentional lapses can be measured, albeit imperfectly, via thought probes
that ask subjects to report whether their immediately preceding thoughts were on- or off-task
(for a review, see Smallwood & Schooler, 2006). By probing for TUTSs, we could test
whether variation in off-task thinking was at all associated with WMC, =, or both, and
whether subjects” mind-wandering rates might account for some of the shared variance
between WMC and <. If individual differences in < reflect, in part, diffusion-model drift rate
(or something like general processing efficiency), but not the effects of attentional lapses
(Schmiedek et al., 2007), then T estimates should be uncorrelated with subjects’ mind-
wandering rates. If, however, TUT rate correlated with < and, furthermore, if TUT rate
mediated the association between WMC and <, then this would provide novel evidence for
the attention-lapse explanation of the worst performance rule and of WMC'’s prediction of
long RTs.

As well, the Schmiedek et al. (2007) inferential argument against attentional lapses was
based on a reduced diffusion model that lacked a parameter corresponding to lapses. We
suggest, along with Schmiedek et al., that attentional lapses might be captured by the
diffusion model’s parameter m, or across-trial variation in drift rate. That is, subjects who
more often flow between on- and off-task thought during a task should show more variation
across trials in information accumulation, or drift rate. Because the EZdiffusion model has
no drift-rate variability parameter, absorbing any effects of drift variability into drift rate
(Wagenmakers et al., 2007), the Schmidek et al. argument from parsimony is weaker than it
otherwise might be. Here, then, we modeled our subjects’ RT data using a quantitative
evidence-accumulation model of choice that included parameters for both drift rate and its
variability (the linear-ballistic accumulator model [LBA]; Brown & Heathcote, 2008), and
tested whether individual differences in either parameter captured any WMC or TUT effects
on RT task performance.

It is worth noting, however, that we do not claim that the t parameter from ex-Gaussian
models can be identified with any particular, singular cognitive process or ability, such as
vulnerability to attentional lapses. As Matzke and Wagenmakers (2009) established,
researchers have identified a remarkable breadth of experimental manipulations that seem,
within the confines of any one investigation, to selectively affect <. Theorists thus have
proposed a variety of different cognitive processes that supposedly characterize, or give rise
to, . Indeed, Matzke and Wagenmakers further demonstrated, via simulations and empirical
work, that < is sensitive to at least two different diffusion-model parameters, corresponding
to the theoretical processes of evidence accumulation and criterion setting. Viewed
collectively, then, the choice-RT literature indicates that © (or “worst performance”) is not
caused by a single process or mechanism. This really should not be surprising, given that
slow responses must mean different things across different tasks that make unique cognitive
demands, across different subjects who vary in abilities and motivations, and across varied
contexts that afford a wealth of strategic approaches to tasks. Our purpose in this study is
thus to test (contra Schmiedek et al., 2007) whether individual differences in vulnerability to
attentional lapses play any contributing role — not the only role — in producing normal
variation in <, or very long RTs, within a particular long-duration, executive-control task
that appears to elicit significant mind wandering (McVay & Kane, 2009).
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WMC, Mind Wandering, and Task Performance

In line with executive-attention theory (e.g., Engle & Kane, 2004; Kane, Conway et al.,
2007), WMC variation predicts the propensity for mind wandering during cognitively
demanding tasks and activities in daily life (Alloway, Gathercole, Kirkwood, & Elliott,
2009; Gathercole et al., 2008; Kane, Brown et. al., 2007). But does this WMC-related
variability in TUTs contribute to empirical associations between WMC and task
performance, including long RTs? As a preliminary test of executive-attention versus
coordinative-binding theories, McVay and Kane (2009) administered WMC tasks and a go/
no-go task (the “SART;” Robertson, Manly, Andrade, Baddeley, & Yiend, 1997) that
featured periodic thought probes to assess subjects’ thoughts (as on- versus off-task) in the
moments before critical no-go trials. Binding theory claims no link between WMC and
attentional lapses, nor a contribution for mind wandering to WMC-related variation in
executive-task performance. In fact, McVay and Kane found that subjects generally made
more errors on trials on which they reported off-task versus on-task thoughts, and individual
differences in TUT rate predicted overall SART performance and WMC. Furthermore, in
regression analyses, TUT rate partially mediated the relation between WMC and SART
performance. All of these correlational results suggest a role for thought control in executive
control more broadly, and they support executive attention theory more specifically. McVay
and Kane argued that it was not clear how limitations in capacity for temporary bindings
(Oberauer et al., 2007) could account for a greater incidence of mind wandering in low
versus high WMC individuals or, most critically, for these TUT rates contributing to WMC
correlations with task performance.

At the same time, the McVay and Kane (2009) regression results indicated that TUT rate
only partially mediated WMC'’s effects on performance. That is, WMC accounted for
significant SART variance beyond that shared with mind wandering, and so attentional
lapses could not fully explain WMC variation or covariation. We thus argued, based on the
dual-component executive attention theory (Engle & Kane, 2004; Kane, Conway et al.,
2007; see also Braver et al., 2007), that the additional, TUT-independent variance was
attributable to the more reactive, competition-resolution component of executive control,
rather than the more proactive, goal-maintenance component. The SART’s frequent go trials
and rare no-go trials build up a habitual tendency to respond rather than withhold
responding. This creates additional interference on the no-go trials such that, even when the
goal of the task is proactively maintained, subjects still experience in-the-moment response
conflict and sometimes produce incorrect responses. Thus, the SART, like the Stroop task
(Kane & Engle, 2003), may be sensitive to WMC variation due to the premium it puts on
both goal maintenance and competition resolution. According to McVay and Kane, then,
individual differences in competition resolution explain the WMC-related variance in SART
performance that is unrelated to TUT rate:

We therefore suggest that WMC’s TUT-independent prediction of SART
performance is largely due to its relation to competition resolution. If so, two
predictions follow: (a) A SART that induces weaker prepotencies to overcome
should correlate less strongly with WMC (due to a minimization of competition-
resolution variance) and (b) SART variance that is predicted by WMC should be
more fully mediated by TUT rate, as subjects must maintain goal activation that is
not externally reinforced (McVay & Kane, 2009, p. 203).

Thus, a primary goal of the current study was to assess mind wandering and its
consequences in a version of the SART that made less demand on competition-resolution
processes. Here we administered two versions of the SART in a between-subjects design:
The standard SART, with infrequent no-go targets, and a vigilance SART, with infrequent
“go” targets. The vigilance SART, then, like classic vigilance tasks (see Davies &
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Parasuraman, 1982), required subjects to withhold responses to most trials and wait to
respond overtly to rare targets. By simply reversing the proportions of go and no/go trials,
we removed the habit-inducing “go” response from the task and made it primarily dependent
on goal maintenance, rather than competition resolution. We predicted, therefore, that
without additional demands for competition resolution, TUT variation (and attendant
disruptions to goal maintenance) would fully mediate the association between WMC and
vigilance-SART performance. Note also that current instantiations of binding theory (e.g.,
Oberauer et al., 2007) similarly predicts WMC to correlate with standard SART
performance beyond any influence of TUT rate, due to WMC-related variation in S-R
binding. However, the S-R rules for the standard and vigilance SART were identical (press a
key to animal names only) and so binding theory would seem to predict similar WMC
associations to performance of both SART versions, and little influence of TUT rate in
either.3

Objective Markers of Mind Wandering in RTs?

Mind wandering, as the subjective experience that accompanies attentional lapses, is
typically measured subjectively: Subjects describe or classify their immediately preceding
thoughts or experiences at periodic probes that briefly interrupt the ongoing primary task
(Smallwood & Schooler, 2006). Despite their introspective nature, subjects’ immediate
thought reports appear to be reasonably valid. Such validity is not unexpected, given that
these verbal reports describe contents of experiences rather than interpretations or
explanations of those experiences (Nisbett & Wilson, 1977; Wilson, 2002). Across multiple
laboratories, probed TUT reports vary consistently with: 1) experimental treatments and task
demands (e.g., Antrobus, Singer, & Greenberg, 1966; Forster & Lavie, 2009; Giambra,
1989, 1995; Grodsky & Giambra, 1990-91; McKiernan D’Angelo, Kaufman, & Binder,
2006; Stuyven & Van der Goten, 1995; Teasdale et al., 1995; Teasdale, Proctor, Lloyd, &
Baddeley, 1993); 2) practice and time on task (e.g., Antrobus, Coleman, & Singer, 1967;
Antrobus et al., 1966; McVay & Kane, 2009; Perry & Laurie, 2001; Smallwood et al., 2004;
Smallwood, Obonsawin, & Reid, 2002-2003, Smallwood, Riby, Heim, & Davies, 2006;
Teasdale et al., 1995); 3) subjective and objective measures of task performance (McVay &
Kane, 2009; McVay, Kane, & Kwapil, 2009; Schooler, Reichle, & Halpern, 2005;
Smallwood, McSpadden, & Schooler, 2008; Smallwood, McSpadden, Luus, & Schooler,
2008); 4) neuroimaging signatures (e.g., Christoff, Gordon, Smallwood, Smith, & Schooler,
2009; Mason et al., 2007; McGuire, Paulesu, Frackowiak, & Frith, 1996; McKiernan et al.,
2006; Smallwood, Beach, Schooler, & Handy, 2008), and; 5) /ndividual-differences
variables (e.g., Giambra 1989, 1993; Kane, Brown et al., 2007; McVay & Kane, 2009; Shaw
& Giambra, 1993; Smallwood, Obansawin, Baracaia et al., 2002-03; Smallwood, O’Conner,
Sudbery, & Obansawin, 2007). Nonetheless, inherent subjectivity of thought reports has led
investigators to seek objective behavioral markers of attentional lapses and TUT
experiences.

Some authors have suggested that neglect-type performance errors may serve as objective
measures of TUTS, at least in some task contexts (Cheyne, Solman, Carriere, & Smilek,
2009; Smallwood, Beach et al., 2008; Smallwood, Fitzgerald, Miles, & Phillips, 2009;
Smallwood, McSpadden, Luus et al., 2008; but see Smallwood et al., 2006). Empirical
evidence indicates, however, that TUTs and errors are not always interchangeable. Although
they may elicit somewhat similar eventrelated potentials (Smallwood, Beach et al., 2008),
goal-neglect errors and TUT reports can vary independently. Smallwood, McSpadden, Luus

3Even if binding theory (Oberauer et al., 2007; Wilhelm & Oberauer, 2006) were to claim that the standard SART challenges S-R
binding capabilities more than does the vigilance SART (see our General Discussion for more on this issue), the vigilance-SART
variance that is predicted by WMC should still have no association with TUT rate.
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et al. (2008) found that faster stimulus presentation rates reduced TUTs but not errors. As
well, McVay and Kane (2009) found that errors increased when subjects reported mind
wandering versus on-task thinking, but mean error rate during TUTSs did not approach 100%
(it was 68%); moreover, the error rate during reports of on-task thinking was a sizeable 34%.
Theoretically, of course, SART errors may arise not only from goal-neglect, but also from
insufficient resolution of response competition, from momentary speed-accuracy shifts, or
from myriad other sources (see also Helton et al., 2005; Helton, Weil, Middlemiss, &
Sawers, 2010). Errors and mind wandering, therefore, are not likely to be isomorphic in all
contexts, and so they should not be treated as interchangeable without independent evidence.

Might transient changes in RTs provide a more consistent objective signal of lapses?
Robertson et al. (1997) observed a speed-up of RTs in the trials immediately preceding a
target-trial error in the SART. Although they suggested that these shorter RTs predict errors
because they reflect “mindless responding,” Robertson et al. did not assess TUTSs via
thought reports. McVay and Kane (2009) similarly found that shorter RTs preceded both
errors (versus accurately withheld target responses) and TUTs (versus on-task thought
reports; see also Smallwood et al., 2004; Smallwood, McSpadden, Luus et al., 2008).
However, as yet another indication of the divergence between objective and subjective
measures of attentional lapses, the magnitude of the RT difference on trials preceding errors
versus accurate responses (M =73 ms) was much greater that preceding TUTSs versus on-
task thoughts (M7= 11 ms), suggesting that there can be more to these short pre-error RTs
than just mind wandering. Indeed, Jackson and Balota (2011) have also found that older and
younger adults differ dramatically in self-reported TUT rates during the SART (with older
adults reporting much less mind-wandering), and yet both younger and older adults speed up
similarly in the trials that occur just before no-go errors. Thus, in the same way that errors
may have multiple causes, an RT speed-up in the SART may reflect not only TUTSs, but also
(or instead) a build-up of motor habit or a speed-accuracy tradeoff.

Smallwood, McSpadden, Luus et al. (2008) undertook a more sophisticated investigation of
SART RT sequences, searching for consistent time-series patterns and testing whether any
predicted imminent errors or TUTs. Their SART manipulated presentation rate and block
length, and each block terminated in either a thought probe or no-go target. Using principal
components analysis (PCA) on RTs from the 12 non-targets that preceded block endings,
Smallwood, McSpadden, Luus et al. extracted three components onto which all RT
sequences loaded. 4 The components represented, in order of variance accounted for: 1)
general RT, or the extent to which each run of 12 was faster or slower than average; 2) linear
RT change (slowing or speeding) just prior to the probe or target that terminated the block;
and, 3) quadratic RT change (from slower to faster to slower, or vice versa), just prior to
probe or target. In fact, the outcomes of interest were modestly predicted by some of these
components. Component 2 had significantly higher scores on trials preceding an error as
compared to a baseline (i.e., all blocks terminating in thought probes). The runs preceding
on-task thought reports, in contrast, had lower component 2 scores than baseline (i.e., all
blocks terminating in a target). Finally, blocks ending in “zone-out” reports (i.e., TUTS
without one’s prior awareness; Schooler, 2002) had lower component 1 scores than did
those ending in on-task reports.

Smallwood, McSpadden, Luus et al. (2008) claimed that the discernable RT patterns prior to
on-versus off-task thought reports may objectively mark TUTs. Unfortunately, in the key
analyses of components 1 and 2, the differences in component scores involved a potentially

4The 12 trials used for analysis in Smallwood, McSpadden et al. (2008) differed between their “slow” and “fast” pace conditions. All
12 discrete trials were used in the slow condition, whereas 12 “averaged” RTs were used in the fast; the fast condition presented 24
trials per block, so the authors averaged across consecutive trials to equate the number of trials between pace conditions.
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contaminated baseline. That is, the baseline to which they compared component 2 scores for
on-task thought reports included both correct and error trials, which had elevated component
2 scores in an analysis comparing errors to “baselines” that included both on- and off-task
thought reports; this circularity would need to be broken in order to unambiguously interpret
their findings. As well, Smallwood, McSpadden, Luus et al. intended to measure within-
person, in-the-moment RT patterns that predicted performance and thoughts, but they failed
to standardize RTs within subjects, and so between-subject differences in RTs may have had
undue influence on the principal components (see, e.g., Klinger & Cox, 1987-88). That is,
rather than indicating that TUTs are more likely to occur on occasions in which a subject
speeds up before a probe, their findings may have indicated that TUTs are more likely to
occur for subjects who tend to speed up. Thus, as a secondary goal of this study, we
attempted to replicate the RT patterns from Smallwood, McSpadden, Luus et al. (2008) with
a stronger analytic approach.

Summary of Experimental Aims

Methods
Subjects

In a single, large-Vstudy we examined the executive attention (Engle & Kane, 2004; Kane,
Conway et al. 2007) and coordinative binding (Oberauer et al., 2007; Wilhelm & Oberauer,
2006) theories of WMC in two ways. In both, we relied on probed thought reports to
measure attentional lapses as TUT experiences. First, we tested the extent to which
individual differences in TUT rate mediated the WMC-SART association, when SART
performance relied heavily on both goal-maintenance and competition-resolution processes
(in the standard, go/no-go SART) versus when it relied little on competition resolution (in
the vigilance SART). Executive attention theory predicted that TUT rate would partially
mediate the WMC-performance relation when both goal maintenance and competition
resolution were needed (replicating McVay & Kane, 2009), but that TUT rate would more
fully mediate the WMC relation when only goal maintenance was needed. Second, we asked
whether, by measuring attentional lapses via thought probes and modeling SART RTs with
an evidence-accumulation model that assessed drift-rate variability, we would find evidence
that the worst performance rule in RTs was at all influenced by attentional lapses, as claimed
by executive attention theory (see Unsworth et al., 2010). The coordinative binding theory,
in contrast, claims that worst performance, and WMC'’s association with it, reflects general
information-processing efficiency (indicted by drift rate) resulting from S-R binding
effectiveness rather than attention lapses (Schmeidek et al., 2007). Finally, we used RTs as a
predictor rather than an outcome of interest by investigating whether latency time-series
data, particularly series preceding subjects’ performance errors or TUT reports, might
provide converging, objective evidence for attentional lapses. Here we specifically tested
whether the Smallwood, McSpadden, Luus et al. (2008) findings, which appear so
promising in this regard, would replicate in a substantially larger dataset and with an
improved analytic approach.

Two-hundred eighty-eight undergraduates (aged 18 — 35) at the University of North
Carolina at Greensbhoro (UNCG) participated in two sessions, one testing WMC and one for
the SART. We dropped data from four subjects who didn’t follow SART instructions (two
each in the Standard and Vigilance tasks). Due to experimenter error, three subjects did not
complete WMC testing (one from the Standard and two from the Vigilance groups); we
included their SART data for all non-WMC-related analyses.
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General Procedure

We tested subjects in groups of 1 — 6. They completed the WMC and SART sessions within
the same semester (M = 24 days between sessions, SD = 26, range = 1 — 95). During the
first, WMC screening session, subjects completed the operation span (OSPAN), symmetry
span (SSPAN), and reading span (RSPAN) tasks, in that order. During the second session,
subjects completed the SART.

WMC Screening

In 90 min sessions, subjects completed three automated complex-span tasks: OSPAN,
RSPAN, and SSPAN. The tasks required subjects to maintain access to memory items while
completing an unrelated processing task; the processing task had an individualized response-
latency deadline (M + 2.5 SDs), calculated during 15 processing-task-only practice items
(Unsworth, Heitz, Schrock, & Engle, 2005; Unsworth, Redick, Heitz, Broadway, & Engle,
2009). Each trial of the processing task was followed, 200 ms later, by a memory item. In
OSPAN, subjects verified compound equations while remembering letters (from a pool of
12), each presented for 250 ms following every equation. For example, following a screen
with, “(2#2) + 1 = 5,” the subject would click a response (TRUE or FALSE) with a
computer mouse and then see the to-be-remembered letter, “ £ onscreen. RSPAN similarly
required subjects to remember letters, but while verifying the meaningfulness of sentences
(e.g., “/ like to run in the sky.”). In SSPAN, subjects verified vertical symmetry of black-
and-white matrix patterns while remembering the locations of red squares on a 4 x 4 grid.
Each red square was presented for 650 ms after the symmetry problem.

The WMC tasks presented each set length (3 — 7 in OSPAN and RSPAN; 2 — 5 in SSPAN)
three times, randomly ordered for each subject. At the end of each set, subjects recalled the
memory items in serial order. For OSPAN and RSPAN, subjects used a mouse to click on

that set’s letters in order, presented among the full pool of 12 letters. For SSPAN, subjects
used a mouse to click the previously occupied squares in order, within an empty 4 x 4 grid.

The span score for each task was the sum of items recalled in serial position (of 75 in
OSPAN and RSPAN and 42 in SSPAN; Conway, et al., 2005). We converted span scores to
z scores (based on the Ms and SDs from our UNCG database of over 2,000 undergraduates)
and averaged them into a WMC composite. Scores correlated r= .64 (RSPAN x OSPAN), r
= .52 (OSPAN x SSPAN), and r= .47 (SSPAN x RSPAN). The WMC variable was
normally distributed (skew = —0.67; kurtosis = 0.14)

SART Session

Materials and Design—The design was a 2 x 2 mixed-model factorial, with SART type
(“Standard” vs. “Vigilance™) manipulated between subjects and Trial type (Target, Non-
target) within. In the Standard SART (N = 142), subjects responded to frequent non-target
words and withheld responses to infrequent (11%) target words; thus, as is standard for the
SART, it was a go/no-go task that elicited a “go” prepotency. In the Vigilance SART (N =
142), in contrast, subjects responded only to the infrequent (11%) targets; it was therefore a
prototypical vigilance task without any “go” prepotency. For both SARTS, the words were
from two different categories (foods and animals; e.g., animals as targets and foods as non-
targets). Stimuli appeared in black against a white background, in 18 pt Courier-New font,
via CRT or LCD monitors.

Procedure—The SART was the same as the semantic version used by McVay and Kane
(2009), aside from the instructions. Subjects in the Standard SART (replicating McVay &
Kane) pressed the space bar as quickly as possible when frequent non-target words appeared
onscreen; they withheld responses to rare targets. Subjects in the Vigilance SART, in
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contrast, did the reverse and withheld responses to frequent non-target words and quickly
pressed the space bar only when infrequent targets appeared.

Subjects completed 1810 trials with each stimulus centered for 250 ms, followed by a 950
ms mask of 12 capitalized X5, the length of the longest stimulus. The first 10 (unanalyzed)
buffer trials presented non-targets. The remaining trials comprised eight blocks, each
presenting 225 trials consisting of 45 words repeating five times in a different random order.
Within each set of 45, five targets appeared in random order among 40 non-targets (11% of
trials). Thought probes followed 60% of targets within each block. After the first four
blocks, subjects took a 30 s break.

Thought-probe screens presented the question: “ What were you just thinking about?’ and
seven response options. We instructed subjects to report what they were thinking in the
moment before the probe appeared, and our instructions elaborated on these choices: 1) fask.
thinking about the stimulus words or appropriate response; 2) task performance: thoughts
evaluating one’s own performance; 3) everyaday stuff. thinking about recent or impending
life events or tasks; 4) current state of being. thinking about states such as hunger or
sleepiness; 5) personal worries. thinking about life concerns, troubles, or fears; 6)
aaydreams. having fantasies disconnected from reality; 7) other. only for thoughts not fitting
other categories. During the task, thought probes presented the response names (i.e., the
italicized names above) and subjects pressed the corresponding number to indicate thought
content.

We report non-directional null-hypothesis significance tests (with alpha set to .05) and
partial eta-squared (npz) as an effect-size estimate.

SART Performance

Accuracy—NMean accuracy rates for rare target trials were .42 in the Standard SART (*no-
go” trials) and .85 in the Vigilance SART (“go” trials). For each subject, we calculated a
signal-detection sensitivity score using the formula for logistic distributions (Snodgrass &
Corwin, 1988): o = In{[H(1 - FA)J/[(1 - H)FA]}, and a C;_score, representing bias, using:
G =0.5[In{[(1 - FA)(1 - H))/[(H)(FA)1}], where In = natural log, H = hit proportion, and
FA = false-alarm proportion. We adjusted individual hit or false-alarm rates of 0 and 1 by .
01. Negative ¢ scores reflect a “go” bias. Table 1 presents o and C; scores by SART and
task block (quarters), where it appears that performance was better overall in the Vigilance
SART and that both of and C; decreased over time only in the Standard SART.

A 2 (SART Type) x 4 (Block) mixed-model ANOVA on ¢ confirmed a main effect of
block, A3, 828) = 13.02, MSE = 14.03, npz =.05, and SART type, A1, 276) = 2517.47,
MSE = 3494.82 m,? = .90, modified by an interaction, A3, 828) = 9.19, MSE = 9.89, n,? =.
03. Sensitivity was higher in Vigilance than in Standard SART, and performance dropped
significantly in the Standard, A3, 423) = 28.52, MSE = 22.74, npz =.17, but not the
Vigilance task, A3, 423) < 1. A 2 (SART Type) x 4 (Block) mixed-model ANOVA on G
indicated a main effect of block, A3, 828) = 4.08, MSE = 0.96, npz =.02, and SART type,
A1, 276) = 2185.73, MSE = 2854.80, npz = .89, modified by an interaction, A3, 828) =
5.82, MSE = 1.36, npz =.02, indicating a “go” bias in Standard SART that decreased over
blocks, A3, 405) = 11.43, MSE = 2.19, T1p2 = .08 and a stable “no-go” bias in Vigilance
SART, A3, 423) < 1.

RT—The requirements of the two different SART versions produced different RT data for
analysis: In Standard SART, subjects responded to frequent non-target trials whereas, in
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Vigilance SART, subjects responded only to the infrequent target trials. Thus, RTs were
based on a maximum of 1600 trials per Standard SART subject, but only 200 trials per
Vigilance subject. RT data from the two SARTS are, therefore, not directly comparable and
we report them separately.

Standard SART: Table 1 presents the mean RT and mean intra-individual RT variability
(standard deviation) on accurate non-target (“go”) trials across blocks. A repeated measures
ANOVA on MRT indicated that subjects responded more quickly as the task progressed,
A3, 423) = 13.03, MSE = 25812.22, npz =.09. Subjects’ reaction times to non-target “go”
trials also became more variable with time on task, A3, 423) = 45.27, MSE = 46930.73, npz
=.24.

Standard SART RTSs to non-targets are shorter preceding target errors than preceding
accurate no-go responses (Cheyne, et al., 2009; McVay & Kane, 2009; Robertson et al.,
1997; Smallwood et al., 2004) and shorter preceding TUTSs than on-task reports (McVay &
Kane, 2009). As in McVay and Kane (2009), we collapsed RTs over the four non-target
trials preceding a target and, as expected, they were shorter (M= 418) preceding errors than
preceding correct “no-go” responses (M= 502; {141) = 23.81). TUT reports were also
preceded by faster RTs (M = 442) than were on-task thought reports (M= 462; {141) =
4.21). Replicating McVay and Kane (2009), the RT decrease preceding errors was
considerably larger than that preceding TUT reports, suggesting that SART errors and TUT
reports were not isomorphic.

Vigilance SART: Table 1 presents the means and intra-individual variability of RTs on
accurate target (“go”) trials across quarters. A repeated measures ANOVA on MRT
indicated that, in contrast to the Standard SART, subjects in the Vigilance SART responded
more slowly as the task progressed, A3, 423) = 16.64, MSE = 25450.09, an =11
Subjects’ RTs to rare “go” target trials also became more variable with time on task, A3,
423) = 5.37, MSE = 3775.90, 1,? = .04.

Thought Reports—In the Standard SART, subjects reported task-related and task-
unrelated thoughts (TUTSs) on an average of 22.1% and 52.5% of the probes, respectively.
We defined TUTSs as thoughts about current state (M = 22.4%), daydreams (10.4%),
everyaay stuff(8.6%), worries (4.9%), and other (6.4%). In the Vigilance SART, subjects
reported task-related and task-unrelated thoughts on 29.8% and 52.8% of the probes,
respectively: current state (M = 24.8%), daydreams (9.9%), everyaday stuff (7.9%), worries
(5.4%), and other (4.9%). The remaining probe responses represented self-evaluative
thoughts, or “task-related interference” (TRI; Smallwood et al., 2006); because TRI
represents a hybrid between task-related and task-unrelated thinking, that is, they are about
one’s task performance but not about the task, itself, we will later address it separately.

Figure 1 shows that TUT rates increased, and on-task thought decreased, over blocks in both
SARTSs. For TUTs, a 2 (SART Type) x 4 (Block) mixed ANOVA indicated an increase over
blocks, A3, 846) = 251.24, MSE = 5.09, npz = .47, that didn’t differ between SART types,
A3, 846) = 1.83, npz =.01, p=.14. In a parallel analysis, on-task thought rates decreased
over blocks, A3, 846) = 90.73, MSE = 1.43, npz = .24, and were lower for Standard than for
Vigilance subjects, A1, 282) = 10.54, MSE = 1.67, T]p2 =.04; block and SART type did not
interact, A3, 846) = 1.81, ng? = .01, p=.14.

Performance by Thought Report—In both SARTS, in-the-moment target accuracy was
predicted by thought content (see Figure 2). A 2 (Thought report) x 2 (SART Type) x 4
(Block) repeated-measures ANOVA indicated more accurate responding preceding on-
versus off-task thought reports, A3, 161) = 217.65, ME = 14.21, an = .58, and in the
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Vigilance SART versus the Standard SART, A1, 161) = 160.82, MSE = 35.94, npz = .50;
these main effects were modified by a thought report x SART-type interaction, A1, 161) =
32.93, MSE = 2.15, np2 = .17 (no block effects or interactions were significant; /5 < 2.00
and ps > .10). Although target accuracy was significantly higher for trials preceding on-task
thought reports versus TUTSs for both Standard and Vigilance SARTSs (& > 8.80), this
thought-content effect on errors was significantly larger for the Standard SART.

At the level of intra-task individual differences, subjects’ TUT rate in Standard SART
significantly predicted g (r=-.30), mean non-target RT (r=-.17), and non-target RT
variability (r=.25), but not G (r=-.01); in Vigilance SART, TUT rate also predicted o (r
= -.31), but not mean target RT (r= -.01), target RT variability (r=.05), or G (r=.03).
TUT-q correlations increased significantly from block 1 to 2 in both the Standard SART (/5
=-.08, —.34, -.32, —.35 for blocks 1 — 4, respectively) and Vigilance SART (ss = -.06, .36,
-.31, -.25), as indicated by Williams’s t-test (Steiger, 1980).

Inter-task Individual Differences—WMC scores (z-score composites) did not differ
between SART groups (Standard SART M= 0.14, SD=0.88, and Vigilance M=0.13, SD
=0.85;t < 1). Tables 2A (Standard SART) and 2B (Vigilance SART) present reliability and
correlation coefficients for the critical variables. As expected (and replicating McVay &
Kane, 2009), WMC variation predicted performance and thought in Standard SART,
correlating modestly but significantly with ¢ , within-subject RT variability, and TUT rate.
In contrast, in Vigilance SART, WMC variation did not predict performance or TUT rate,
despite higher TUT rates predicting worse performance (g{ and RT variability), as noted
above.

Table 3 presents the results from hierarchical-regression analyses predicting Standard SART
accuracy (a ) with WMC and TUT rate (we did not run parallel analyses on Vigilance
SART because WMC did not predict performance). Replicating McVay and Kane (2009),
WMC and TUT rate each accounted for shared and unique ¢{ variance. WMC accounted for
10.1% of the q{_variance, of which 2.9% (almost one-third) was shared with TUT rate and
7.2% was unique; TUTSs predicted 6.4% of the SART ¢ variance independently of WMC
(total R? = .165). Table 4 presents hierarchical-regression analyses for Standard SART RT
variability, where WMC accounted for 13.4% of the variance, of which 2.7% (about one-
fifth) was shared with TUT rate and 10.7% was unique; TUT rate accounted for 3.7% of the
variance beyond WMC (total R2 = .171).

Task-Related Interference (TRI)—Subjects’ thoughts about their own performance
(TRI) comprised 25.4% of responses in the Standard SART (M proportions = .37, .25, .21,
and .18 over blocks) and 17.4% of responses in the Vigilance SART (Ms = .24, .17, .15,
and .14 over blocks). A 2 (SART Type) x 4 (Block) mixed ANOVA indicated that TRI rates
decreased across blocks, A3, 846) = 89.13, MSE = 1.14, npz = .24, and that they were
higher in the Standard than Vigilance SART, A1, 282) = 17.16, MSE = 1.82, npz =.06;
these main effects were also modified by an interaction, A3, 846) = 7.99, MSE = 0.10, npz
=.03; although TRI decreased over blocks in both conditions, the block x SART type
interaction was significant from block 1 to block 2, indicating a steeper decrease in TRI
reports in the Standard than in the Vigilance SART, A1, 282) = 7.015, MSE = 0.18, npz =.
02.

Like TUTs, instances of TRI tended to predict in-the-moment errors in both tasks. Target
accuracy rates were lower following TRI than following on-task thoughts in the Standard
SART (Ms= .38 vs. .62 for TRI vs. on-task, {134) = 10.54) and the Vigilance SART (Ms

= .86 and .93 for TRI vs. on-task, {136) = 5.10). Regarding individual differences, however,
TRI behaved differently than TUTs: TRI rate did not significantly predict ¢f , mean RT, or

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2013 May 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

McVay and Kane

Page 14

RT variability in either SART (rs=.02, -.06, —.04 for Standard; .15, .08, —.11 for
Vigilance). Moreover, WMC did not predict TRI rate in either the Standard or Vigilance
SART (rs=-.04 and -.05, respectively).5

Discussion

Lapses of

Methods

The Vigilance version of the SART yielded better performance than the Standard SART, but
the same rate of mind wandering. In both versions, TUTSs increased with time on task and
predicted (if not affected) performance on target trials. However, in the moment, TUTs
seemed more detrimental to performance in the Standard than the Vigilance SART. In
support of executive attention theory (Engle & Kane, 2004), WMC predicted TUTs in the
Standard SART. Moreover, TUTs and WMC each accounted for shared and unique variance
in SART performance, highlighting the role of goal maintenance as one component of
attention control that varies with WMC. In the Vigilance SART, in contrast, WMC did not
predict TUTSs or performance. Although we did not predict this null effect, it is consistent
with previous findings where WMC only predicted mind wandering or performance
selectively, during demanding tasks that require a particular form of executive control
(Kane, Brown et al., 2007; Poole & Kane 2009; see General Discussion for a more thorough
treatment). We designed the Vigilance SART to reduce the need for competition resolution
and, thereby, the variance predicted uniquely by WMC, beyond that shared with TUT rate.
Instead, we have identified a task where TUTSs significantly affect performance but WMC
does not predict either thought or performance.

Attention and RT Distributions

Here we evaluate the relation between WMC and subjects’ longest RTs using both the
ranking and binning method (for a review, see Coyle, 2003) and individualized ex-Gaussian
distributions (Schmiedek et al., 2007; Unsworth et al., 2010). Furthermore, we use TUTSs,
the subjective experience accompanying attention lapses, as an initial means to test whether
the worst performance rule is best explained without referring to attention lapses, the
conclusion drawn by Schmiedek et al. (2007) on the basis of RT modeling and parsimony.
That is, they were able to account for WMC-related individual differences in long RTs using
a quantitative model that had no parameter reflecting attentional lapses.

The SART is unique among tasks used to investigate the worst performance rule, however,
in that attentional lapses are hypothesized to produce occasional very fast responses in
addition to occasional very slow responses. That is, unlike the choice-RT tasks that
researchers typically examine (including Schmiedek et al., 2007), the frequency of non-
target trials in the SART builds a habitual “go” response. This prepotency of the “go”
response makes the shortest RTs interesting as well, as excessively short RTs may reflect
responses emitted before stimulus analysis is complete, as a result of habitual, mindless
responding (Cheyne et al., 2009). We therefore expected subjects’ shortest RTs, as well as
their longest RTs, to be related to their mind-wandering rates.

Subjects—We combined data from McVay and Kane (2009; N/ = 244) and from the
Standard SART in the present experiment (A = 142) for a total of 386 subjects.

5McVay and Kane (2009) found that TRI comprised 24% of Standard SART thought-probe responses, but they did not analyze TRI
reports further. Analyzing those data, here, yielded a similar decrease in TRI rate over blocks, a similar prediction of in-the-moment
error versus on-task thought reports, and similar null correlations between individual differences in TRI rate and SART performance.
The only discrepancy with the present findings was a significant WMC x TRI correlation (r=.19), such that higher WMC subjects

report higher rates
consider it further.

of TRI than did lower WMC subjects. Given the failure to replicate this positive correlation here, we do not
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SART Versions—The SART from McVay and Kane (2009) was the same as the present
Standard SART, with one exception. In McVay and Kane, subjects completed a perceptual,
perceptual-semantic, or semantic version (the latter was identical to the present Standard
task). The perceptual and perceptual-semantic SARTS instructed subjects to respond to
lowercase words and withhold responses to infrequent uppercase words; in the perceptual-
semantic SART, letter case also predicted perfectly the semantic category (e.g., all
uppercase words were animal names and lowercase words were food names). McVay and
Kane reported no differences in TUT rate or performance (4 ) between the three SART
types and so we here combined data from all SART versions.

Analyses—For each subject, we fit an ex-Gaussian function using quantile maximum
likelihood estimation (QMLE; Brown & Heathcote, 2003) to non-target RTs. Due to
program limitations, RTs from only 1199 trials from each subject can be entered. The SART
has the potential for 1600 non-target RTs and so we trimmed the dataset for analysis. We
first trimmed ambiguous RTs, those which may have been late responses from a previous
trial or anticipations to the current trial (RT < 150ms). We then fit the distributions twice,
once using 1199 randomly selected trials for each subject and once using all 1200 trials from
the second, third, and fourth SART blocks (recall that these blocks yielded much higher
TUT rates than did block 1, as well as significantly higher correlations between TUT rate
and performance).

Results and Discussion

For a visual representation of WMC differences in RT variability (see also Unsworth et al.,
2010), Figures 3A and 3B present 100 randomly selected RTs for two randomly selected
higher WMC subjects (composite z-scores = 1.53 and 1.50) and two randomly selected
lower WMC subjects (z-scores = —2.15; —2.24). Figure 4 presents ranked RTs from the same
subjects. The Low WMC subjects show much greater RT variability from trial to trial and a
greater range of RTs within the task.

Descriptive statistics, for the ranked RTs by quintile, and the ex-Gaussian parameter
estimates, are shown in Table 5. The theoretically critical T parameter did not differ when
estimated from 1199 random cases (M= 117) or from trial blocks 2 — 4 of the Standard
SART (M= 117; £384) < 1), so we will simply report the analyses on RT data from blocks
2 — 4, which is a preferable strategy because TUTs and performance measures were all
drawn from the same set of trials.

Table 6 shows the correlations between the RT quintiles and WMC, TUT rates, and SART
accuracy (a). WMC correlated negatively with the longest RTs and positively with the
shortest, indicating that higher WMC subjects had more consistent and moderate RTs (i.e.,
their fastest RTs, in Q1, are relatively long and their slowest RTs, in Q5, are relatively short)
than did lower WMC subjects. TUT rate showed the inverse (but logically consistent)
pattern to WMC, with positive correlations with the slowest quintile and negative
correlations with the fastest. Like people with lower WMC, people with higher TUT rates
responded more variably, with their shortest times being shorter and longest times being
longer than those of people with lower TUT rates. Regarding SART accuracy, the gradual
change from positive to negative correlations across RT quintiles indicates there was an
optimal, intermediate response speed for accurate performance on the SART: Subjects with
the shortest RTs performed poorly, but so did those with the longest.

The relations among WMC, TUT, standard SART performance, and the ex-Gaussian RT
parameter estimates (Table 6) tell a similar story to the longest RTs from the quintile
analyses. As predicted, WMC and TUT rate predicted the t parameter, indicating that
subjects with lower WMC or higher TUT rates had more positively skewed RT
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distributions, reflecting their more frequent slowed responses. In slight contrast, o
correlated positively with . and negatively with <, indicating that slow-but-steady RTs
yielded the most accurate performance in the SART. Of note, the correlations among our
individual measures of primary interest, WMC, TUT rate, and t, were not very large, and
they were considerably weaker than those among the latent variables reported by Schmiedek
et al. (2007).

For a better parallel to their analysis, then, we used our multiple WMC indices and multiple
blocks of the SART task to derive latent variables for WMC, TUT, and <. Figure 5A depicts
a confirmatory factor analysis on these three constructs (using blocks 2 — 4 of the SART to
derive TUT rate and < latent variables), and the model fit the data well [X2(24) =41.91, XZ/
df = 1.75, CFl = .99, RMSEA = .044, SRMR = .028]. Here, WMC and TUT rate each
correlated substantially with ¢, and the magnitude of the WMC and TUT correlations with t
were more similar here than in the univariate analyses reported in Table 6.

Regression analyses and a structural equation model indicated that WMC and TUT rate
accounted for both shared and unique variance in the RT indices. Table 7 presents the
coefficients for a hierarchical-regression analysis predicting the slowest RT quintile, the
fastest quintile, and the T parameter with WMC and TUT rate. WMC explained significant
variance in the slowest RT quintile (R2 = .06), here with one-third of that variance shared
with TUT rate. WMC accounted for significant variance in the fastest RT quintile as well
(RZ = .04), here with almost half of that variance shared with TUT rate. Finally, the
significant but modest relation between WMC and t (R? = .03) was substantially mediated
by TUT rate, with over half of the WMC-related variance explained by mind-wandering;
TUT rate additionally predicted considerable variance independently of WMC (total R2 = .
11).

As a conceptual replication of our regression analyses, here using latent-variable methods,
Figure 5B presents a structural equation model that tested not only for the independent,
direct effects of WMC and TUT rate on <, but also for the indirect, mediated effect of WMC
on t, through TUT rate. This partial-mediation model had identical fit statistics to our
previous confirmatory factor analysis (from Figure 5A), here with WMC and TUT rate
together accounting for 21% of the variance in t. Of central importance, the WMC x TUT
indirect effect was —.07, p< .01, indicating that some of WMC’s prediction of T was
mediated by TUT rate (note that the full mediation model, in which WMC had no direct
effect on <, did not fit the data as well as the partial mediation model, as indicated by a
significant x 2 test, x %gifference(1) = 16.35).

In summary, and consistent with the worst performance rule, subjects’ WMC scores were
negatively related to their longest RTs, calculated using both RT quintiles and individualized
ex-Gaussian RT distributions. Mind wandering was positively related to long RTs,
suggesting that these RTs might reflect, in part, lapses of attention experienced as off-task
thoughts. Furthermore, TUT rate partially mediated the relationship between WMC and
subjects’ longest RTs. This analysis counters the claim of Schmiedek et al. (2007) that
lapses of attention to the ongoing task do not contribute to the t parameter estimates from
individuals’ ex-Gaussian distributions. By actually measuring TUT experiences, we find a
contribution of attentional lapses to the association between WMC and <.

Lapses of Attention and Decision-Diffusion Modeling of RT

Of course, the Schmiedek et al. (2007) approach to the question of WMC’s association with
long RTs had many methodological strengths, not the least of which was using a rigorous,
quantitative model of RTs, the EZDiffusion model (Wagenmakers et al., 2007), which
allowed them to test an attention-allapse theory of the worst performance rule without
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relying on subjective reports. As we argued above, however, their use of a reduced diffusion
model — which had no parameter to reflect attentional lapses — weakened their argument
from parsimony (i.e., from a null effect). Here, then, we use a more complete evidence-
accumulation model, which includes a parameter for within-subject drift rate variability, to
more directly test whether WMC predicts RT variability in part because it predicts lapses
and TUTSs.

Recent advances have simplified the execution of quantitative RT modeling (e.g.,
Vandekerckhove & Tuerlinkcx, 2007; Vandekerckhove, Tuerlinkcx, & Lee, 2009; Voss &
Voss, 2007; Wagenmakers et al., 2007). Here, we took advantage of a Microsoft Excel
application (Donkin, Averell, Brown, & Heathcote, 2009), to implement the Linear Ballistic
Accumulator model (LBA; Brown & Heathcote, 2008). The LBA mathematically simplifies
the drift process by eliminating within-trial stochasticity from the Ratcliff model (evidence
accumulation is thus “ballistic”). Moreover, in contrast to the EZDiffusion model used by
Schmiedek et al. (2007), the LBA takes as input the full distribution of subjects’ correct and
incorrect RTs, it yields a similar complement of parameters from choice-RT data to the
Ratcliff model (including drift rate and drift-rate variability), it successfully accounts for a
similar breadth of choice-RT-task phenomena as the Ratcliff’s model (Brown & Heathcote,
2009), and it yields similar parameter values to those from Ratcliff’s model when they are
both applied to the same data (Donkin, Brown, Heathcote, & Wagenmakers, 2011).

Quantitative evidence-accumulation models are typically applied to tasks requiring choice
between two overt responses, such as word versus non-word in lexical decision, rather than
to go/no-go tasks (like the SART) with only one overt response. Recent work, however,
suggests that two-choice and go/no-go versions of the same task (whether lexical decision,
numerosity discrimination, or recognition memory) can best be modeled by assuming an
implicit decision boundary for no-go “responses” and by fixing drift rate and drift-rate
variability to be equal across both two-choice and go/no-go task types, while allowing
response bias, response criterion, and nondecision parameters to vary between task types
(Gomez, Ratcliff, & Perea, 2007). Because two-choice and go/no-go tasks appear to engage
identical evidence-accumulation processes, we felt justified in applying a quantitative
evidence-accumulation model to our SART data, especially given that our central
predictions hinged on the drift and drift-variability parameters.

Subjects and SART Versions—We used the same dataset here as we did for the RT
quantile and ex-Gaussian analyses above.

Analyses—For each subject, we fit all correct and error RTs for SART blocks 2 — 4
(screened as they had been for the RT quantile and ex-Gaussian analyses) using the Donkin
et al. (2009) Excel program. Our final dataset included 374 subjects, each of whom had at
least 750 RTs to model, and whose RTs could be reliably fit by Excel’s Solver function (for
some subjects, the function would settle on a local maximum rather than a global, optimal
maximum; here, seeding the model with different starting parameter values yielded vastly
different resulting parameter estimates, indicating invalid solutions). The LBA analyses
produced estimates of the following parameters for each subject: drift rate (vZ, in the Donkin
et al. LBA Excel program; corresponding to the diffusion model’s v), drift-rate variability
(s, corresponding to the diffusion model’s mand nondecision processes (£0; corresponding to
Ten; We estimated response criterion, or cautiousness (in the diffusion model, &), by
combining the aand & parameters from the LBA EXCEL program (b — fa/2]; see Donkin et
al., 2011).
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Mean values for the LBA parameters in this sample were .847 (SD = .210) for drift rate, .
204 (SD = .118) for drift-rate variability, 76.33 (SD = 77.47) for nondecision time, and
302.03 (SD = 154.82) for response criterion. As is sometimes the case (e.g., Ratcliff &
Tuerlinckx, 2002; but see Ratcliff, Thapar, & McKoon, 2010), correlations among these
parameters were statistically significant, ranging from r=.114 (drift rate x nondecision
time) to r=.635 (drift rate x response criterion); drift rate correlated with drift variability at
r=.411, indicating substantial shared variance (including some likely statistical dependency
from the data-fitting process), but not redundancy. Table 8 presents the correlations between
these LBA parameters and our other variables of primary interest: WMC, TUT rate, and
SART <. Of importance, and consistent with the notion that no behavioral measure is a
process-pure reflection of any one underlying mechanism, both performance and thought
measures from the SART (TUTs and <), correlated with multiple LBA parameters: t with
drift variability, nondecision time, and response criterion, and TUT rate with drift
variability, nondecision time, and drift rate. However, as predicted, TUTs were most
strongly correlated with drift-rate variability (higher TUT rate = greater drift-rate
variability). WMC also correlated more strongly (in a negative direction) with drift-rate
variability than with any other LBA parameter, and only its correlation with drift variability
was statistically significant.

Hierarchical regression analyses, presented in Table 9, tested whether drift rate or drift rate
variability would partially mediate the associations between WMC and TUT rate, and
between WMC and t. We had predicted that drift rate variability would be at least as strong
a mediator as would drift rate and, indeed, given the near-zero correlation between WMC
and drift rate (r=.016) it was unlikely that drift rate would be a stronger mediator than
would drift variability. As shown in Table 9, regarding TUT rate, the 3.6% of TUT variance
predicted by WMC was essentially independent of drift rate, but nearly 40% of it was shared
with drift rate variability. Likewise, for <, the 2.5% of < variance predicted by WMC was
independent of drift rate, but approximately 60% of it was shared with drift rate variability.
In short, WMC predicts TUTs and = in large part via its shared variance with drift rate
variability.

As a further test of whether attentional lapses might contribute to the correlation between
WMC and <, we again supplemented our regression analyses with a latent variable analysis.
Figure 6 presents a structural equation model that tested for mediation of the WMC-t
association by two variables that reflect, to some degree, attentional lapses: subjects’ overall
TUT rate (based on subjective self-report) and their drift-rate variability parameter estimate
(based on the quantitative LBA model); the model provided a just-adequate fit to the data
[x2(16) = 51.78, x/df = 3.24, CFl = .97, RMSEA = .076, SRMR = .028] . The WMC factor
was modeled as the variance common to the three complex span tasks, and t factor was
modeled as the variance common to t estimates from SART blocks 2 — 4. We did not model
an “attentional lapse” factor based on the shared variance between TUT rate and drift
variability because, even though they correlated significantly, it is inadvisable to model
latent factors with fewer than three observed measures (Kline, 2005; moreover, drift
variability, but not TUT rate, was derived from the same RT data as the T dependent
variable). Our model did allow TUT rate and drift variability to correlate, however. As
indicated in Figure 6, TUT rate and drift-rate variability both acted as partial mediators of
the WMC-t association, with the full complement of predictor variables accounting for 58%
of the variance in t. Specifically, the WMC x TUT rate indirect path was -.04, p< .01, and
the WMC x drift variability indirect path was —.10, p < .01. Some of WMC'’s prediction of
T, then, resulted from its influence on the experience of attentional lapses. Note, though, that
this mediation was only partial, as the model in Figure 6 fit the data significantly better than
one that eliminated the direct path from WMC to <,  %gifference(1) = 18.71.
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In summary, our primary conclusions from quantitative RT modeling (using the Brown-
Heathcote LBA model) of a long-duration go/no-go task is that individual differences in ©
are correlated more strongly with drift-rate variability than with drift rate (or with other
LBA parameters). That is, as predicted from an attentional-lapse framework, the extent to
which subjects show more skewing of their RT distribution (indicative of occasional,
especially slow responses) seems to be driven to some significant degree by the extent to
which subjects also show increased trial-to-trial variability in the rate at which they
accumulate response-relevant information from imperative stimuli. We suggest, along with
Schmiedek et al. (2007), that one potential source of drift-rate variability is the experience of
occasional attentional lapses. Of course, such lapses may not be the only source of intra-
subject variation in drift rate, but their contribution is supported by our TUT findings, as
well. That is, TUT rate correlated more strongly with drift-rate variability than with any
other LBA parameter (including drift rate), indicating that people who had the most variable
drift rates also experienced the most mind-wandering episodes during the SART. Moreover,
the modest association between WMC and t was substantially — and similarly — mediated by
both drift-rate variability and TUT rate. In contrast to Schmiedek et al. (2007), then, we find
evidence that attentional lapses make some contribution to <, to the worst-performance rule,
and to WMC-related variation in worst performance.

Principal Components Analyses of RT Series

Methods

Using the combined Standard SART data from the current experiment and McVay and Kane
(2009), we conducted a principal components analysis (PCA) to identify intra-individual
patterns of RT change. Our goal, like that of Smallwood, McSpadden, Luus et al. (2008),
was to seek RT patterns that signaled, in advance, the imminent commission of no-go errors,
the experience of TUTS, or both. Recall that Smallwood, McSpadden, Luus et al. found that
RT patterns identified through this PCA method predicted both SART errors and TUTs: a
change from slow to quick responding in the trials leading up to a target or probe predicted
errors, a change from quick to slow responding predicted on-task thoughts, and generally
fast responding across the entire series predicted TUTs occurring without awareness. Here
we attempted to replicate their findings while improving upon their methods. Specifically,
we standardized RTs within subjects (with a z-score transformation), used 20 trials prior to
targets and probes, and compared errors to correct target trials and TUTS to on-task
thoughts, rather than to potentially contaminated baselines (as in Smallwood, McSpadden,
Luus et al.). We also used hierarchical linear modeling (HLM; Raudenbush & Bryk, 2002)
to evaluate differences in the RT patterns leading up to error or TUT trials. The data have a
hierarchical structure in which runs of nontarget trials (Level-1 data) are nested within
subjects (Level-2 data) and are therefore best evaluated with a multilevel approach such as
HLM.

Smallwood, McSpadden, Luus et al. (2008) conducted PCA on their SART RT data from
runs of 12 trials that preceded each target stimulus or thought probe. Our PCA analyses
assessed the 20 non-target trials preceding every target trial, using the combined dataset
from McVay and Kane (2009; N/ = 244) and the present Standard SART sample (V= 142).
The PCA treated each set of 20 trials leading up to a target trial as one data series, so the Ns
we report below represent the number of series, not subjects. Prior to analysis, we excluded
non-target error trials and we standardized RTs for each subject (against that subject’s MRT
for the experiment, thus expressing each RT as a z-score) to eliminate between-subject RT
differences that might mask or distort within-subject RT changes, as they may have in the
Smallwood, McSpadden, Luus et al. data (where RTs were not standardized). Targets were
randomly presented in the SART and so many targets had fewer than 20 trials between their
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appearances; these were not included. PCA analyzes only series without missing values,
resulting here in 3733 series of 20 trials before the appearance of a target.

Results and Discussion

Our first PCA (without rotation) yielded 4 components with eigenvalues greater than 1,
accounting for 65.1% of the total variance; inspection of the scree plot, however, suggested
that 3 components might be more appropriate and also consistent with the PCA solution
from Smallwood, McSpadden, Luus et al. (2008). We therefore re-conducted the analysis to
yield three unrotated components, which together accounted for 59.8% of the variance, and
which are presented in Table 8 (where “7-back” refers to distance from the target trial, from
“20-back” to “1-back”, with “1-back” representing the non-target trial immediately
preceding the target).

Component 1 represents a general RT component, characterized by uniformly positive
loadings across all 7-back trials, and thus indicating that different runs of 20 trials deviated,
as a whole, from a subject’s average RT (with some runs generally faster than average and
others generally slower than average). Component 2 is characterized by inverse loadings for
the beginning and end of the series (i.e., strong positive loadings among trials further back in
the series and strong negative loadings among trials closer to the target), reflecting trial runs
that were characterized by linear change (a speed-up or slow-down) preceding the target
event. Component 3 reflects series with a quadratic pattern of RTs across 7+back trials (i.e.,
RTs getting relatively long and then short as the target approached, or vice versa).

The PCA yielded a score on each of the three components for each of the 3733 RT series.
This component score represented the extent to which each RT series matched the pattern
expressed by the loadings presented in Table 8. For component 1, RT series with positive
scores were slower than the subject’s average and series with negative scores were faster
than average. For component 2, positive scores reflected a speed-up as the target
approached, and negative scores reflected a slow-down; scores of larger absolute magnitude
indicated a steeper slope. For component 3, RT series with positive scores started off slower,
got faster, and then got slower as the target approached, and series with negative scores
started off faster, got slower, and then got faster; again, larger absolute-magnitude scores
represented steeper changes over pre-target trials.

We then used HLM to examine the PCA component scores as predictors of TUTs and target
accuracy. Both TUTs and target accuracy were dichotomous variables (on-task vs. TUT;
error vs. correct), so we used a Bernoulli distribution to evaluate the effects. We first tested
whether any of these RT patterns predicted no-go errors. Figure 7 shows that the mean
scores for all three components differed as a function of whether the RT series resulted in a
commission error or an accurate no-go response to the target. The mean score of component
1 was significantly higher for accurate trials than for error trials, b= .786, SE =.045, {(3729)
=17.453, p<.001, suggesting that subjects’ relatively slower series were followed by better
performance and their faster series were followed by poorer performance. The mean score
for component 2 was significantly higher for error trials than for accurate target trials, 6 =-.
393, SE=.040, #3729)= —9.780, p < .001: When subjects sped up more across trials before a
target, they were more likely to make a commission error, whereas if they slowed down,
they were more likely to correctly withhold their response. Errors trials also had
significantly lower scores on component 3 than did accurate trials, b= .254, SE=.040,
1(3729) = 6.326, p< .001, indicating that when subjects reacted faster at the beginning and
end of the series, as opposed to the middle, they were more likely to commit an error on the
subsequent target (again indicative that a speed-up just before a target predicted a
commission error).
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We next tested whether any of the RT patterns predicted thought content. Analyses of
thought type were based on fewer series (V= 2927) because not all target trials were
followed by thought probes. Here, only the general RT component predicted TUTs (see
Figure 8). The mean score for component 1 was significantly higher for reports of on-task
thinking than for TUTs, =.161, SE=.060, {(2723)=-4.26, p< .001, indicating that series
with generally longer RTs than a subject’s average predicted on-task thoughts. Neither
component 2 scores, b= -.187, SE=.040, #2723)=1.303, p=.193, nor component 3 scores,
b=.007, SE=.038, 1(2723)< 1, p=.853, predicted TUTs.

In summary, and consistent with Smallwood, McSpadden, Luus et al. (2008), the three RT
patterns revealed by our PCA (general relative speed, linear RT change, quadratic RT
change) predicted SART errors: Subjects were more likely to make an error on a target trial
following generally faster-than-average non-target RT series, as well as following non-target
RT series that increased in speed just prior to the target event (either as a linear change or as
the end of a quadratic change with slower RTs during the middle of the series). Only one of
the three time-series patterns, however, predicted TUTS. Subjects were more likely to report
an on-task thought, as opposed to a TUT, following a series of consistently slower-than-
average RTSs. In contrast to the findings from Smallwood, McSpadden, Luus et al. (2008),
changes in non-target RTs preceding a target trial (whether linear or quadratic) did not
reliably predict off-task thinking. We cannot be certain why we did not replicate their
finding that decreasing pre-target RTs precede TUTS, but it may be because half of their
trials came from a SART with a much slower rate of stimulus presentation than that used
here (2500 ms vs. 1250 ms). Perhaps with very slow stimulus trains, RT variation is more
reflective of thought content whereas with faster trains, RT variation is more indicative of
speed-accuracy tradeoff, or yet some other mechanisms.

General Discussion

The three analytic sections of this article assessed: 1) WMC-related differences in the
performance of a standard (go/no-go) versus a vigilance (no-go/go) version of the SART,
and the contributions of TUT experiences to each; 2) the role, if any, of attentional lapses in
producing the worst performance rule and the association between WMC and subjects’
longest RTs, and; 3) the potential for within-subject RT patterns to objectively mark or
predict TUT experiences on-line. In the original experiment presented here, we replicated
the McVay and Kane (2009) finding that individual differences in WMC predict both TUT
rates and performance (accuracy and RT variation) in the standard SART. However, WMC
differences did not emerge in either performance or thought content from the vigilance
SART. We then demonstrated (with the present data combined with those from McVay &
Kane, 2009) that both TUT rate and the drift-variability parameter (from quantitative
evidence-accumulation choice-RT modeling) accounted for significant variance in the t
parameter of individual RT distributions from the standard SART. Moreover, these
subjective (TUT rate) and objective (drift variability) indices of attentional lapses partially
mediated the association between WMC and <. Finally, with our combined dataset, we
partially replicated the Smallwood, McSpadden, Luus et al. (2008) findings that some
within-subject RT patterns predict some measures of interest from the standard SART:
Slower than average RT series predicted accurate responses and on-task thought reports, but
dynamic RT changes preceding targets predicted only accuracy and not thought content.

Mind Wandering and Theoretical Accounts of WMC

A primary goal of this study was to leverage the probed thought report as a tool to assess
attentional lapses as TUT experiences and, thereby, to evaluate theories of WMC variation,
in particular the executive attention theory (e.g., Engle & Kane, 2004; Kane, Conway et al.,
2007; Unsworth & Spillers, 2010) and coordinative binding theory (e.g., Oberauer et al.,
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2007; Wilhelm & Oberauer, 2006). Whereas executive-attention theory argues for the
importance of attention-driven goal maintenance (and, as its failure, goal neglect) to WMC
variation and its predictive power, coordinative binding theory suggests that such attention-
control processes are only weakly or spuriously associated with WMC and that WMC'’s
covariation with other constructs reflects a (non-executive) capacity to simultaneously bind
multiple independent mental representations, such as S-R associations. Our finding that
variation in TUT rate contributed to the WMC x standard SART correlation replicated
McVay and Kane (2009) and supported (along with our drift-variability findings) the
executive-attention theory by demonstrating a contribution of attentional lapses to WMC’s
prediction of task performance. At the same time, this finding seems inconsistent with the
variety of theories denying a role for attention control in WMC variation or covariation with
other constructs (e.g., Colom et al., 2008; Mogle et al., 2008; Oberauer et al., 2007).

Standard Versus Vigilance SART—We designed the present study to go further,
however, in explaining WMC’s association to the standard SART — and, by extension,
WMC’s relation to other tasks requiring restraint of habitual responses in favor of novel
ones (e.g., Long & Prat, 2002; Unsworth et al., 2004). Both here and in McVay and Kane
(2009), failures of goal maintenance could not completely explain the WMC-performance
correlations because WMC was only modestly associated with TUT rate and, furthermore,
TUT rate only partially mediated WMC’s effects. That is, WMC consistently predicted
significant variance in SART accuracy and RT variation independently of mind-wandering
rate. McVay and Kane explained these findings by appealing to dual-process conceptions of
executive control (e.g., Braver et al., 2007; Engle & Kane, 2004). According to such views,
control may be accomplished proactively, in advance of interference or conflict, via goal-
maintenance mechanisms that are vulnerable to disruption by external or internal distractors.
Or, it may be accomplished reactively, in the face of experienced interference of conflict, via
competition-resolution mechanisms that take real time to overcome the inertia of long- or
short-term habit. Both of these mechanisms seem to vary with WMC (e.g., Kane & Engle,
2003), but if TUTs primarily reflect (or cause) goal-maintenance failures, then WMC’s
TUT-independent prediction of performance may represent the contributions of competition-
resolution processes. Our vigilance SART tested this idea by requiring subjects to not
respond to most trials, thus removing the “go” prepotency — and the importance of
competition resolution — from the task. With goal maintenance being the primary control
process left to affect performance, we predicted TUT rate to more fully mediate WMC'’s
prediction of vigilance SART outcomes.

We were wrong. Instead, WMC predicted neither performance nor thought content in this
task. Why? We cannot easily explain it via coordinative binding theory because the standard
and vigilance SARTSs don’t differ in their S-R binding rules. In both tasks, subjects must
learn and maintain the identical, very simple, S-R rule (e.g., “if animal name, press key; if
food name, don’t press”). Where the standard and vigilance SART differ is in the
momentary implementation of that rule, with standard SART being considerably more
difficult, we claim, due to the prepotency to respond that is built over trials and that must be
actively controlled for critical no-go stimuli. With both tasks involving the same S-R
mapping, then, the binding view must make some additional assumptions in order to explain
WMC’s differential prediction of performance in each. For example, the no-go version of
the rule might be somehow more difficult to bind (or learn) than is the go version, or the
mapping is somehow is more difficult to maintain over the course of the no-go task than the
go task. Our study cannot rule out these claims, and so if they are empirically testable, they
are worth investigating further. Nevertheless, we emphasize that coordinative-binding theory
has little to say about TUTs or attentional lapses, other than to claim that they may not be
important to WMC variation (Schmiedek et al., 2007), and so it cannot help explain WMC’s
differential relation to TUTs across the two different SARTS.
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The executive-attention view may also explain the presence of a WMC effect in only
standard SART but also, admittedly, in a post-hoc fashion. We speculate that instead of
merely reducing the demand for the competition-resolution component of executive
attention, the vigilance SART also eliminated subjects’ use of proactive executive control
altogether. Subjects may have adopted a bottom-up attention strategy that allowed
environmental events (i.e., target onsets) to trigger their reactions rather than allocating their
attention proactively to maintain the task goal (Johnson et al. 2007), and so WMC no longer
predicted off-task thinking or task accuracy. Braver et al. (2007) have pointed out significant
disadvantages to proactive control that may encourage subjects to adopt a reactive stance
during some tasks: Proactive control is resource-demanding (and metabolically costly; see
also Gailliot et al., 2007) and it interferes with the automatization process. Based on these
costs, Braver et al. argue, the cognitive system trades off between proactive and reactive
control, and conflict cues must be quite strong and highly predictive in order to initiate
costly proactive processes.

Indeed, null effects of WMC on attention-demanding tasks are not anomalous, and we have
argued elsewnhere that discovering such boundary conditions in the relation between WMC
and “attention” is critical to inductively advancing our understanding of both WMC and
executive control (Kane, Poole, Tuholski, & Engle, 2006; see also Barrouillet et al., 2008;
Redick, Calvo, Gay, & Engle, 2011). Initially, individual-differences research seemed to
suggest that WMC predicted performance in tasks generally thought to require controlled
processing but not in those allowing automatic processing (e.g., Conway & Engle, 1994;
Kane et al., 2001; Kane & Engle, 2000; Unsworth et al., 2004). Subsequent work
demonstrated, however, that even quite difficult tasks requiring top-down control could be
immune to WMC'’s influence, such as many varieties of visual search, including feature-
absence, feature-conjunction, and command search (see Kane et al., 2006; Poole & Kane,
2009; Sobel, Gerrie, Poole, & Kane, 2007). Obviously, the vigilance SART is not a visual
search task, but it has in common with these tasks the need to identify targets amid
presentations of non-targets without the need to withhold prepotent responses or block
distractor processing. Perhaps the restraint of habitual action or the constraint of conscious
focus is critical to a task’s eliciting WMC-related performance differences (Kane et al.,
2006; but see Colflesh & Conway, 2007). Regarding thought content, at least one other
study (a daily-life, experience-sampling study) has shown that lower WMC subjects mind-
wander more than higher WMC subjects when they report trying hard to concentrate on their
ongoing activity, but not when they report little effort to concentrate (Kane, Brown et al.,
2007). It is possible, then, that particular task features, such as the need to actively prevent
commission errors, induce higher WMC subjects into proactive control modes that serve to
combat off-task thinking (see also Smallwood, 2010). In any case, it is clear that future work
on WMC and mind wandering should systematically manipulate a variety of tasks’
executive demands in order to further clarify the boundaries of WMC- and TUT-related
effects on cognition and cognitive individual differences.

WMC, Attentional Lapses, and the Worst Performance Rule—Schmiedek et al.
(2007) and Unsworth et al. (2010) both demonstrated the worst performance rule by
connecting individual differences in WMC to the t parameter from subjects’ individualized
RT distributions. They differed, however, in their interpretation of these results. Unsworth et
al., like many investigators (e.g., Coyle, 2003; Larson & Alderton, 1990), attributed
subjects’ longest RTs to lapses of attention to ongoing task demands and thus argued that
their findings supported the executive attention theory of WMC. Schmiedek et al., in
contrast, argued that < and its covariation with WMC reflected general information-
processing efficiency, rather than an influence of attentional lapses (consistent with
coordinative binding theory); moreover, they backed their claim via formal modeling (& la
Ratcliff et al., 2008; Wagenmakers et al., 2007) and a successful simulation study. We find
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no fault with the Schmiedek et al. methods or analyses, and their simulation results were
compelling as far as they went. Our view, however, is that one can draw the strongest
conclusions about attentional lapses by assessing them, rather than by inferring their
unimportance via null modeling results (where the model includes no parameter that
corresponds to lapses).

When we actually measured attentional lapses via probed thought reports and the drift-rate
variability parameter from the LBA model, we found that TUT rate and drift variability
significantly predicted normal variation in . Of most importance here, both TUT rate and
drift variability also partially mediated the correlation between WMC and <. That is,
individual differences in the subjective experience of attentional lapses, and in the inter-trial
variability in evidence accumulation left in the wake of those lapses, predicted long RTs in a
continuous go/no-go task. Variation in attentional lapses was, moreover, partly responsible
for WMC'’s prediction of long RTs. We should make clear that neither result falsifies the
Schmiedek et al (2007) claim that individual differences in ¢ are driven to some
considerable extent by differences in general information-processing efficiency that might
reflect S-R binding capability, at least in some task contexts (see also Ratcliff et al., 2008).
Our results, however, directly support the claims of executive attention theory (e.g., Kane,
Conway et al., 2007), that WMC’s predictive power derives — to some degree — from its
tapping into variation in attention-control processes involved in the regulation of both
thought and behavior.

We must note, however, that our modeling results differ from previously published reports
on individual differences in RT tasks. In line with Schmiedek et al. (2007), this small but
growing literature converges on the idea that drift rate is especially important to ability-
related individual differences in choice-task performance. First, simulation studies (Ratcliff
et al., 2008; van Ravenzwaaij, Brown, & Wagenmakers, 2011) link drift rate to the worst
performance rule and to the association between intelligence and RT (and RT variability).
Second, empirical work shows that 1Q (as assessed by psychometric tests of matrix
reasoning and vocabulary) correlates significantly and strongly with drift rate, especially in
younger adults (Ratcliff, Thapar, & McKoon, 2010, 2011), with weak to null correlations
with response criterion and nondecision parameters. What might account for our discrepant
findings? We consider two possibilities as most promising.

First, most of the previous studies have considered only drift rate, response criterion, and
nondecision times to be the parameters of interest, and have not sought to model or test for
any role for drift variability in producing ability-related individual differences (although
drift variability is needed by the diffusion model to account for the RT distributions of errors
relative to accurate responses, it and the other within-subject variability parameters are often
not accorded psychological or process-based interpretations). Second, the SART seems to
differ from most choice-RT tasks that have served as the basis for diffusion modeling in
individual-differences studies. It is a highly repetitive task that offered subjects no breaks
over the course of a 45 min session, and it encourages rapid and mindless responding that
seems to elicit both very fast and very slow responses (and so highly variable responding).
Given that evidence-accumulation modeling has been successfully employed with go/no-go
tasks (Gomez et al., 2007), and that LBA modeling yields similar parameter estimates to
diffusion modeling when they are applied to the same data (Donkin et al., 2011), we do not
believe that our findings are idiosyncratic to our modeling methods. Future work will be
necessary, however, to further examine the contributions of drift-rate variability to ability-
related individual differences across different varieties of tasks and subject groups.

WMC and Theoretical Accounts of Mind-Wandering—A current debate in mind
wandering research concerns the role of executive processes, or resources. The Smallwood
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and Schooler (2006) view, along with numerous empirical reports (e.g., Ellis, Moore,
Varner, Ottaway, & Becker, 1997; Forster & Lavie, 2009; Giambra, 1989; McKiernan et al.,
2006; Teasdale et al., 1995) have argued that TUTs consume executive resources. McVay &
Kane (2010) countered these claims with a “control failure x concerns” view, based largely
on individual differences in the propensity to mind-wander and their connection to executive
control. The control failures x concerns view posits that unwanted TUTs during ongoing
tasks reflect a failure to control attention and maintain task goals in the face of interference
from task-irrelevant, concern-related thoughts that are automatically cued by environmental
or mental events. An important hypothesis derived from this perspective is that people with
deficient control capabilities will more often succumb to TUTSs than those with better control
(as will those who have more versus less urgent personal concerns with which to contend).
The resource-demanding view of mind wandering (e.g., Giambra, 1989; Smallwood &
Schooler, 2006), in contrast, makes the opposite prediction. Namely, people with more
executive resources at their disposal should mind wander more than those with fewer. That
is, if mind wandering is resource-demanding, and if ongoing tasks and TUTs draw on the
same resource pool, then people with greater resources should more effectively balance
TUTSs and on-task thinking (and thus, performance).

The current study provides evidence for the control failure x concerns view of mind
wandering (McVay & Kane, 2010). First, WMC correlated negatively with TUT rate during
an attention-demanding task (see also Kane, Brown, et al., 2007; McVay & Kane, 2009; in
press). Second, if mind wandering were resource-demanding, then higher WMC subjects’
performance should be affected to a lesser degree than lower WMC subjects’, as higher
WMC provides more resources to distribute between task performance and TUTS. A re-
examination of data from McVay and Kane (2009; reported in McVay & Kane, 2010) found
that, overall, subjects were less accurate when mind wandering but that the task performance
of high and low WMC subjects were affected to the same degree by TUTs. The current
study replicated this finding: Although subjects were more likely to make a Standard SART
error when they reported a TUT, WMC did not interact significantly with thought report,
signifying that high and low WMC subjects (defined as top and bottom quartile scorers)
experienced the same performance decrement when mind wandering (Ms = .83 vs. .59 for
high WMC and Ms= .74 vs. .57 for low WMC).6

Although our findings seem inconsistent with prototypical resource views of mind-
wandering, Smallwood’s (2010) response to McVay and Kane (2010) provided an
alternative conception of executive “resources” and their consumption during mind-
wandering states. TUTSs, here, occupy the global workspace of consciousness (e.g., Baars,
1988; Navon, 1989a, 1989b). According to workspace theories, modular processing
networks that are specialized for particular functions can be brought under general executive
control when goals or other representations are made globally available to the cognitive
system via consciousness (i.e., reportable experiences). Smallwood’s logic, then, is that; (1)
access to global broadcasting is capacity limited, and; (2) TUTs, as conscious experiences,
occupy the workspace, ergo; (3) TUTs must consume an executive resource. Moreover,
Smallwood argues that this workspace view correctly predicts the all-or-none pattern we
find that experiencing a TUT in the moment should impair performance similarly regardless
of a subject’s executive-control abilities.

61t is also possible that higher and lower WMC subjects are equivalently hurt by TUTs because higher WMC subjects entertain more
complex (i.e., more resource-demanding) thoughts during tasks than do lower WMC subjects (J. Smallwood, personal communication,
October 2010). It would be very difficult to test such a claim, however, and we are skeptical that higher WMC subjects would engage
in thought just complex enough to make their “dual-tasking” cost similar to lower WMC subjects’. It seems to us much more likely
that engaging in off-task thought of any kind induces a cost to ongoing performance that is of similar magnitude for everyone (see also
Smallwood, 2010).
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On one hand, then, Smallwood’s argument jibes with our view that conscious access to
goals is critical to the executive regulation of behavior and thought, and that automatically
cued thoughts about personal concerns may commandeer consciousness and thus thwart
attempts at proactive and reactive control. From this perspective, TUTs do appear to
influence, if not engage, executive mechanisms. On the other hand, we still differ
fundamentally from Smallwood (2010) in our claim that executive-control mechanisms are
primarily important in preventing TUTs from gaining access to the global workspace in the
first place; that is, TUTs can only monopolize the workspace-as-executive-mechanism if
they are allowed by inefficient control processes to intrude into consciousness. Moreover,
executive-control processes are heterogeneous and encompass much more than just the
global workspace (e.g., Botvinick et al., 2001; Braver et al., 2007; Kane & Engle, 2003;
Miller & Cohen, 2001; Miyake, Friedman, Emerson, Witzki, & Howerter, 2000), and so it
would be unwise to characterize TUTs as consuming all or most of some undifferentiated
executive “resource” (for more general concerns about the viability of resource views of
attention, see Navon, 1984; Neumann, 1987).

Objective Markers, and Validity, of Subjective Mind-Wandering Reports

The search for a reliable, objective marker of mind wandering is ongoing. Unfortunately, the
dynamic patterns of changing RTs originally identified by Smallwood, McSpadden, Luus et
al. (2008) did not reliably predict the occurrence of TUTSs in our large dataset that combined
our new data with those from McVay & Kane (2009). Using long pre-target RT series, all
standardized within subjects, we replicated their finding of three principal components. Of
importance, all three of the identified RT patterns predicted target no-go errors (i.e., series
that were generally faster than average and those that changed from relatively slow to
relatively fast); we therefore replicated the Smallwood group’s interesting finding that
impending errors can be predicted well in advance by RT changes. That same within-series
change, from slow to fast, did not reliably predict TUTSs, however. This difference in RTs’
predictions of impending errors versus thought reports further supports our general argument
that errors are not always isomorphic with TUTs and that errors are determined only in part
(or only some of the time) by lapses of thought. In short, theoretical inferences about
thought content cannot reliably be made based on performance patterns alone (see also
Helton et al., 2005, 2010). It seems that further research will be necessary to establish
objective behavioral markers of mind wandering (but for other promising behavioral,
psychophysiological, and neuroimaging findings, see Christoff et al., 2009; Reichle,
Reineberg, & Schooler, in press; Smallwood, Beach et al., 2008; Smallwood et al., 2004;
Smallwood, O’Connor et al., 2007). In the meantime, the thought probe remains a useful, if
subjective, tool for testing the importance of thought content in theoretical discussions of
WMC and executive control.

Indeed, probed reports of TUT experiences have a strong record of validity, as we already
reviewed. The present study provides additional sources of validation, including evidence
that TUT reports did not simply reflect subjects’ reactive, post hoc explanations for their
own performance. For example, if subjects used target-trial performance to determine
whether their mind had wandered ( “Oops, I missed that one, | must have been ming-
wandering™), then target accuracy should have predicted thought reports more strongly than
it did. Although performance varied systematically with thought reports, subjects committed
errors on 38% of trials preceding on-task thought reports (in the Standard SART; similar to
the 34% reported in McVay & Kane, 2009), and responded accurately on 36% of trials
preceding TUT reports (42% in McVay & Kane, 2009); clearly, subjects often reported
thoughts at odds with their performance. Similarly, regarding individual differences, the
significant but non-perfect correlation between TUT rate and d;_indicates that most of the
variance in thought reports was independent of SART accuracy. Furthermore, in both
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McVay and Kane (2009) and the current study, overall TUT rate correlated as strongly with
intraindividual RT variation as with SART accuracy, but only the latter could be easily
monitored and used to influence thought reports. Indeed, our quantitative diffusion-
modeling results also refute the reactivity of TUT reports because the drift-variability
parameter from the LBA model correlated with WMC and TUT reports, and it partially
mediated the WMC-TUT and WMC-< associations: Subjects obviously could not use their
drift-variability parameter to inform their thought reports!

Finally, key differences between subjects’ reports of TUTs and TRI (i.e., evaluative
thoughts about their performance) offer further evidence for thought-report validity.
Although McVay and Kane (2009) did not report analyses of TRI, in re-examining those
data here we note that Standard SART accuracy was similarly low for trials on which
subjects reported TRI (M= .44) as TUTs (M= .42), suggesting that both varieties of off-
task thought hurt performance (versus M = .66 for on-task trials). In the current study, the
Standard SART patterns were similar (TRl Maccuracy = .38; TUT Maccuracy = .36; on-
task accuracy M= .62). At the same time, the latency with which subjects indicated their
thought content to probes was different for TUTs and TRI. Subjects more quickly
categorized their thoughts as being on-task or about their task performance (A% £ SEMs =
2309157 ms vs. 270567 ms for on-task vs. TRI reports) than as being about task-unrelated
topics (TUTs: 3268+80 ms). A re-analysis of the McVay and Kane (2009) data shows a
similar pattern (Ms £ SEMs for on-task thoughts = 2213+60 ms, for TRI = 2261+48 ms, and
for TUTs= 266559 ms). If subjects simply allowed their accuracy to influence their thought
reports, they should have made both TUT and TRI responses (indicative of error) with
similar ease and speed.

Conclusions

The measurement of mind wandering, or TUTSs, within a task contributes significantly to our
understanding of individual differences in WMC and attention control. The negative
correlation between WMC and TUT rate supports the executive-attention theory of WMC,
which claims that a primary factor underlying both tests of WMC and complex cognition
(e.g., reading comprehension, scholastic achievement tests, and Gf tests) is executive
control. Furthermore, our thought-report and evidence-accumulation modeling findings
indicate that lapses of attention contribute to the worst performance rule, whereby subjects’
longest RTs (and the ex-Gaussian t parameter) correlate most strongly with cognitive
ability. More broadly, the apparent impact of off-task thoughts on particular varieties of task
performance demands a closer look at the ways in which thought control and action control
interact to produce goal-directed behavior (see e.g., the hypothesized addition of a
“Supervisory Attention Gateway” to classic models of the Supervisory Attention System;
Burgess, Dumontheil, & Gilbert, 2007; Gilbert, Frith, & Burgess, 2005; Gilbert, Simons,
Frith, & Burgess, 2006).
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Figure 2.

Mean accuracy on target trials, by SART type (Standard, Vigilance), by thought category
(On-task, TUT), across task blocks (N = 284). Error bars represent standard errors. Note.
TUT = task-unrelated thought; OnTask = on-task thought.
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Figure 3.

Response times (RTs) for 100 randomly selected trials for two randomly selected higher
working memory capacity (WMC) subjects (Panel A) and two randomly selected lower
WMC subjects (Panel B) from the Standard SART.
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Figure4.

Ranked reaction times (RTs) for 100 randomly selected trials for two randomly selected
higher working memory capacity (WMC) subjects and randomly selected lower WMC
subjects from the Standard SART; HIWMC = higher WMC subject; LoOWMC = lower
WMC subject.
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Latent variable analyses testing the relations among working memory capacity, TUT rate
(measured across SART blocks 2 — 4), and the RT parameter T (measured across SART

blocks 2 — 4). Circles represent latent variables and square boxes represent observed

variables. Panel A: Confirmatory factor analysis; double-headed arrows connecting latent

variables (circles) to each other represent the correlations between the constructs, and
numbers appearing next to each single-headed arrow represent the loadings for each
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manifest variable (box) onto the latent variable. Panel B: Structural equation model with
TUT rate as a partial mediator of the WMC-= association; single-headed arrows connecting
latent variables with each other are analogous to semipartial correlations between these
constructs. All depicted path coefficients are statistically significant. Note: WMC = working
memory capacity; TUTs = task-unrelated thought rate.
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Figure6.

Structural equation model testing for mediation of the WMC-tau association by two indices
of attentional lapses: TUT rate and DriftVar. Circles represent latent variables and square
boxes represent observed variables. All depicted path coefficients are statistically
significant. Note: WMC = working memory capacity; TUTs = task-unrelated thought rate;
DriftVar = drift rate variability parameter from the linear ballistic accumulator (LBA)
model; Block 2 — Block 4 = SART block 2 — block 4.
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Component scores, by target accuracy, calculated using three-component principal-
components analysis on accurate non-target reaction time (RT) sequences in the Standard

SART (Ngeries = 3427). Error bars represent standard errors.

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2013 May 01.




1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

McVay and Kane

Component Score

0.4

0.3

0.2

0.1

-04

Page 44

m Component1
0 Component2
@ Component3

TASK TRI

Figure8.
Component scores, by thought report, calculated using three-component principal-

TUT

components analysis on accurate non-target reaction time (RT) sequences in the Standard
SART (Ngeries = 2693). Error bars represent standard errors. Note: Task = on-task thought;

TRI = task-related interference; TUT = task-unrelated thought.
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Table 5

Descriptive statistics for RT quintiles and ex-Gaussian parameters for Standard SART (N = 386; including

subjects from McVay & Kane, 2009).

DV M sD
Quintilel 264.05 90.66
Quintile2  353.86 98.78
Quintile 3 421.07 114.42
Quintile4  502.55 134.63
Quintile5 684.91 159.75
K 32552 130.97
[} 81.87 57.49
T 118.78 74.38

Note: SART = Sustained Attention to Response Task ; DV = dependent variable ; quintiles 1-5 are from the ranked non-target RTs from the an,

3rd’ and 4t plock of the SART; p= mean of the Gaussian component; o = standard deviation of the Gaussian component; t = mean and standard

deviation of the exponential component.
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Table 6

Page 50

Correlations of WMC, TUT rate, sensitivity (d; ) with quintile RTs and RT distribution parameters in the
Standard SART (N = 386).

DV WMC  TUT d
Quintile 1 503**  _260™* 758*
Quintile2  135™*  _238™  go4**
Quintile 3 .024 -170™"  523™*
Quintile4 -091  -030  g09**
Quintile5 _o53**  900**  _175%*
B .055 -1837" 432"
- -044 065 012
T -175° 3047 420"

**p <.01

"
p<.05

Note: SART = Sustained Attention to Response Task; DV = Dependent variable; quintiles 1-5 are from the ranked non-target RTs from the an,

Srd, and 4th block of the SART; = mean of the Gaussian component of the ex-Gaussian distribution; o= standard deviation of the Gaussian

component; t= mean and standard deviation of the exponential component; WMC = working memory capacity; TUT = proportion of task-

unrelated thought during the SART; d|_ = SART signal-detection sensitivity measure.
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Table 8

Correlations of WMC, TUT rate, and ex-Gaussian T estimate with cognitive-process parameters derived from
the linear ballistic accumulator (LBA) decision-diffusion model (N = 374).

LBA Parameter WMC TUT T

Drift Rate 016 q16* 089
Drift Variability —132%  279%* 460"
Nondecisiontime ~ -.093  15g** o50**

Response criterion  .054 -055  _q91*

*:

*
p<.01

*
p<.05

Note: SART = Sustained Attention to Response Task; WMC = working memory capacity; TUT = proportion of task-unrelated thought during the
SART; = mean and standard deviation of the exponential component of the ex-Gaussian distribution from the SART.
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Component loadings of RTs (standardized within subjects) for trials 20 to 1 back from a target trial. N

(response-time series) = 3427.

Component loadings

1

2

3

20BACK
19BACK
18BACK
17BACK
16BACK
15BACK
14BACK
13BACK
12BACK
11BACK
10BACK
9BACK
8BACK
7BACK
6BACK
5BACK
4BACK
3BACK
2BACK
1BACK

0.404
0.544
0.575
0.616
0.633
0.653
0.657
0.670
0.669
0.698
0.693
0.702
0.693
0.696
0.688
0.681
0.659
0.644
0.617
0.565

0.364
0.429
0.472
0.477
0.430
0.379
0.300
0.225
0.135
0.060
-0.062
-0.142
-0.209
-0.254
-0.344
-0.393
-0.413
-0.408
-0.395
-0.352

0.366
0.384
0.309
0.209
0.093
-0.045
-0.188
-0.302
-0.369
-0.378
-0.331
-0.281
-0.225
-0.118
-0.004
0.129
0.240
0.311
0.320
0.296
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