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Abstract
In most eutherian mammals, sexually dimorphic masculinization is established by androgen-
producing fetal Leydig cells in the embryonic testis. Fetal Leydig cells, which lack expression of
the testis-determining gene SRY, arise after the appearance of SRY-expressing Sertoli cells.
Therefore, the appearance and differentiation of fetal Leydig cells are probably regulated by
factors derived from Sertoli cells. Results from mouse genetic models have revealed that
maintenance and differentiation of fetal Leydig cell population depends upon a balance between
differentiation-promoting and differentiation-suppressing mechanisms. Although paracrine
signaling via Sertoli cell–derived Hedgehog ligands is necessary and sufficient for fetal Leydig
cell formation, cell-cell interaction via Notch signaling and intracellular transcription factors such
as POD1 are implicated as suppressors of fetal Leydig cell differentiation. This review provides a
model that summarizes the recent findings in fetal Leydig cell development.
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The SRY gene (sex-determining region of the Y chromosome) determines the sex of the
gonad in most mammalian species; however, masculinization of the embryo is controlled by
hormones and can be accomplished independent of genetic components (Jost, 1947, 1953).
Products of fetal Leydig cells, a testis-specific cell type, are responsible for masculinization
of the embryo. Through the action of Leydig cell–produced androgens and insulin-like
factor 3 (INSL3), the male reproductive tract (or Wolffian duct) is maintained, male
secondary sexual characteristics are established, and testicular descent is induced (Haider,
2004; Barsoum and Yao, 2006; Park et al, 2007). Without functional fetal Leydig cells, the
male embryos develop the appearance of a female despite the presence of testes. To
understand where fetal Leydig cells arise and how they differentiate, researchers have
developed various transgenic and knockout mouse models that shed lights on these
processes. Before the formation of fetal mouse testis (embryonic day [E]11.5–E12.5),
gonadal primordium is composed of a mixture of immigrating primordial germ cells and
undefined somatic progenitor cells (Swain and Lovell-Badge, 1999; McLaren, 2000;
Brennan and Capel, 2004). These somatic progenitor cells in the gonads express various
transcription factors, including steroidogenic factor 1 (Sf1, also known as nuclear receptor
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5A1), Wilms tumor 1 (Wt1), GATA transcription factor 4 (Gata4), and Lim homeobox gene
9 (Lhx9) (Luo et al, 1994; Hatano et al, 1996; Birk et al, 2000; Mazaud et al, 2002). These
progenitor cells (referred to as SF1-positive cells hereafter) are the sources of at least 2
somatic cell lineages in the testis: the supporting-cell lineage (Sertoli cells) that nourishes
the germ cells and the steroidogenic lineage fetal Leydig cells.

At E10.5, a subpopulation of the SF1-positive somatic cells starts to express Sry and
differentiate into Sertoli cells (Gubbay et al, 1990; Koopman et al, 1990; Lovell-Badge and
Robertson, 1990; Hacker et al, 1995; Albrecht and Eicher, 2001). Via interaction with SF1,
SRY triggers expression of SRY-box-containing gene 9 (Sox9), which itself is sufficient to
induce testis formation (Sekido et al, 2004; Bullejos and Koopman, 2005; Kanai et al, 2005;
Sekido and Lovell-Badge, 2008). The SOX9-positive Sertoli cell population then expands
via the action of fibroblast factor 9 signaling and prostaglandin D2 (Schmahl et al, 2000;
Wilhelm et al, 2005, 2007). By inducing endothelial cell migration and peritubular myoid
cell differentiation, Sertoli cells orchestrate the formation of the testis cords (Wilhelm et al,
2007; Cool et al, 2008; Combes et al, 2009), the physical structures that separate germ cells
and Sertoli cells from the testis interstitium.

Steroidogenically active fetal Leydig cells appear in the testis interstitium about 24 hours
after Sertoli cell differentiation (Habert et al, 2001; Yao et al, 2002; Barsoum and Yao,
2006). Numbers of fetal Leydig cells increase dramatically from E12.5 to E15.5; however,
fetal Leydig cells are mitotically inactive during this period (Orth, 1982; Byskov, 1986;
Migrenne et al, 2001). Expansion of fetal Leydig cell population could result from
transformation of SF1-positive progenitor cells and/or from addition of cells from sources
such as the neighboring mesonephros (Merchant-Larios and Moreno-Mendoza, 1998),
neural crest (Mayerhofer et al, 1996), and coelomic epithelium (Karl and Capel, 1998;
Schmahl et al, 2000). Regardless of their origins, fetal Leydig cells lack expression of Sry or
Sox9, indicating that their differentiation is dependent upon cues from the Sry/Sox9-
expressing Sertoli cells. Desert hedgehog (Dhh) and platelet-derived growth factor A
(Pdgfa), 2 Sertoli cell–derived signaling molecules, have been implicated in differentiation
of fetal Leydig cells (Clark et al, 2000; Pierucci-Alves et al, 2001; Yao and Capel, 2002;
Yao et al, 2002; Walterhouse et al, 2003; Brennan and Capel, 2004; Ross and Capel, 2005;
Barsoum and Yao, 2006). In mice, Dhh mRNA is expressed in differentiating Sertoli cells at
E11.5 and its receptor Ptch1 is localized to the testis interstitium (Yao et al, 2002). Testes of
Dhh knockout embryos develop fewer fetal Leydig cells and abnormal testis cord
organization. In the prepubertal and adult stages, Dhh knockout mice have spermatogenesis
defects and lack adult Leydig cells (Bitgood et al, 1996; Clark et al, 2000; Pierucci-Alves et
al, 2001; Yao et al, 2002; Yao and Capel, 2002). Pdgfa, on the other hand, is also expressed
in Sertoli cells, whereas one of its receptors, PDGF receptor α (Pdgfrα), is present in the
testis interstitium (Brennan et al, 2003). In Pdgfrα knockout male embryos, Sertoli cell
proliferation, mesonephric cell migration, and fetal Leydig cell differentiation are all
reduced (Brennan et al, 2003). Consequently, the Leydig cell defects in Pdgfrα knockout
testes are likely secondary to defects in Sertoli cell differentiation and progenitor cell
migration/proliferation. Sphingosine phosphate lyase 1 (Spgl1) and pleckstrin homology
domain–containing family A1 (Plekha1), 2 putative downstream targets of PDGF signaling,
are recently identified as important for male fertility (Schmahl et al, 2008). However, in both
Sgpl1−/− and Plekha1−/− mice, the testicular morphology and subsequent male development
appear normal before postnatal day 20 (Schmahl et al, 2008). This indicates that these 2
genes are unlikely to be involved in fetal Leydig cell development.

We recently developed a transgenic model in which the Hedgehog (Hh) pathway was
ectopically activated in the SF1-positive progenitor cells of the fetal ovary (Barsoum et al,
2009). Under normal circumstances, the Hh pathway is inert in the fetal ovary because of
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lack of Hh ligands (Bitgood et al, 1996; Clark et al, 2000; Pierucci-Alves et al, 2001; Yao et
al, 2002; Yao and Capel, 2002). We used the Cre/loxP system to activate the Hh pathway in
the SF1-positive somatic cells of the fetal ovary by targeting Smoothened (SMO), a
transmembrane protein responsible for transducing the intracellular signaling pathway
induced by Hh ligands. When the SF1-cre transgenic line was crossed to the Smo/YFP
(SmoYFP) line, Cre recombinase under the control of the Sf1 promoter removed the STOP
sequence upstream of the SmoYFP transgene. Removal of the STOP sequence allowed the
transcription of a constitutively active form of mutated Drosophila Smoothened (smo) fused
with a yellow fluorescent protein gene (YFP) (Jeong et al, 2004). The SmoYFP transgene
thus activated the Hh pathway regardless of the presence or absence of the Hh ligands.
Ectopic activation of the Hh pathway in fetal ovaries transformed SF1-positive somatic cells
into functional fetal Leydig cells. These ectopic fetal Leydig cells produced androgens and
INSL3 that caused virilization of female embryos and descent of the ovaries. Sertoli cells
and other testicular components were not found in the affected ovaries, indicating that the
appearance of fetal Leydig cells was a direct consequence of Hh activation. Along with the
findings in Dhh knockout models, these results demonstrate that the Hh pathway is
necessary and sufficient for the induction of fetal Leydig cell differentiation (Barsoum et al,
2009). In addition, the ability of SF1-positive progenitor cells in the fetal ovary to
differentiate into fetal Leydig cells supports that the SF1-positive somatic cells are bona fide
progenitor cells for fetal Leydig cells.

In contrast to the Hh pathway, which promotes fetal Leydig cell differentiation, the Notch
pathway suppresses fetal Leydig cell differentiation. When the Notch pathway was inhibited
in the fetal testis either by treatment with a chemical inhibitor or by inactivation of Hes1
(hairy and enhancer of split 1), a key intracellular component downstream of Notch receptor,
numbers of fetal Leydig cells were significantly increased (Tang et al, 2008). Conversely,
constitutive activation of the Notch pathway in the SF1-positive progenitor cells inhibited
Leydig cell differentiation. The Notch pathway controls cell fate determination via
interaction between membrane-bound ligands and Notch receptor in adjacent cells. We
therefore speculate that a subpopulation of SF1-positive progenitor cells in the testis
interstitium is set aside as the pool of undifferentiated stem cells. These putative stem cells
are prevented from entering the differentiation mode via Notch receptor and its downstream
signaling (see model in Figure).

Increasing numbers of fetal Leydig cells were also reported in embryos lacking Pod1
(Tcf21/capsulin/ epicardin), a basic helix-loop-helix transcription factor (Cui et al, 2004).
Similar to our Hh activation model, Pod1 knockout ovary had ectopic appearance of
steroidogenic cells (presumably fetal Leydig cells). Interestingly, the Hh pathway was not
activated in the Pod1 knockout ovaries. However in the absence of Pod1, Sf1 expression
was elevated, implying that POD1 may suppress fetal Leydig cell differentiation by
counteracting Sf1 transcription in the progenitor cells (Figure). SF1, a transcription factor
that controls expression of steroidogenic enzymes, is critical for establishment of both
Sertoli and Leydig cell lineages (Luo et al, 1994). Sf1 is present in the gonadal primordium
of both sexes but later becomes testis-specific after the onset of sex determination (Luo et al,
1994). In the fetal testis, Sf1 expression was down-regulated in Sertoli cells, whereas it was
up-regulated in fetal Leydig cells (Ikeda et al, 1994; Parker and Schimmer, 1997; Parker et
al, 2002; Yao et al, 2002). This increased Sf1 expression in fetal Leydig cells was partially
linked to DHH derived from Sertoli cells (Yao et al, 2002; Park et al, 2007). In addition,
when the Hh pathway was ectopically activated in the ovary, Sf1 expression was up-
regulated, followed by appearance of fetal Leydig cells (Barsoum et al, 2009). It has been
show that without Sf1, Leydig cell differentiation does not occur (Morohashi et al, 1992;
Leers-Sucheta et al, 1997; Reinhart et al, 1999; Koskimies et al, 2002; Val et al, 2003). In
gonad-specific Sf1 knockout mice, expression of 2 fetal Leydig cell markers, cytochrome
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P450 side chain cleavage (Scc) and the steroidogenic acute regulatory protein (StAR), were
decreased (Jeyasuria et al, 2004). Also, in Sf1 heterozygous embryos, fetal Leydig cell
markers such as cytochrome P450, subfamily XVII (Cyp17) and Scc were reduced at E13.5
(Park et al, 2005). Decreases in steroidogenic enzyme expression in the fetal testis were also
reported in mouse embryos lacking the transcriptional factor X-linked aristaless-related
homeobox gene (Arx; Kitamura et al, 2002). Arx is strongly expressed in peritubular myoid
cells, endothelium, and fibroblasts, but not in Leydig cells. This suggests that Arx could play
a role in either establishment of fetal Leydig cell population or regulation of steroidogenesis.

The SF1-positive cells represent an undifferentiated progenitor cell pool for both adrenals
and gonads that originate from a common adrenogonadal primordium (Ikeda et al, 1994;
Hatano et al, 1996). When adrenals and gonads separate, a fetal adrenal enhancer controls
Sf1 expression in SF1-positive cells of adrenal gland (Zubair et al, 2006). At E11.5, the
gonadal pool of SF1-positive cells acquires their own enhancer activity within Sf1 gene
(from −589 to +85) that contains WT1 and LHX9 binding sites essential for Sf1 gene
transcription (Wilhelm and Englert, 2002). Under the effect of SRY/ SOX9 and other
transcriptional factors (Barsoum and Yao, 2006), some gonadal SF1-positive cells become
Sertoli cells. The remaining SF1-positive cells in the interstitium begin their path to
steroidogenesis in response to activation of the Hh pathway (Figure). Using double
immunohistochemistry for SF1 and steroidogenic enzyme 3βHSD, we characterized the
transition of SF1-positive progenitor cells into steroidogenic fetal Leydig cells. Before
E13.0, fetal testes contained only SF1-positive/ 3βHSD-negative (SF1+/3βHSD−)
progenitor cells in the interstitium. Twelve hours later (E13.5), SF1+/3βHSD+ (fetal Leydig
cells) started to appear, intermingling with the SF1+/3βHSD− progenitor cells. By E16.5,
some of the SF1+/3βHSD+ cells turned off SF1 expression and became only 3βHSD+
(SF1−/3βHSD+; terminally differentiated fetal Leydig cells). The proportion of these 3
populations (SF1+/3βHSD− progenitor, SF1+/3βHSD+ fetal Leydig cells, and SF1−/
3βHSD+ terminal differentiated cells) was changed dramatically in response to ectopic
activation of the Hh pathway. Ectopic activation of the Hh pathway in the SF1-positive cells
resulted in a decrease in the progenitor population and an increase in fetal Leydig cell
population compared to the control (unpublished data). This observation further confirms
that the SF1-positive progenitor cells are transformed into fetal Leydig cells in response to
Hh stimulation.

In this review, we present the hypothesis that establishment of fetal Leydig cell population is
balanced by differentiation-promoting factors such as Hh and differentiation-inhibiting
factors such as Notch and POD1. It remains to be determined how Hh and Notch pathways
interact to maintain a progenitor cell population. If the progenitor cells are indeed present in
fetal life, what will they become in the adult testis? We are currently using inducible
transgenic approaches and lineage-tracing models to address these questions.
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Figure.
Model for maintenance and differentiation of fetal Leydig cells in mice: SF1+/3βHSD−
progenitor cells are transformed into fetal Leydig cells (SF+/3βHSD+) in response to Sertoli
cell–derived Hedgehog ligands (Hh). The fetal Leydig cells eventually lose SF1 expression
in fetal life and then steroidogenic ability in adulthood. A subpopulation of the progenitor
cells is prevented from entering differentiation model via the Notch pathway. The progenitor
cell status is putatively maintained as a result of POD1, which down-regulates SF1
expression. Color figure available online at www.andrologyjournal.org.

BARSOUM and YAO Page 8

J Androl. Author manuscript; available in PMC 2012 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.andrologyjournal.org

