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Abstract
High-throughput technology in metabolomics, genomics, and proteomics gives rise to high
dimension, low sample size data when the number of metabolites, genes, or proteins exceeds the
sample size. For a limited class of designs, the classic ‘univariate approach’ for Gaussian repeated
measures can provide a reasonable global hypothesis test. We derive new tests that not only
accurately allow more variables than subjects, but also give valid analyses for data with complex
between-subject and within-subject designs. Our derivations capitalize on the dual of the error
covariance matrix, which is nonsingular when the number of variables exceeds the sample size, to
ensure correct statistical inference and enhance computational efficiency. Simulation studies
demonstrate that the new tests accurately control Type I error rate and have reasonable power even
with a handful of subjects and a thousand outcome variables. We apply the new methods to the
study of metabolic consequences of vitamin B6 deficiency. Free software implementing the new
methods applies to a wide range of designs, including one group pre-intervention and post-
intervention comparisons, multiple parallel group comparisons with one-way or factorial designs,
and the adjustment and evaluation of covariate effects.

Keywords
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1. Introduction
1.1. Overview

High-throughput technology in metabolomics, genomics, and proteomics enables studying
the abundance of hundreds or thousands of metabolites, mRNA molecules, and proteins
(biomarkers) across a range of experimental conditions (e.g., disease states or treatments).
Concentrations of each biomarker can be compared individually with a univariate method
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for local hypothesis testing. The tests collectively lead to multiple comparison problems and
require an adjustment for the inflation of the false positive (Type I) rate. Many
developments have focused on correcting local hypothesis testing on individual variables
[1]. Our objective for the new method was to provide valid and powerful statistical tests for
the global difference on all variables collected in general designs (i.e., allowing for complex
between-subject and within-subject designs). A global test typically has better sensitivity to
a collection of small differences than do local individual tests. When comparing gene
expressions between a treatment group and a control group, a global hypothesis test declares
significance if any subset of genes are differentially expressed between the two groups.

The explosion of the number of variables (biomarkers) gives rise to high dimension, low
sample size (HDLSS) data when the number of variables (e.g., number of metabolites,
mRNA molecules, or proteins) exceeds the sample size. More precisely, we assume
throughout that HDLSS refers to have a finite number of response variables (b) larger in
number than the error degrees of freedom (νe) in a linear model, namely 0 < νe < b < ∞,
with νe and b in any ratio.

Many sets of HDLSS data for metabolomic, genomic, and proteomic variables have been
measured in the same scale and units. Such data may be described as commensurate. A
special case of commensurate data arises when the data consist of repeated measurements
taken on a single variable for an ordered set of several points in time or space. In most
important ways, a common theory applies to the analysis of commensurate and repeated
measures.

Although originally developed in the context of a sample size greater than the number of
variables, the ‘univariate approach’ to repeated measures (UNIREP) remains well defined
for HDLSS global hypothesis testing. The UNIREP statistic is proportional to the ratio of
the traces of the hypothesis and error sums of squares matrices [2, Chapter 3] and hence
remains well defined when the sample covariance matrix becomes singular due to HDLSS.
In this paper, we use analytic and simulation methods to generalize and investigate the
performance of the classic UNIREP methods with HDLSS. We provide valid and accurate
extensions of the UNIREP theory and practice to HDLSS inferences.

1.2. Unbiased tests and invariance
A test is said to be unbiased if the probability of rejecting the null hypothesis is less than or
equal to the target Type I error rate (α) when the null hypothesis is true, and if the
probability of rejection is greater or equal to α when the alternative hypothesis is true. In the
history of the development for hypothesis testing, the property of unbiasedness under the
null hypothesis is typically first sought before the search for good statistical power. For data
with more than one outcome variable, a test must account for the error covariance structure
to control Type I error rate accurately. Study design plays a major role in determining the
structure, as does the choice of contrast matrix defining within-subject comparisons.

Designs for collecting more than one outcome variable can lead to one of the three types of
data: pure multivariate, commensurate data, or repeated measures. Figure 1 depicts the
categorization of the type of multivariate data. Multivariate outcomes encompass both pure
multivariate and commensurate measures. The latter are distinguished by having all
variables measured on the same measurement scale and units. Repeated measures give a
special case for commensurate observations. We aim to provide unbiased tests for HDLSS
repeated measures and commensurate observations that are useful in metabolomic, genomic,
and proteomic studies.
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The appeal of invariance properties has led to their playing a central role in the development
of statistical tests for linear models. HDLSS data greatly complicate the consideration of
invariance. For classic multivariate analysis with more subjects than variables, the
multivariate analysis of variance (MANOVA) methods not only provide unbiased tests
across different error covariance structures, but also are invariant to full-rank linear
transformation (excluding location shifts) of original variables. With HDLSS, all MANOVA
statistics become undefined because of the singularity of the error covariance matrix.
Furthermore, no nontrivial size-α test with affine invariance is possible [3]. Srivastava and
Du [3] and Srivastava [4] considered tests possessing local scale invariance for the analysis
of pure multivariate data.

Our results take advantage of a different form of invariance, namely invariance to
orthonormal transformations. Analytically, the property simplifies derivations by
simplifying covariance structures. Simplified expressions improve computational efficiency
and accuracy, which can be invaluable as the number of variables grow to thousands and
beyond.

1.3. Review of existing high dimension, low sample size methods
Most of the existing methods for HDLSS global hypothesis testing focus on analysis of
multivariate outcomes. Exceptions were the papers of Ahmad et al. [5] for one-sample
designs and Brunner [6] for two-sample designs for modified UNIREP-type statistics in the
analysis of high-dimensional repeated measures. Many other suggestions have been made to
overcome the nonexistence (due to HDLSS) of the error covariance matrix inverse needed in
classical multivariate test statistics. Srivastava [7] proposed an HDLSS multivariate test
based on the Moore–Penrose generalized inverse of the error covariance matrix, and derived
asymptotic null distributions by assuming that both the sample size and the number of
variables go to infinity. Warton [8] used a ridge-regularization approach to shrink
eigenvalues of correlation matrices to create full-rank matrices in computing a Hotelling–
Lawley analog statistic and applied a permutation technique to establish a null distribution.
Dempster [9] and Bai and Saranadasa [10] proposed modified statistics by removing the
inverse sample covariance matrix (nonexistent due to HDLSS) from the Hotelling’s one-
sample and two-sample T2 statistics and derived large sample Gaussian approximations.
Subsequently, Chen and Qin [11] developed a two-sample test that does not require explicit
conditions in the relationship between the sample size and the number of variables.
Srivastava and Du [3] inverted the diagonal matrix of sample variances to compute a form
like the Hotelling–Lawley statistic and assumed that both large sample size and large
number of variables derive an approximate Gaussian distribution. Srivastava and Fujikoshi
[12] proposed a statistic defined as a function of the traces of hypothesis and error sums of
squares matrices and derived a large sample approximation for testing a linear hypothesis in
a multivariate linear model.

Table I summarizes the characteristics (type of HDLSS data and study design) driving the
development and invariance properties of the existing tests. Most of the multivariate
methods are limited to one-sample or two-sample designs. Exceptions are the k-sample
methods by Srivastava [7] and Srivastava and Fujikoshi [12] and the evaluation of covariate
effects by Srivastava and Fujikoshi [12]. Although the multivariate methods may in theory
apply to repeated measures, contrasts of interest for repeated measures designs were rarely
evaluated in terms of the control of the Type I error rate. Ahmad et al. [5] and Brunner [6]
tailored a solution for one-sample and two-sample HDLSS repeated measures designs. In
addition to the lack of global hypothesis testing methods for general repeated measures
designs, the large sample approximations that some methods rely on may not be accurate in
HDLSS designs.
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With HDLSS, none of the existing global hypothesis tests are invariant to nonsingular linear
transformations of the original variables. Some methods are invariant to orthonormal
transformations (as listed in Table I), whereas methods proposed by Srivastava and Du [3]
and Warton [8] are invariant to local scale transformations to accommodate multivariate
outcomes measured in different scales and measurement units. All tests are invariant to a
global scale transformation.

1.4. New univariate approach to repeated measures extension
Unlike the classic UNIREP methods, new methods are developed from the perspective of
having data with more variables than subjects. The dual of the error sum of square matrix
(i.e., the outer not inner product) lies in the heart of our derivations. When the number of
variables exceeds the sample size, the dual matrix becomes a better means for deriving
analytically stable estimates and for facilitating computational efficiency due to its smaller
size and full-rank nature. Computation time for any covariance matrix increases
quadratically with the number of variables. Ahn et al. [13] and Jung and Marron [14] took
advantage of the dual matrix in evaluating asymptotic properties in HDLSS. Our results use
the dual matrix in a different way to derive parameter estimators in finite samples. The new
methods, as extensions of the UNIREP approach to the general linear multivariate model,
account for the correlation of any structure among the outcomes and support a wide range of
study designs, including k-sample (k ≥ 1) comparisons with one-way or factorial designs, as
well as the adjustment and evaluation of covariate effects. One of the proposed tests
coincides with the corrected Huynh–Feldt test (defined in Section 2.1) for simple designs
but outperforms the Huynh–Feldt test in the simulations when a covariate is considered.

The proposed tests are invariant to global scale and orthonormal transformations. The
property allows considering only diagonal error covariance matrices in analytic and
numerical evaluations. As with all UNIREP methods, the new methods do not have local
scale invariance, a feature not relevant for repeated measures or commensurate data.

The rest of the paper is organized as follows. In Section 2, we review the existing UNIREP
methods in the context of HDLSS. In Section 3, we formally define the dual matrix and
derive the new tests. Section 4 includes simulations evaluating and comparing the new
methods to existing competitors with respect to the control of the Type I error rate and
power attained. In Section 5, we apply the new methods to variables from a study of
metabolic consequence of vitamin B6 deficiency. In Section 6, we discuss future research
directions.

2. The univariate approach to repeated measures methods
2.1. The multivariate model and univariate approach to repeated measures tests

Following Muller and Barton [15], we state classic UNIREP tests in terms of the general
linear multivariate model. The approach ensures that all results explicitly cover a wide
variety of useful models, and defines simple expressions for estimates and tests. Table II
summarizes the notation for parameters and constants, adopted from studies of Muller and
Stewart [2] and Muller et al. [16] for the usual case when the sample size is greater than the
number of variables.

The general linear multivariate model Y = XB + E has rows of Y (N × p) and E (N × p),
corresponding to subjects (independent sampling units), and columns of Y and E,
corresponding to repeated measures or multivariate outcomes. Classic assumptions specify a
homogeneous covariance structure (i.e., [rowi (Y)|X] = Σ, i ∈ {1, …, N}) and finite Σ.
Least squares estimation gives B̃= (X′X)−X′Y and Σ̂ = (Y − XB̃)′(Y − XB̃)/νe. The Gaussian
assumption leads to independently and identically distributed row i(E)′ ~  (0, Σ),
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equivalently E ~ (0, IN, Σ) for a matrix Gaussian distribution, as defined by Muller and
Stewart [2, Chapter 8]. The three parameters give the expected value matrix, the covariance
among rows, and the covariance among columns. In turn, B̃ ~ [(X′X)−X′XB, (X′X)−, Σ],
and νeΣ̂ ~ (νe, Σ) for a central Wishart distribution with degrees of freedom νe and scale
parameter Σ [2, Chapter 10].

The multivariate general linear hypothesis covers many tests, including Hotelling’s T2 for
one or two samples, repeated measures and MANOVA, multivariate regression,
discriminant analysis with two or more groups, and canonical correlation. The hypothesis
regarding the secondary parameters may be stated as H0: Θ = CBU = Θ0. A set of regularity
conditions is required to define estimable and testable Θ: rank(C) = a ≤ q, C = C(X′X)−(X
′X) and rank(U) = b ≤ p. Both least squares and maximum likelihood estimation methods
give Θ̂ = CB̃U.

The UNIREP test statistic is proportional to the ratio of the trace (diagonal sum) of the
hypothesis sum of square matrix Sh = (Θ̂ − Θ0)′M−1(Θ̂ − Θ0) = Δ̂ to the trace of error sum
of square matrix Se = νeU′Σ̂U = νeΣ̂*, that is, tu = [tr(Sh)/a]/[tr(Se)/νe]. Box [17, 18] and
Greenhouse and Geisser [19] gave an F distribution to approximate the distribution of tu in
terms of the sphericity parameter ∊:

(1)

The parameter ∊ (1/b ≤ ∊ ≤ 1) quantifies the spread of population eigenvalues. Perfect
sphericity requires ∊ = 1, which occurs with all eigenvalues equal. Minimal sphericity has ∊
= 1/b, which occurs with one nonzero eigenvalue.

The four classic UNIREP tests all use the Box F approximation but differ in the value
chosen for ∊, which discounts the degrees of freedom. A conservative test uses the fixed ∊l =
1/b, the lower bound of ∊, whereas the original test uses the fixed ∊u = 1, the upper bound of
∊. With sphericity, the ∊u-adjusted test is size α and uniformly most powerful (among
similarly invariant tests). The other two widely used tests use the observed data to estimate
∊. The ∊̂-adjusted test reduces degrees of freedom by the maximum likelihood estimator of

∊, namely . In seeking an approximately unbiased estimator, Huynh
and Feldt [20] and Huynh [21] used a ratio of unbiased estimators, namely ∊̃0 =(Nb∊̂ − 2)/
[b(N − G − b∊̂)], for G-sample comparisons. Lecoutre [22] corrected an error in ∊̃0 with ∊̃ =
[(N − G + 1) b∊̂ − 2]/[b(N − G − b∊̂)] for the case with G ≥ 2. The fact that ∊̃ may exceed the
upper bound of ∊ leads to using ∊̃r = min (∊̃, 1) and the ∊̃r -adjusted test for designs with one
between-subject factor. Gribbin [23] generalized the results to cover general designs with
any number of between-subject factors and covariates. The order of the degrees of freedom
multipliers, ∊l ≤ ∊̂ ≤ ∊̃r ≤ ∊u, leads to the Type I error rate and power following the same
order and p-values in data analysis having the reverse order.

2.2. Univariate approach to repeated measures properties with high dimension, low
sample size

The classic UNIREP theory was developed in the context of a sample size greater than the
number of variables. Allowing more outcomes than subjects (HDLSS) implies more
contrasts within subject than error degrees of freedom: b > νe. As a result, the density of the
hypothesis error covariance matrix estimate Σ̂* = Se/νe does not exist, and a direct likelihood
approach becomes unavailable. Throughout the paper, we assume that the rank of the design
matrix X does not exceed the sample size, leading to fewer contrasts between subjects than
error degrees of freedom: a < νe.
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The distributional properties and performance of the classic UNIREP methods with HDLSS
outcomes have not been examined in detail. Therefore, we present new HDLSS analytic
results and their proofs in the Appendix. Theorem 1 gives the invariant distributional forms
for the hypothesis sum of square matrix Sh = Δ̂ and error sum of square matrix Se = νe Σ̂*.
Both b × b matrices follow a Wishart distribution but become singular with HDLSS (a < νe
< b), that is, rank (Sh) = a and rank(Se ) = νe. The singularity, however, has no impact on the
distributional form for the UNIREP test statistic tu but does affect the estimation of the
sphericity parameter, ∊. Theorem 2 provides the exact distributional form for tu and its
invariant properties for HDLSS. The subsequent corollary validates the use of the Box
approximation (in Equation (1)) with HDLSS.

The generalization of the Box approximation to HDLSS leads to considering a variety of
classic UNIREP degrees of freedom multipliers. The ∊̂-adjusted and ∊̃r -adjusted tests were
developed to achieve a middle ground between the overly conservative ∊l -adjusted test and
the overly liberal νu-adjusted test. Maxwell and Arvey [24] conducted HDLSS two-sample
comparisons with N = {10, 12} and p = 13. In their simulations, the ∊̂-adjusted test was very
conservative especially when the population eigenvalue pattern was nearly spherical (∊ = 1).
In contrast, the original Huynh–Feldt test (without Lecoutre’s correction) was liberal
especially when the population eigenvalue pattern was far from sphericity. Our HDLSS
simulations in Section 4.2 involve a more complex design with a three-sample comparison
and a covariate.

3. New methods for high-dimensional global testing
3.1. The dual matrix

The result that the Box F approximation in Equation (1) remains valid with HDLSS leads to
an opportunity for improving estimation of ∊. By the definition of ∊ in Table II, the
parameter ∊ is a nonlinear function of the eigenvalues of the hypothesis error covariance
matrix Σ*. We have tailored our estimation approach to the HDLSS setting by considering a
full-rank dual matrix for estimating functions of eigenvalues of Σ*, and thus ∊.

With HDLSS (b > νe), the error sum of square matrix Se = νeΣ̂* becomes singular and in
turn gives poor estimates of eigenvalues of Σ*, the traditional path to estimating ∊. In
contrast, the dual of the error sum of square matrix, Sd as defined in Equation (2), shares the
nonzero eigenvalues of Se, is full rank with HDLSS, and provides a better path to estimating
∊. Ahn et al. [13] used the dual matrix to study the geometric presentation of HDLSS data,
whereas Jung and Marron [14] took advantage of the dual matrix to investigate the
asymptotic behavior of the principal component directions when the variable dimension is
large.

The error sum of square matrix can be expressed as the inner product of hypothesis variables
Yu = YU projected into the complement of the covariate space, namely

. Here, L0 (N × νe) is

orthonormal of rank νe, , and  is νe × b. The dual
matrix is the νe × νe outer product of Y0, defined as

(2)

Through the singular value decomposition of Y0, it can be shown that the two matrices Se
and Sd have the same nonzero eigenvalues. Hence, either can be used to estimate functions
of eigenvalues of Σ*, including the parameter ∊.
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Using Sd with HDLSS data has two advantages. First, the full-rank nature of Sd with b > νe
allows deriving analytically stable estimates of ∊ and improving the F approximation for the
null distribution of the UNIREP statistic. For Gaussian data, properties of the elements of Sd
can be expressed in terms of summary functions of the eigenvalues of Σ*. The summary
functions are directly estimable and in turn provide all of the building blocks needed to
estimate ∊. Properties of the elements of Se, in contrast, are expressed in terms of complex
functions of the eigenvalues of Σ*, which are not directly estimable given that the
eigenvalues themselves are not estimable with HDLSS.

The second advantage of using Sd with HDLSS data is computational efficiency. When the
number of variables grows considerably greater than the sample size, computing Sd is much
more computationally efficient than computing Se. For example, with νe = 20 and b = 1000,
computing Se (with 500,500 unique values) requires about 2400 times the time needed for
computing Sd (with 210 unique values). In the simulation examining the performance of
classic UNIREP tests, it took about 9.5 h to complete the 90 HDLSS conditions (b ∈ {64,
256, 1024}, νe ∈ {4, 8, 16}, α ∈ {0:01, 0:05}, and five eigenvalues patterns) for
calculations based on the dual matrix and more than 600 h for calculations based on the
high-dimensional error sum of square matrix.

3.2. New tests for high dimension, low sample size
The analytic results in the Appendix provide the exact distribution of the UNIREP test
statistic with HDLSS. The exact distribution depends only on the dimensions of the problem
and λ = {λk}, the b eigenvalues of Σ*. The unknown nature of λ disallows computing the
exact distribution in data analysis.

The Box F approximation has great appeal in that it accounts for differences in covariance
pattern by directly using ∊ = f(λ) and does not require knowing individual values of λk. As
can be seen from consideration of the characteristic function and results in the Appendix, the
approximation provides second-order accuracy for approximating the distribution function.
In the practice of data analysis, ∊ remains unknown and must be estimated.

For ∊ = b−1τ1/τ2, obtaining unbiased estimators for the numerator  and the

denominator  leads to an estimator of ∊, namely b−1τ̂1/τ̂2 with E(τ̂1) = τ1 and
E(τ̂2) = τ2. Matching moments of the dual matrix Sd provides a means to derive estimators
that are valid with HDLSS. For Gaussian data, Sd is a weighted sum of identically and
independently distributed Wishart matrices. Each Wishart has one degree of freedom and
identity scale matrix, while the weights equal the eigenvalues of Σ*. Theorem 3 contains
explicit expressions and the first two moments of elements of Sd. Matching the common

variance of diagonal elements  and the common variance of off-diagonal

elements  allows deriving the unbiased estimator

. In turn,  is
an unbiased estimator of τ1. As a result, a new estimator of ∊ is based on ∊̃D0 = b−1 τ̂1/τ̂2.
With some algebra, it can be shown that ∊̃D0 = [(νe + 1) b∊̂ − 2]/[b(νe − b∊̂)] and reduces to
∊̃ in the special case for designs considered by Lecoutre [22]. The fact that ∊̃D0 may exceed
1.0 leads to using ∊̃D1 = min (∊̃D0, 1).

An improvement over ∊̃D1 may be achieved by adjusting for the inversion of τ̂2 in ∊̃D1. For
νa = (νe − 1) + νe (νe − 1)/2, the approximation (τ̂2 · νa/τ2)1/2 ~ χ2(νa) gives
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 (on the basis of the second moment of a reciprocal chi-

square random variable; [25, Equation 18.8]). Clearly, . The adjustment

gives a second estimator defined as  to
incorporate truncation, with∊̃D2 ≤ ∊̃D1.

We define test T1 by using ∊̃D1 and test T2 by using ∊̃D2 to estimate ∊ in the Box F
approximation with ab∊ numerator and νe b∊ denominator degrees of freedom for the
distribution of the UNIREP statistic. Test T1 coincides with the ∊̃r -adjusted test (the
corrected Huynh–Feldt test) when there is only one between-subject factor and no covariate.
The order of the new degrees of freedom multipliers, ∊̃D2 ≤ ∊̃D1, leads to the Type I error
rate and power following the same order, T2 ≤ T1, and p-values in data analysis in the
reverse order.

The two new tests T1 and T2 are invariant to global scale and orthonormal transformations.
The properties allow diagonalizing the hypothesis error covariance for analytic and
numerical explorations. As extensions of classic UNIREP methods, they do not have local
scale invariance, a feature not needed for repeated measures or commensurate data.
Simulation results in Section 4 support the conclusion that the new methods give robust
control of the Type I error rate for HDLSS three-sample comparisons with a covariate, non-
HDLSS two-sample comparisons, and HDLSS one-sample and two-sample comparisons.
Furthermore, the control of the Type I error rate was consistent across patterns of the
hypothesis error covariance structure Σ*. The classic UNIREP tests failed to control the
Type I error rate, except at boundary conditions, for samples as small as 9 when a covariate
was present.

4. Simulations
4.1. Simulation methods and design

A series of simulations helps evaluate the performance of T1 and T2 and also compare them
to existing UNIREP and HDLSS specific tests. We conducted all computations in SAS/
IML® (SAS Institute, Inc: Cary, NC)[26]. We used the SAS Normal function to generate an
N×b matrix of pseudorandom Gaussian data. The property of orthonormal invariance as
stated in Theorem 2 allows assuming, without loss of generality, Σ* = Dg (λ) and λ = [λ1,
…, λb]′. For k ∈ {b, b − 1, …, 1}, λk = (b − k + 1)π, with subsequent normalization to
achieve λ = 1. The parameter π dictated the spread of λk values, with π = 0 corresponding
to λk ≡ 1/b (giving ∊ = 1, sphericity) and larger values of π giving more deviation from
sphericity (∊ ↓ 1/b). A three-way complete factorial design was adopted with π varied to
specify a wide range for ∊. Other factor levels were error degrees of freedom νe and the
number of hypothesis variables b. For HDLSS three-sample comparisons with a covariate 
~ N(0, 1), νe ∈ {6, 27}, and b ∈ {64, 256, 1024}, with b > νe. For non-HDLSS two-sample
comparisons, νe ∈ {32, 64, 128}, and b ∈ {4, 8, 16}, with b < νe. Lastly, for HDLSS one-
sample and two-sample comparisons, νe ∈ {4, 8, 16}, and b ∈ {64, 256, 1024}. The
simulation design for ∊ estimation expanded the simulation design by Ahmad et al. [5].
Targeted Type I error rate was α = 0.05 or α = 0.01. For each condition, empirical Type I
error rate was tabulated for 100,000 replications that provide a 95% confidence interval half-

width of  around α̂ = 0.05.

4.2. High dimension, low sample size three-sample comparisons with a covariate
We conducted simulations to compare the proposed tests with the four classic UNIREP
tests: the ∊u-adjusted test for using the upper bound of ∊; the ∊̂-adjusted test for using the
maximum likelihood estimator of ∊; the ∊̃r -adjusted for using a ratio of unbiased estimators
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∊̃r ; and the ∊l -adjusted test for using the lower bound of ∊. The simulation design involved
a continuous covariate for three-sample problems, a condition in which the proposed test T1
is analytically different from the ∊̃r -adjusted test. Table III lists empirical Type I error rates
× 100 for targeted Type I error rates of α = 0.05. When the sphericity parameter ∊ is known,
the F approximation provided excellent, although not perfect, control of the Type I error rate
across the combinations of sample size, number of variables, and covariance structure. The
∊l -adjusted and ∊̂-adjusted tests were very conservative except when the population
eigenvalue pattern was far away from sphericity with ∊ near the lower bound (∊ = 1/b). The
conservatism increased as the ratio of sample size to the number of variables became smaller
and as ∊ increased. The ∊̃r -adjusted test also gave a conservative Type I error rate except
when ∊ was very small or when the sample size was sufficiently large (i.e., νe = 27 for N =
30, and b ∈ {64, 256}). In contrast, the ∊u-adjusted test greatly inflated the Type I error rate
except with sphericity. The ∊u-adjusted test is exactly of size α when ∊ = 1 because the Box
F approximation becomes exact with sphericity.

The new test T1 kept the Type I error rates at or above the target except when ∊ = 1
(homogeneous eigenvalues for the hypothesis error covariance Σ*), whereas the new test T2
in general kept the Type I error rates at or below the target. The test-size accuracy of both T1
and T2 improved as sample size increased regardless of the number of variables and the
spread of population eigenvalues. Test T2 will be preferred by data analysts willing to accept
some conservatism to reduce any liberality in hypothesis testing.

Table IV lists the empirical means of the sphericity estimates to allow comparing the new
and existing estimators of ∊. The two new estimators, ∊̃D1 and∊̃D2, used in tests T1 and T2,
respectively, on average provided estimates much closer to the true values, whereas the
classic estimators were very biased except at boundary conditions. The ∊u-adjusted test has
unbiased estimation of the sphericity parameter only when ∊ = 1. The ∊l -adjusted, ∊̂-
adjusted, and ∊̃r -adjusted tests use unbiased sphericity estimators only when ∊ = 1/b.

4.3. Non-high dimension, low sample size two-sample comparisons
We also examined the performance of the proposed tests, which was compared with that of
the ∊̂-adjusted test with low-dimensional data, that is, when the sample size exceeds the
number of variables. Table V lists empirical Type I error rates × 100 for a target Type I error
rate of α = 0.05 for νe ∈ {32, 128}, and b ∈ {4, 16}. We obtained similar results for νe = 64
or b = 8, which were omitted for the sake of brevity. Although derived for more variables
than subjects, the new tests T1 and T2 outperformed the ∊̂-adjusted test except when ∊ was
small. Both T1 and T2 slightly inflated the Type I error rates when ∊ = 1 or ∊ = 1/b. Overall,
T2 provides control of the Type I error rate as good as or better than T1 except when
sphericity held. Test T1 coincides exactly with the ∊̃r -adjusted test for non-HDLSS two-
sample comparisons.

4.4. High dimension, low sample size one-sample comparisons
We conducted simulations for one-sample problems to compare the proposed tests with the
test of Ahmad et al. [5], denoted as TAWB. In our notation, Ahmad et al. [5] required a = 1 to

define . Their chi-square approximation leads to (s1/s2)TAWB ~
χ2(s1/s2) as {[N/(N − 1)] s1/s2 TAWB ~ χ2 {[N/(N − 1)s1/s2]} with

, and Yui the ith row of
Yu for i ∈ {1, … N}. Table VI lists empirical Type I error rates × 100 for targeted Type I
error rates of α = 0.05 and α = 0.01. In general, TAWB, which applies only to one-sample
problems, had a good control of the Type I error rate except when both the sample size and
∊ are very small. Test T1, coincided exactly with the ∊̃r -adjusted tests for one-sample

Chi et al. Page 9

Stat Med. Author manuscript; available in PMC 2013 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



comparisons and kept the Type I error rates at or above the target except when ∊ = 1,
whereas T2 kept the Type I error rates at or below the target. With a very small sample, for
example, N = 5 (νe = 4), T2 could be rather conservative. The test-size accuracy of the new
test T1 improved as sample size increased regardless of the number of variables and the
spread of population eigenvalues. With N > 9 (νe = 8), test T2 was preferable if slight
conservatism was in favor over liberalism in hypothesis testing.

Table VII lists summary statistics of the ∊ estimators, ∊̃D1, ∊̃D2, and ∊̃AWB, used in test T1,
T2, and TAWB, respectively. Ahmad et al. [5] defined ∊̃AWB = [N/(N − 1)]s1/(bs2) to
estimate the sphericity of population eigenvalues. The simulation design expanded
simulations by Ahmad et al. [5] for compound symmetry (CS) and autoregressive (AR)
hypothesis error covariance structure Σ* with νe ∈ {4, 8, 16}, b ∈ {64, 256, 1024}, and ρ =
0.5 for CS, and ρ = 0.6 for AR. Overall, means of all three estimates were above the true ∊
regardless of the covariance structure and data dimensions; however, as sample size
increased, biases decreased. In most cases, ∊̃D2 gave the least biases except for AR
covariance and νe ∈ {4, 8}. The fact that ∊̃AWB has no adjustment for truncation for the
upper and lower bounds of ∊ led to some improper values of ∊̃AWB, which in turn might
affect the performance of TAWB.

4.5. High dimension, low sample size two-sample comparisons, Type I error, and power
We also simulated two-sample problems to compare the proposed tests with the tests of
Srivastava and Fujikoshi [12] and Srivastava and Du [3]. The simulation assumed two

groups of equal size. For t1 = tr(Se)/bνe, , and

, Srivastava and Fujikoshi [12] defined . If
νe → ∞ and b → ∞, then TSF follows a standard Gaussian distribution. Srivastava and Du
[3] used the diagonal vector of Σ̂*, ν = {〈Σ̂* 〉 j,j to define R = [Dg (ν)−1/2 Σ̂*Dg (ν) −1/2 and
full rank Σ̂*ν Dg (ν). If νe and b → ∞, then TSD = t*n/(2t*d)1/2 has an asymptotically
standard Gaussian distribution with t*d = (tr(R2) − b2/νe)(1 + tr(R2)/b3/2, N1 and N2 are the

sample sizes of the two groups, and .

Table VIII lists empirical Type I error rates × 100 for targeted Type I error rates of α = 0.05
and α = 0.01. In most cases, the two new tests T1 and T2 had better control of Type I error
rate than the existing tests TSF and TSD, except for small samples leading to νe = 16 when
compared with TSF. Test TSF consistently inflated the Type I error rates, whereas TSD
largely inflated the Type I error rates except when νe = 16 and b ∈ {256, 1024}. In general,
the test-size accuracy of TSF and TSD improved as either the sample size or the number of
variables increased, which reflected the asymptotic properties of the TSF and TSD
approximations requiring both the sample size and number of variables to be large. Test T2
always gave smaller Type I error rates than T1, with the difference in performance
diminishing as the sample size increased. When α = 0.01, T2 gave better control of Type I
error rate than T1 in all cases except when sphericity (∊ = 1) was held. With sphericity, T1
consistently outperformed T2.

We also simulated data under the alternative hypothesis that a proportion of the variables
with the largest variances have means greater than zero. Because statistical power is a
function of Type I error rate, fair power comparisons between the new test and the existing
test require adjustments for an equal control of the Type I error rate. At an α = 0.05 level,
we sorted and computed the 95th percentile of the empirical p-values for each condition and
test. Figure 2 summarizes the empirical powers based on controlling the Type I error rates to
α. With the adjustments for equal Type I error rate control, the new tests T1 and T2 had very
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similar power patterns as the existing test TSF, and all three clearly outperformed TSD. The
fact that T1, T2, and TSF were derived from the UNIREP approach may be the key of their
success. We note that despite the comparable power of TSF, the inflation of the Type I error
rate (Table VIII) as a result of the asymptotic Gaussian approximation makes TSF less
attractive in practice.

5. The vitamin B6 study
Although low vitamin B6 nutritional status increases risk for cardiovascular disease and
stroke, the mechanism remains unknown. A study was conducted to assess the metabolic
consequences of marginal deficiency of vitamin B6, a common status in the USA. After
testing to verify nutritional adequacy for the major vitamins affecting one-carbon
metabolism, 13 healthy participants consumed a diet low in vitamin B6 for 4 weeks to
achieve marginal deficiency of vitamin B6. Blood samples and tracer infusion procedures
were conducted before and after the vitamin B6 depletion. The data contained static
concentrations of 19 amino acids, all measured in units of μmol/L. The goal was to identify
metabolic features responsive to marginal deficiency of vitamin B6.

Missing data led to analyzing measurements from 12 subjects. We logarithmically
transformed all 19 metabolic measures to meet the assumptions of Gaussian distribution and
homogeneity between subjects and then computed pre–post differences. For a test of a zero
difference in pre–post profile, test T1 gave a p-value of p ≈ 2.7 × 10−8, and T2 gave p ≈ 7.0
× 10−7, with both implying significant change in metabolic profile after vitamin B6
depletion at α = 0.05. The tests of Srivastava and Fujikoshi [12] and Srivastava and Du [3]
also gave p-values of less than 10−7 supporting significant change. If univariate paired t -
tests were used for each of the 19 measures, a Bonferroni correction requires a significance
level of 0.05=19/0.0026 for each test. Only one measure achieves significance with the
correction.

In addition to examining changes in metabolic profile after vitamin B6 depletion, scientists
were also interested in knowing if metabolic changes as a whole were affected by the change
in plasma pyridoxal 5′-phosphate (PLP) concentration, the indicator for vitamin B6 status.
Vitamin B6 in the form of PLP acts as coenzyme in many pathways of amino acid
metabolism. By incorporating PLP change as a covariate, test T1 gave a p-value of 0.1393,
T2 gave 0.1492, and the test of Srivastava and Fujikoshi [12] gave 0.2489, all suggesting
that changes in static measures after vitamin B6 depletion were not significantly associated
with the PLP change.

A free SAS/IML® program LINMOD (visit http://www.health-outcomes-policy.ufl.edu/
muller/) implements the new method and was used for the example analysis. The software
supports a feature not available elsewhere that is needed for the example analysis, a
UNIREP test of the MANOVA hypothesis (U = Ib). The example corresponds to a one-
sample Hotelling’s T2 test of the overall differences.

6. Discussion
When high-throughput technology generates data with more variables than subjects, the
UNIREP approach becomes a natural choice for global hypothesis testing of repeated
measures or commensurate data because it does not require inverting the sample covariance
matrix. However, classical UNIREP tests fail to control the inflation of false positive
inference (Type I error rate) in HDLSS settings except when all variation concentrates on
one variable or spreads equally across all variables (sphericity) or when the study design
involves only one between-subject factor.
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We provided new analytic results. We proved that the invariance properties of UNIREP test
remain true when the number of variables exceeds the sample size. We derived the exact
distribution of the UNIREP test statistic with HDLSS. We also validated the use of the Box
F approximation in calculations about the population. The invariance properties and the dual
matrix allowed developing new and accurate test approximations, and greatly improved
computational speed and accuracy for HDLSS.

We derived the new tests T1 and T2 from second-moment properties of the dual matrix.
They outperform all existing tests in one of two ways. First, both tests provide (somewhat
differently) control of the Type I error rate in any combination of finite variable dimension
and sample size, with or without HDLSS. In contrast, existing methods available for some
particular cases can have inflated Type I error rate when sample size is very small. After
adjusting for the control of Type I error rate, the new tests have better statistical power than
the existing tests, at least for the limited cases considered. Second, the new tests apply to all
the special cases covered by the direct competitors. More generally, the new tests apply to
any general linear multivariate hypothesis with more outcome variables than subjects, and
fewer between-subject contrasts than subjects. Applications include one group pre-
intervention and post-intervention comparisons, multiple parallel group comparisons with
one-way or factorial designs, and the adjustment and evaluation of covariate effects. All
existing tests we know of have sample size or hypothesis generality limits. We prefer test T2
over test T1 because it avoids being too liberal in controlling Type I error rate.

The current results open the door to extensions in future research. As described by Muller
and Barton [15], random critical values, such as the ones used by T1 and T2, require special
treatment in developing power and sample size methods. A more extensive simulation will
allow in-depth investigation of the power properties of the new and existing tests.

Given an overall significant global test such as T1 or T2, step-down tests may be desired to
identify individual variables that are important. The Type I error control of the traditional
multiple comparison techniques from UNIREP methods, for example, Scheffé and Tukey
techniques, should be inherited as long as the adjustments associated with the critical value
have been determined by the new tests (T2 and T1). It will be interesting to compare step-
down power with competitors developed for HDLSS, especially methods related to the false
discovery rate [1].

Properties inherited from multivariate linear models ensure that the new tests provide
analysis methods for a useful class of linear mixed models [16]. The relationship suggests
that extensions to allow for missing data or time-varying covariates may be available with
additional research.

Extending the approach to allow accurate inference with non-Gaussian data provides another
direction for future work. In some cases, the Box–Cox transformation approach allows
eliminating the problem. For example, metabolomic measures of concentration are typically
log-normal. More generally, rank or permutation approaches may appeal as described by
Bathke et al. [27].
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APPENDIX A

Theorem 1
For the general linear multivariate model Y = XB + E, the following are true for b ≤ νe and b
> νe (HDLSS). (i) Maximum likelihood estimation gives Θ̂ = CB̃U ~ (CBU, M, Σ*) with
B̃ = (X′X)−X′Y, M = C(X′X)−C′, and full rank M if rank(C) = a ≤ q = rank(X). (ii) With Σ̂ =

Y′[IN − X(X′X)−X′]Y and , the hypothesis sum of square
matrix Sh = (Θ̂ − Θ0)′M−1(Θ̂ − Θ0) ~ ( ) (a, Σ*, Ω) and the error sum of square matrix Se
= νeU′Σ̂U ~ ( ) (νe, Σ*, 0) are mutually independent and Wishart distributed. (iii) If a ≥
b, then Sh is sample-nonsingular and otherwise sample-singular. If νe ≥ b, then Se is sample-
nonsingular and otherwise sample-singular.

Proof
(i) Assuming that E ~ (0, IN, Σ) gives Y ~ (XB, IN, Σ). For known and fixed X, B̃ = X
′X)−X′Y implies that B̃ ~ ( ) [(X′X)−X′XB, (X′X)−, Σ] or B̂ ~ [B, (X′X)−1, Σ] for
rank(X) = q. For full rank C and U, and C(X′X)−X′X = C, Θ̂ = CB̃U ~ (CBU, C(X′X)−C
′, Σ*. (ii) Without loss of generality, Θ0 = 0 [2, Theorem 16.15]. Both Sh and Se are
multivariate Gaussian quadratic forms. For Yu = YU ~ (XBU, IN, Σ*), Ah = X(X′X)−C

′M−1C(X′X)−X′ and , and Ae = IN − X(X′X)−X′ and . Linear
model and quadratic form results guarantee idempotent Ah of rank a, idempotent Ae of rank
νe, and AhAe = 0, which implies independence of multivariate Gaussian quadratic forms, for
any rank of Ah and Ae [2, Theorem 10.8]. Idempotence and matrix Gaussian distributions

give Sh ~ ( ) (a, Σ*, Ω0) and Se ~ ( ) ( νe, Σ*, 0) with . (iii) For
full rank Σ*, sample singularity occurs when the Wishart dimension exceeds the degrees of
freedom.

Theorem 2
(i) The UNIREP test statistic tu = [tr(Sh)/a]/[tr(Se)/νe ] is invariant to orthonormal
transformation of columns of U. (ii) The random components of the numerator and the
denominator of tu are independent weighted sums of independent chi-square random
variables. Under the null hypothesis, for independent ykh ~ χ2(a) and yke ~ χ2(νe),

, and . (iii) The distribution function of tu can be
expressed exactly as
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(3)

Proof
(i) For WW′ = Ib, replacing U by UW gives the statistic tu* = [tr(W′ShW)/a]/[tr(W′SeW)/

νe ] = [tr(ShWW′)/a]/[tr(SeWW′)/νe] = [tr(Sh)/a]/[tr(Se)/ νe] = tu. (ii) Matrices 

and  are multivariate quadratic forms in matrix Gaussian Yu = YU and follow
Wishart distributions [2, Definitions 10.1 and 10.2]. As noted earlier, Ah = X(X′X)−C
′M−1C(X′X)−X′ and Ae =IN − X(X′X)−X′ lead to AhAe = 0, which in turn give
independence of Sh and Se and imply independence of tr(Sh) and tr(Se). For λ, the b × 1

vector of eigenvalues of full rank Σ*,  and  with
independent random variables ykh ~ χ2(a, ωkh) and yk ~ χ2(νe), for ωkh the kth diagonal

element of  [28]. Under the null hypothesis, ykh ~ χ2(a). (iii)
As in the study by Coffey and Muller [29],

(4)

Corollary
Under the null, Satterthwaite’s approximation gives (i) tr(Sh)/tr(Σ*) ~χ2(ab∊) and (ii) tr(Se)/
tr(Σ*) ~ χ2(νe b∊). (iii) In turn, Box [17, 18] approximation in Equation (1) applies, namely
Pr {tu ≤ f0} ≈ Pr {F(ab∊, νe b∊) ≤ f0}. (iv) The Box approximation exactly matches two
moments of the numerator of tu and two moments of the denominator of tu [30]. Also,
Equation (4) allows concluding that the approximation provides a two moment match to the

generalized quadratic form  with Pr {tu ≤ f0} = Pr {Q ≤
0}. Hence, the Box approximation is a second-order approximation for the corresponding
characteristic function (and therefore distribution function).

Theorem 3
(i) The dual matrix is a weighted sum of identically and independently distributed Wishart

random matrices, namely  with mutually independent Wk ~  (1, Iνe) and

{λk} eigenvalues of Σ*. (ii) . (iii) The common variance of diagonal

elements is , and the common variance of off-diagonal elements is . (iv)

An unbiased estimator of  gives . (v) An

unbiased estimator of  gives .
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Proof
(i) For spectral decomposition Σ* = ϒDg (λ) ϒ′ with ϒ′ϒ = Ib, it follows that

. In turn, Z ~ (0,Iνe, Ib)has identically and independently

distributed columns, k ~ (0, Iνe) and independent . Also,

, E(Wk) = Iνe, 
(〈Wk〉) j1j2 = 2 if j1 = j2 and (〈Wk〉j1j2) = 1 if j1 ≠ j2. (ii)

. (iii) . If j1 = j2,

then , and j1 ≠ j2 gives . (iv) Matching second
moments of Sd allowed deriving τ̂2 as a weighted sum of two estimators. If τ̂2a is 1/2 times
the estimated variance of the diagonal elements, namely

, and τ̂2b is the sample mean of off-

diagonal variances, namely , then

. It is straightforward to prove that E (τ̂2) = τ2 based

on results in Appendix A of Muller et al. [16] that 

and . (v) Given  and E(τ̂2) = τ2,
an unbiased estimator of τ1 is

.
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Figure 1.
Categorization of the type of multivariate data.
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Figure 2.
High dimension, low sample size two-sample comparison. Empirical powers for 100,000
replications. Columns are (left to right) b = 64, b = 256, and b = 1024; rows are (top to
bottom) νe = 4, νe = 8, and νe = 16. The vertical axes are empirical powers, and the
horizontal axes are the proportions of non-null variables of the greatest variations. Purple
denotes the test by Srivastava and Fujikoshi [12]; orange denotes the test by Srivastava and
Du [3]; red denotes the proposed T1 test; blue denotes the proposed T2 test.
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Table II

Parameters and constants for general linear multivariate model Y = XB +E and associated general linear
hypothesis H0: Θ = Θ0.

Symbol Size Definition and properties

N 1 × 1 Sample size

p 1 × 1 Number of outcome variables

q 1 × 1 Number of predictors

X N × q Fixed, known design matrix

B q × p Primary (mean) parameters

νe = N − rank (X) 1 × 1 Error degrees of freedom

a 1 × 1 Number of between-subject contrasts

b 1 × 1 Number of within-subject contrasts

C a × q Between-subject contrast matrix

U p × b Within-subject contrast matrix

Θ = CBU a × b Secondary parameters

Θ0 a × b Null values of secondary parameters

M = C(X′X)−C′ a × a Middle matrix

Δ = (Θ − Θ0)′M−1(Θ − Θ0) b × b Nonstandardized noncentrality

Σ p × p Error covariance of [rowi (E)]′

Σ* = U′ΣU b × b Hypothesis error covariance of [rowi (EU)]′

λ b × 1 Vector of eigenvalues of Σ*

1 × 1 Sphericity parameter
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W

B
0.

02
7

14
.3

6
0.

19
8

0.
26

9

A
R

(0
.6

)
0.

47
7

∊̃ D
1

0.
09

3
1.

00
0

0.
57

7
0.

23
7

∊̃ D
2

0.
04

0
1.

00
0

0.
26

8
0.

15
1

∊ Ã
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W

B
0.

00
7

6.
16

2
0.

06
3

0.
12

9

A
R

(0
.6

)
0.

47
2

∊̃ D
1

0.
10

2
1.

00
0

0.
56

4
0.

23
6

∊̃ D
2

0.
04

4
1.

00
0

0.
26

1
0.

14
9

∊ Ã
W

B
0.

11
7

9.
73

6
0.

74
1

0.
42

7

Stat Med. Author manuscript; available in PMC 2013 April 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chi et al. Page 29

b
ν e

Σ *
∊

E
st

im
at

or
M

in
M

ax
M

ea
n

St
d

8
C

S(
0.

5)
0.

01
5

∊̃ D
1

0.
00

6
0.

92
6

0.
02

8
0.

03
0

∊̃ D
2

0.
00

5
0.

77
4

0.
02

3
0.

02
5

∊̃ A
W

B
0.

00
7

0.
99

7
0.

03
0

0.
02

9

A
R

(0
.6

)
0.

47
2

∊̃ D
1

0.
16

7
1.

00
0

0.
50

3
0.

12
8

∊̃ D
2

0.
13

9
1.

00
0

0.
42

0
0.

10
8

∊̃ A
W

B
0.

19
7

1.
88

4
0.

56
5

0.
14

3

16
C

S(
0.

5)
0.

01
5

∊̃ D
1

0.
00

7
0.

24
5

0.
02

0
0.

01
0

∊̃ D
2

0.
00

7
0.

23
5

0.
01

9
0.

01
0

∊̃ A
W

B
0.

00
8

0.
27

4
0.

02
1

0.
01

0

A
R

(0
.6

)
0.

47
2

∊̃ D
1

0.
26

9
1.

00
0

0.
48

1
0.

06
2

∊̃ D
2

0.
25

7
0.

97
9

0.
46

0
0.

06
0

∊̃ A
W

B
0.

26
2

1.
15

3
0.

51
0

0.
06

6

10
24

4
C

S(
0.

5)
0.

00
4

∊̃ D
1

0.
00

1
1.

00
0

0.
01

9
0.

05
9

∊̃ D
2

0.
00

1
1.

00
0

0.
00

8
0.

02
9

∊̃ A
W

B
0.

00
2

6.
92

5
0.

01
8

0.
05

9

A
R

(0
.6

)
0.

47
1

∊̃ D
1

0.
08

1
1.

00
0

0.
56

1
0.

23
6

∊̃ D
2

0.
03

5
1.

00
0

0.
26

0
0.

15
0

∊̃ A
W

B
0.

11
9

14
.3

9
0.

73
6

0.
42

5

8
C

S(
0.

5)
0.

00
4

∊̃ D
1

0.
00

2
0.

62
0

0.
00

7
0.

01
0

∊̃ D
2

0.
00

1
0.

51
7

0.
00

6
0.

00
9

∊̃ A
W

B
0.

00
2

0.
41

4
0.

00
8

0.
00

9

A
R

(0
.6

)
0.

47
1

∊̃ D
1

0.
17

6
1.

00
0

0.
50

0
0.

12
6

∊̃ D
2

0.
14

7
1.

00
0

0.
41

8
0.

10
6

∊̃ A
W

B
0.

22
9

1.
79

6
0.

56
2

0.
14

1

16
C

S(
0.

5)
0.

00
4

∊̃ D
1

0.
00

2
0.

08
5

0.
00

5
0.

00
3

∊̃ D
2

0.
00

2
0.

09
4

0.
00

5
0.

00
3

Stat Med. Author manuscript; available in PMC 2013 April 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chi et al. Page 30

b
ν e

Σ *
∊

E
st

im
at

or
M

in
M

ax
M

ea
n

St
d

∊̃ A
W

B
0.

00
2

0.
08

9
0.

00
5

0.
00

3

A
R

(0
.6

)
0.

47
1

∊̃ D
1

0.
27

3
0.

85
1

0.
47

9
0.

06
0

∊̃ D
2

0.
26

1
0.

81
3

0.
45

7
0.

05
8

∊̃ A
W

B
0.

31
5

0.
89

6
0.

50
8

0.
06

4

T
he

 e
st

im
at

or
∊̃ D

1 
is

 u
se

d 
in

 T
1,

 ∊
̃ D

2 
in

 T
2,

 a
nd

 ∊
̃ A

W
B

 in
 T

A
W

B
.

Stat Med. Author manuscript; available in PMC 2013 April 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chi et al. Page 31

Ta
bl

e 
VI

II

H
ig

h 
di

m
en

si
on

, l
ow

 s
am

pl
e 

si
ze

 tw
o-

sa
m

pl
e 

co
m

pa
ri

so
n:

 e
m

pi
ri

ca
l T

yp
e 

I 
er

ro
r 

ra
te

s 
×

 1
00

 f
or

 1
00

,0
00

 r
ep

lic
at

io
ns

.

b
ν e

∊

T
yp

e 
I 

er
ro

r 
ra

te
s 

× 
10

0

10
0 

× 
α 

= 
5.

00
10

0 
× 
α 

= 
1.

00

T
1

T
2

T
SF

T
SD

T
1

T
2

T
SF

T
SD

64
4

0.
01

6
4.

91
4.

91
12

.4
9

42
.0

8
0.

98
0.

98
9.

48
28

.5
6

0.
26

8
7.

04
2.

18
8.

49
42

.1
8

2.
52

0.
40

4.
25

28
.6

3

0.
56

0
6.

23
1.

90
8.

32
41

.9
6

1.
84

0.
39

3.
62

28
.4

1

0.
75

6
5.

36
1.

74
8.

26
41

.8
1

1.
29

0.
26

3.
37

28
.3

5

1.
00

0
4.

07
1.

49
8.

13
42

.1
2

0.
73

0.
18

3.
18

28
.6

3

8
0.

01
6

5.
05

5.
05

8.
97

11
.8

0
1.

00
1.

00
6.

35
4.

87

0.
26

8
5.

99
4.

70
6.

09
11

.8
1

1.
74

1.
14

2.
80

4.
91

0.
56

0
5.

80
4.

44
5.

85
11

.7
9

1.
47

0.
95

2.
01

4.
88

0.
75

6
5.

35
4.

20
5.

72
11

.7
3

1.
26

0.
85

1.
82

4.
80

1.
00

0
4.

38
3.

68
5.

78
11

.9
1

0.
82

0.
61

1.
67

4.
85

16
0.

01
6

5.
07

5.
07

7.
14

5.
81

1.
06

1.
06

4.
73

1.
68

0.
26

8
5.

51
5.

17
5.

03
5.

72
1.

39
1.

27
2.

15
1.

65

0.
56

0
5.

43
5.

06
5.

06
5.

72
1.

24
1.

10
1.

62
1.

70

0.
75

6
5.

29
4.

99
5.

15
5.

71
1.

21
1.

08
1.

54
1.

66

1.
00

0
4.

76
4.

60
5.

25
5.

74
0.

92
0.

85
1.

35
1.

68

25
6

4
0.

00
4

5.
00

5.
00

9.
68

36
.9

1
0.

99
0.

99
6.

27
24

.2
8

0.
26

6
6.

94
2.

00
8.

26
37

.0
6

2.
43

0.
40

3.
39

24
.3

3

0.
55

7
6.

02
1.

72
8.

11
36

.9
4

1.
73

0.
31

3.
05

24
.3

4

0.
75

2
5.

41
1.

63
8.

14
37

.1
9

1.
23

0.
25

2.
98

24
.4

9

1.
00

0
4.

08
1.

53
8.

23
37

.1
8

0.
77

0.
19

3.
09

24
.4

2

8
0.

00
4

4.
99

4.
99

7.
24

7.
23

0.
97

0.
97

4.
32

2.
33

0.
26

6
5.

66
4.

32
5.

82
7.

23
1.

49
0.

95
1.

86
2.

36

0.
55

7
5.

61
4.

32
5.

77
7.

40
1.

35
0.

83
1.

56
2.

43

0.
75

2
5.

43
4.

13
5.

85
7.

35
1.

26
0.

83
1.

63
2.

39

1.
00

0
4.

43
3.

75
5.

79
7.

19
0.

82
0.

61
1.

48
2.

33

16
0.

00
4

4.
93

4.
93

5.
94

3.
49

0.
94

0.
94

3.
26

0.
70

Stat Med. Author manuscript; available in PMC 2013 April 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chi et al. Page 32

b
ν e

∊

T
yp

e 
I 

er
ro

r 
ra

te
s 

× 
10

0

10
0 

× 
α 

= 
5.

00
10

0 
× 
α 

= 
1.

00

T
1

T
2

T
SF

T
SD

T
1

T
2

T
SF

T
SD

0.
26

6
5.

44
5.

05
5.

14
3.

50
1.

22
1.

07
1.

38
0.

65

0.
55

7
5.

19
4.

84
5.

05
3.

49
1.

14
1.

00
1.

21
0.

66

0.
75

2
5.

08
4.

71
5.

09
3.

36
1.

09
0.

94
1.

17
0.

62

1.
00

0
4.

66
4.

46
5.

16
3.

43
0.

89
0.

82
1.

14
0.

63

10
24

4
0.

00
1

4.
98

4.
98

8.
51

29
.1

3
1.

04
1.

04
4.

15
17

.7
7

0.
26

5
6.

81
1.

81
8.

19
28

.8
8

2.
31

0.
36

3.
04

17
.6

2

0.
55

6
6.

27
1.

78
8.

19
29

.0
0

1.
82

0.
32

3.
03

17
.5

3

0.
75

0
5.

32
1.

60
8.

18
29

.0
4

1.
28

0.
26

2.
96

17
.6

3

1.
00

0
4.

04
1.

43
8.

09
28

.9
3

0.
73

0.
16

2.
97

17
.5

4

8
0.

00
1

4.
90

4.
90

5.
87

2.
61

0.
92

0.
92

2.
53

0.
55

0.
26

5
5.

49
4.

13
5.

89
2.

63
1.

38
0.

89
1.

55
0.

51

0.
55

6
5.

57
4.

24
5.

96
2.

63
1.

39
0.

85
1.

51
0.

55

0.
75

0
5.

37
4.

14
5.

91
2.

64
1.

23
0.

79
1.

46
0.

56

1.
00

0
4.

37
3.

62
5.

76
2.

54
0.

80
0.

60
1.

43
0.

50

16
0.

00
1

5.
00

5.
00

5.
05

1.
10

0.
97

0.
97

2.
06

0.
12

0.
26

5
5.

35
5.

00
5.

18
1.

01
1.

17
1.

02
1.

17
0.

11

0.
55

6
5.

18
4.

83
5.

09
1.

10
1.

09
0.

94
1.

08
0.

10

0.
75

0
5.

23
4.

89
5.

25
1.

15
1.

12
1.

00
1.

17
0.

12

1.
00

0
4.

59
4.

42
5.

11
1.

04
0.

84
0.

78
1.

11
0.

09

T
es

t T
SF

 w
as

 g
iv

en
 b

y 
Sr

iv
as

ta
va

 a
nd

 F
uj

ik
os

hi
 [

12
] 

an
d 

T
SD

 b
y 

Sr
iv

as
ta

va
 a

nd
 D

u 
[3

].

Stat Med. Author manuscript; available in PMC 2013 April 13.


