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Abstract
As is the case in all areas of gastroenterology and hepa-
tology, in 2009 and 2010 there were many advances 
in our knowledge and understanding of small intestinal 
diseases. Over 1000 publications were reviewed, and 
the important advances in basic science as well as clini-
cal applications were considered. In Part Ⅱ we review 
six topics: absorption, short bowel syndrome, smooth 
muscle function and intestinal motility, tumors, diagnos-
tic imaging, and cystic fibrosis.
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ABSORPTION
Triglycerides
For triglycerides (TG), it has been traditionally considered 
that lipid uptake is by way of  passive permeation through 
the lipophilic portion of  the intestinal brush border 
membrane (BBM). However, enterocyte-binding or trans-
port proteins have been identified as also being important 
in this process[1]. Gata4 is a zinc-containing transcription 
factor, expressed in the epithelium of  the upper small 
intestine, and functions to assist in fat and cholesterol 
absorption[2]. Lipid micelles at the BBM modulate a large 
number of  genes, and this transcriptome responding to 
dietary lipids has an impact on cell architecture, signaling 
and metabolism genes[3]. Most lipids are in the enterocyte, 
and may be bound to the liver and the intestinal fatty acid 
(FA) binding proteins (L-FABP and I-FABP). L-/I-FABP 
function to translocate long chain FAs and monoacylg-
lycerol from the BBM to the endoplasmic reticulum (ER). 
These long FAs are then used in the resynthesis of  diac-
ylglycerol and then triacylglycerol. 

The absorption of  dietary TG in the small intestine 
is accompanied by a rise of  intestinal alkaline phospha-
tase (IAP) in the serum, and by the secretion of  IAP-
containing surfactant-like particles (SLPs) from the 
enterocytes. IAP is a membrane-bound protein that 
hydrolyses monophosphate esters at high pH optimum, 
and limits fat absorption by enterocytes by way of  its 
action as a SLP[4]. Translocation of  IAP across the en-
terocyte BBM occurs within 5 min of  lipid intake by way 
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of  induction of  endocytosis via clathrin-coated pits[5]. 
After fat has been taken up into the enterocyte, IAP is 
incorporated into membranes surrounding intracellular 
lipid droplets, and is also incorporated into basolaterally 
secreted SLPs. IAP is not associated with chylomicron 
formation, but rather with chylomicron secretion. Serum 
IAP levels are correlated with levels of  apolipoprotein 
B-48 (apoB48), a protein exclusive to intestinal chylomi-
crons in humans[6]. 

After ingestion of  a meal rich in TG, the small in-
testine continues to form very low density lipoprotein 
(VLDL), but the predominant TG-rich lipoprotein 
particles secreted in this postprandial condition are the 
larger chylomicron particles[7]. In the liver, TG is syn-
thesized and packaged with apoB100 to form VLDL 
particles, whereas chylomicrons produced by the human 
gut contain apoB48. ApoB48 provides efficient chylo-
micron formation and lipid absorption. Apolipoprotein 
A-IV synthesis in the small intestine is regulated by lipid 
absorption, and plays a role in the regulation of  chylomi-
cron assembly and secretion. 

Hepatocyte nuclear factor-4α (HNF-4α) is a nuclear 
receptor that regulates gene expression during enterocyte 
differentiation. HNF-4α is also involved with the tran-
scription of  genes involved in lipid metabolism, such as 
Apo-IV[8]. In newborn swine intestine, dietary lipid causes 
ligand-independent transactivation of  HNF-4α to induce 
Apo-A IV and microsomal triglyceride transfer protein 
(MTP). 

The uptake of  FAs across the BBM may be partially 
passive and partially facilitated, mediated by the multili-
gand scavenger protein CD36. CD36 also participates in 
the orosensory detection of  lipids and the production of  
the sensation of  satiety. Thus, CD36 may play a role in 
lipid preferences and feeding behaviour[9]. Monoglycer-
ide and free FAs in the cytoplasm reform TG by the suc-
cessive actions of  monoacylglycerol acyltransferase and 
diacylglycerol acyltransferase at the membrane of  the 
smooth ER. After transfer in the ER lumen, TG droplets 
associate with primordial lipoprotein comprising apoB48 
and phospholipids through the actions of  MTP, to form 
TG-rich lipoproteins (TRL). The lipid droplets fuse with 
apoB48 plus a resident ER chaperone, MTP. MTP-de-
pendent fusion of  lipid droplets with apoB48 in the ER 
is the crucial restriction point in the formation of  chylo-
microns. The lipoprotein particle enlarges as more TG is 
added to the droplet. The maturing lipoprotein particles 
(prechylomicrons) undergo vectorial vesicular transport 
through the Golgi membranes. Chylomicrons cross the 
basolateral membrane (BLM) and into the lacteals.

Glucagon-like peptide-2 (GLP-2) increases lipid ab-
sorption, but how does this occur, when enterocytes have 
no GLP-2 receptors? Perhaps the GLP-2 acts on the en-
teroendocrine L cells, releasing insulin-like growth factor 
(IGF-1). GLP-2 increases the glycosylation of  CD36 and 
increases the number of  chylomicrons.

After 1 wk of  feeding with a high fat diet (HFD) in 
mice, there is repression of  genes involved in FA syn-

thesis, and an increased expression of  genes involved n 
lipoprotein assembly (apoB, MTP, apoA-IV). This process 
may be coordinated by an increase in the transcription 
factor SREBP-IC[10]. The number of  secreted chylomi-
crons falls, but there are larger chylomicrons containing 
increased associated TG, as well as increased amounts 
and activity of  MTP. These changes result in postprandial 
hypertriglyceridemia, but normal fasting levels of  TGs. 
This postprandial hypertriglyceridemia in the absence of  
changes in fasting levels may explain some of  the risk 
factors for the development atherosclerosis and cardio-
vascular diseases.

Cholesterol 
Dietary and biliary cholesterols are solubilized by bile acid 
micelles in the upper intestinal lumen. These are large 
negatively-charged unilamellar vesicles, smaller mixed mi-
celles or monomeric bile acids. Bile acids promote cho-
lesterol absorption and reduce cholesterol synthesis[11]. 

It is now recognized that intestinal absorption of  cho-
lesterol is a complex process, involving both BBM perme-
ation and cotransporters[12,13]. Uptake of  cholesterol from 
the intestinal lumen across the enterocyte BBM is also 
mediated by at least five proteins: Niemann-Pick C1-like 
1 (NPC1L1), the scavenger receptor B-1 (SR-B1), CD36, 
the ATP-binding cassette protein 5 (ABCG5) and ATP-
binding cassette protein 8 (ABCG8) ATP-binding cassette 
transporters[14,15]. NPC1L1 protein is predominantly ex-
pressed in the liver and in the proximal intestine[16]. Modu-
lation of  NPC1L1 expression is by cholesterol, as well as 
by the involvement of  several nuclear receptors, such as 
liver X receptor (LXR), peroxisome proliferator-activated 
receptor (PPAR)-α, and by sterol regulatory element (SRE) 
binding proteins (SREBPs). SREBPs are transcription 
factors which regulate cholesterol synthesis and metabo-
lism[17]. SSEBP-2 activates the NPC1L1 promoter, which 
has two sterol regulatory elements.

The ATP-binding cassette transporter ABCG1 pro-
motes cholesterol efflux across the BLM and out of  the 
enterocyte. In contrast, ABCG5/G8 facilitates cholester-
ol efflux back across the enterocyte BBM and into the in-
testinal lumen[18]. The ATP-binding cassette transporters 
are target genes of  the nuclear receptor LXR. Mice on a 
high-fat cholesterol free diet have reduced or downregu-
lated NPC1L1, ABCA1, ABCG5, and ABC8, reduced 
fractional cholesterol absorption, and a posttranslational 
increase in 3-hydroxy-3methylgluteral-coenzyme A reduc-
tase activity. Downregulation of  cholesterol transporters 
is independent of  LXR A[19].

NPC1L1 also occurs in intracellular compartments, and 
is involved as well in the absorption of  dietary saturated 
FAs such as steric and palmitic acids[20]. The drug ezetimibe 
binds NPC1L1, reduces intestinal absorption of  choles-
terol as well as saturated FAs, and reduces weight gain in 
animals fed a diabetogenic diet. In this way, the drug may 
protect against diet-induced hyperglycemia and insulin re-
sistance[20]. NPC1L1 and the FA translocase (FAT/CD36), 
as well as scavenger receptor class B type 1 (SR/B1) 
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transporter protein, have been shown to be influenced 
by 5 mmol/L glucose in the intestinal lumen; enhancing 
protein expression of  NPC1L1 and CD36, decreasing 
SR/B1 protein, but having no effect on the protein ex-
pression of  ABCA1 and ABCG8[21]. Higher intraluminal 
glucose concentration increases 3-hydroxy-3methylglutaryl-
coenzyme A reductase activity, increasing the transcription 
factors LXR-α and LXR-β, PPAR-β and PPAR-γ, as well 
as SREDP2. Thus, reducing the luminal concentration of  
glucose will also reduce uptake of  cholesterol.

Aging enhances cholesterol absorption by suppress-
ing expression of  the sterol efflux transporters ABCG5/
G8. In contrast, estrogen enhances cholesterol absorp-
tion due to upregulated expression of  NPC1l1, ABCG5 
and ABCG8[22]. Cholesterol absorption is also enhanced 
in diabetes; medium levels of  glucose concentration in 
Caco-2 cells in culture increase cholesterol uptake as well 
as the expression of  NPC1L1 and CD36 proteins[21].

Liver FA binding protein (L-FABP) increases FA up-
take, intracellular transport, esterification, and oxidation 
in transfected transformed cells, and gene-ablated mice 
with no L-FABP show reductions in these steps of  FA 
metabolism[23]. L-FABP may also play a role in hepatic 
cholesterol metabolism[24].

Phytosterols are cholesterol-like compounds found 
in plants, which reduce cholesterol absorption and 
plasma concentrations of  low density lipoprotein cho-
lesterol. Natural phytosterol glycosides purified from 
lecithin are bioactive in humans[25].

Two Na+-coupled (SMIT1 and SMIT2) and one H+-
coupled (HMIT) secondary active intestinal transporters 
for myo-inositol have been identified[26].

One hypothesis suggests that cholesterol is absorbed 
by an energy independent passive diffusion process regu-
lated via a concentration gradient[14]. The second hypoth-
esis proposes that cholesterol is absorbed through an 
energy-dependent, protein-mediated process[27].

NPC1L1: NPC1L1 is the main cholesterol transporter 
in the jejunal BBM[16]. NPC1L1 shares 42% amino acid 
homology with Niemann-Pick type C1 protein (NPC1), a 
protein involved in the intracellular transport of  choles-
terol[28]. Post-translationally, NPC1L1 moves from inter-
nal membranes to the mucosal membrane during cellular 
cholesterol depletion, facilitating absorption[29]. Other 
studies suggest that NPC1L1 is located at the BBM of  
enterocytes[30]. NPC1L1 mRNA expression appears to be 
positively correlated with plasma apoB48 and chylomi-
cron cholesterol content[31].

Scavenger receptor B1: Scavenger receptor B1 (SRB1) is 
highly expressed in the BBM of  the proximal small intes-
tine[32]. Intestinal SRB1 overexpression in transgenic mice 
has been associated with increased cholesterol absorp-
tion[33]. Moreover, antibodies against SRB1 demonstrate 
abolishment of  high affinity binding of  cholesterol to BBM 
vesicles that would normally be observed in NPC111-/- 
mice[32]. SRB1 may play a role in the initial step of  cho-

lesterol absorption by facilitating high affinity cholesterol 
binding to the mucosal BBM, but alternative cholesterol 
transporters may compensate for the absence of  SRB1 in 
mediating cholesterol absorption in KO models[32].

FAT/CD36: FAT/CD36 (translocase), a human ana-
logue of  SRB1, is expressed along the BBM of  the duo-
denum and jejunum. CD36 deficiency correlates with 
abnormal lipid processing in enterocytes[14]. 

ABCG5/8: ABCG5 and ABCG8 are located at the 
enterocyte BBM[14]. Their expression is greatest in the 
duodenum and jejunum, where they work in tandem 
to efflux cholesterol (mainly plant sterols) from the en-
terocyte back into the lumen for excretion[34]. A negative 
correlation exists between ABCG5/8 and chylomicron 
cholesterol content[31]. Mutations of  ABCG5 and ABCG8 
in humans enhance intestinal cholesterol absorption, and 
predisposes these individuals to atherosclerosis[35].

ATP-binding cassette protein 1: ATP-binding cassette 
protein 1 (ABCA1) not only mediates cholesterol ef-
flux from the basolateral surface of  enterocytes to high-
density lipoprotein[36], but it also contributes to the efflux 
of  cholesterol out of  the enterocyte and back into the 
intestinal lumen[37].

Bile acids 
Bile acids are synthesized from cholesterol in the liver, 
secreted into the bile ducts, stored in the gallbladder, and 
intermittently released into the duodenum in response to 
a meal, where bile acids solubilize lipids in the intestinal 
lumen by formation of  micelles[38]. Bile acids dissociate 
from the lipids which they stabilize prior to the uptake 
of  the lipids across the BBM of  the proximal intestine. 
The bile acids are absorbed passively along the length of  
the small intestine. In the ileum, enterocyte BBM sodi-
um-dependent bile acid transporters (ASBTs) also me-
diate bile acid uptake and bile acids are returned to the 
portal circulation. This is known as the “enterohepatic” 
circulation of  bile acids. ASBT is, in effect, a salvage 
mechanism for luminal bile acids, providing for mainte-
nance of  cholesterol homeostasis, as well as for efficient 
lipid absorption. 

The apical ASBT in the lipid rafts of  the ileal BBM 
functions in concert with hepatic bile acid efflux trans-
porters to regulate hepatic bile acid synthesis from 
cholesterol. One of  the green tea catechins decreases 
the maximal transport rate (Vmax) of  ASBT, without 
altering its content in the BBM. This reduction in Vmax 
is achieved by moving the transporter out of  the lipid 
rafts[39]. This suggests a role for lipid rafts in the modula-
tion of  the function of  this transporter, reducing the size 
of  the bile acid pool, stimulating the hepatic synthesis of  
bile acids from cholesterol, and thereby reducing the se-
rum concentration of  cholesterol.

Initially, ASBT in the enterocyte cytosol undergoes 
vesicular trafficking to microdomains in the BBM. These 
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ASBT lipid rafts are enriched with sphingolipids and cho-
lesterol. Alterations in cholesterol content of  the BBM 
lead to rapid modulation of  the activity of  ASBT[40]. Ob-
structive cholestasis leads to downregulation of  ASBT 
mRNA expression. Thus, luminal bile acid levels may 
be involved in regulation of  ASBT gene regulation[41]. In 
patients with ileal inflammation, such as Crohn’s disease, 
reduced bile acid transport may be due to diminished 
ASBT protein expression, as the result of  ASBT inhibi-
tion by inflammatory cytokines via direct interactions of  
c-fos with the ASBT promoter[42]. 

Once bile acids are in the ileal enterocytes, they bind 
to ileal bile acid-binding protein (I-BABP). Organic sol-
ute transporters (Ost)α and β are located in the BLM of  
the ileocytes. Ostα/Ostβ expression is induced by bile 
acids through ligand-dependent transactivation of  both 
Ost genes by the nuclear bile acid receptor/farnesoid X 
receptor (FXR)[43]. “By coordinated control of  Ostα/
Ostβ expression, bile acids adjust the rate of  efflux from 
enterocytes in response to changes in intracellular bile 
acid levels”. Ostα is a seven transmembrane domain pro-
tein, and Ostβ is a single transmembrane domain poly-
peptide. Ostα-Ostβ is the major BLM transporter of  bile 
acids and conjugated steroids in the intestine, as well as in 
the kidney and liver[44]. Ostα and Ostβ promoters harbor 
both FXR and liver receptor homolog-1 (LRH-1) ele-
ments. FXR and LRH-1 mediate positive- and negative-
feedback regulation, respectively[45]. 

When the BBM uptake of  bile acids is impaired, 
excess bile acids spill into the large intestine, where bile 
acids stimulate cAMP and cause a secretory diarrhea. 
The locally-acting steroid budesonide is beneficial for the 
symptoms of  collagenous colitis, which in turn is associ-
ated with bile acid malabsorption. This clinical benefit 
may be due in part to stimulation of  bile acid absorption, 
with decreased bile acids entering the colon, less stimula-
tion of  cAMP, and less secretory diarrhea[46]. 

Glucose-dependent insulinotropic polypeptide (GIP) 
is a potent insulin secretagogue. GIP is an incretin, a gut 
factor released after intestinal transport of  hexoses, long-
chain FAs and TG, and GIP stimulates insulin secretion 
at physiological concentrations. GIP is secreted by en-
teroendocrine K cells in the proximal small intestine. In-
testinal lymph contains high concentrations of  GIP that 
respond to both enteral carbohydrate and to fat absorp-
tion. The combination of  glucose and lipid has a poten-
tiating effect on stimulation of  GIP secretion in lymph 
fistula rats[47]. 

Approximately 25% of  individuals with irritable 
bowel syndrome (IBS) have a previous history of  en-
teric infection, such as with Campylobacter or Salmonella. 
Persistent chronic diarrhea is more frequently associ-
ated with infectious IBS, and bile acid malabsorption 
may be observed in as many as a third of  patients with 
diarrhea-predominant IBS. In a mouse model of  IBS, it 
was shown that ileal uptake of  bile acids was reduced. 
Surprisingly, this was associated not with a decrease but 
rather with an unexpected increase in expression of  the 

BBM Na+-dependent bile acid transporter (ASBT)[48]. 
Bile acids act as detergents to solubilize lipids, but 

also act as signaling hormones: bile acids activate the 
G-protein-coupled receptor TGR5, resulting in changes 
in energy expenditure and glucose homeostasis, as well as 
having an anti-inflammatory role. Novel patent and selec-
tive bile acid derivatives are being developed as TGR5 
agonists for possible therapeutic enhancers[49].

Bile acids are synthesized from cholesterol. In the 
neutral pathway, the rate-limiting enzyme β hydroxylase 
(Cyp7a7) converts cholesterol to 7-hydroxycholesterol. 
In the attenuated acidic pathway in mitochondria, sterol 
25-hydroxylase or 27-hydroxylase hydroxylates the choles-
terol, and a 7β hydroxyl group is added from catalysis by 
oxysterol 7β hydroxylase (Cyp7b1). The ring structure is 
then modified, and the side chain is oxidized and short-
ened, and further hydroxylation occurs to form the prima-
ry bile acids, cholic and chenodeoxycholic (chenic) acid. 
Bile acids regulate their own synthesis by way of  negative 
feedback on the transcription of  the rate-limiting enzyme, 
Cyp7a1. When bile acid concentrations are high, there is 
activation of  the nuclear FXR, which leads to increased 
transcription of  short heterodimeric partner (SHP). Cy-
p7a1 is activated by the SHP-dependent as well as by the 
SHP-independent pathway. 

The small size of  the bile acid pool in neonates is 
increased as the result of  elevated mRNA levels of  FXR 
and SHP, and later by an increase in mRNA and protein 
levels of  Cyp7a1[50]. The increase in Cyp7a1 levels and 
therefore the increased synthesis of  bile acids occurs in-
dependently of  FXR and SHP, and is not influenced by 
the administration of  sterols[50].

Gangliosides
Gangliosides are sialic acid-containing glycosphingolipids 
which are found in lipid rafts in outer plasma membranes, 
such as the BBM of  the small intestine. The oligosac-
charide portion of  the ganglioside faces the cell surface, 
whereas the lymphatic ceramide portion is anchored into 
the inner (cytosolic side) layer of  the BBM. In the rat 
intestine, 34% of  the glycosphingolipids are gangliosides. 
The amount of  ganglioside in the membranes varies 
along the intestine, being higher distally than proximally. 
Gangliosides differ depending upon whether ingested 
in micelles or unilamellar vesicles. GM3 is localized on 
the BBM whereas GD3 is mainly localized on the BLM. 
GD3 uptake into Caco-2 cells is greater across BLM than 
BBM, and gangliosides taken up by the BLM are largely 
metabolized by these enterocyte-like cells[51]. In contrast, 
GD3 uptake across the BBM is time- and concentration-
dependent, reaches a plateau, and the GD3 is metabo-
lized, stored, or transported out of  the cell across the 
BLM. GD3 is found in milk and colostrum, and feeding 
GD3 increases its content in the intestinal lipid rafts, and 
in the blood membrane: the main ganglioside in the BBM 
is GM3, whereas GD3 is the main ganglioside in the 
BLM. This raises the possibility of  the oral use of  gangli-
osides to modify or to enhance some of  their functions, 
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such as regulating cell signaling, protein functions, as well 
as the recognition of  microbes and macromolecules.

Sugars
SGLT1, the Na+-glucose cotransporter in the entero-
cyte BBM, is a secondary active transport process which 
requires a favorable intracellular Na+ gradient. This gra-
dient is provided by Na+-K+-ATPase on the BLM of  
enterocytes. Constitutive nitric oxide (cNO) has opposite 
effects on the two primary Na+-absorptive pathways in 
the mammalian small intestine: reducing cNO inhibits 
SGLT1 and stimulates the Na+/H+ hydrogen exchanger 
NHE3[52]. cNO also regulates mucosal blood flow, mu-
cous secretion, and intestinal motility. The glucocorticoid-
inducible kinase-1 (SGK1) stimulates SGLT1 as well as 
NHE3. The effects of  glucocorticoid on SGLT1 are fully 
dependant on SGK1, whereas for NHE3 the effects of  
glucocorticoids also involve some additional processes[53].

During chronic intestinal inflammation, there is a 
transcription-mediated decrease in the number of  glucose 
transporters. This is possibly due to altered binding of  
Sp1 and Hnf1, transcription binding sites for the SGLT1 
promoter regions[54].

When glucose is taken by mouth, there is a fast rise in 
expression of  SGLT1. Intestinal sugar uptake is increased 
in diabetes and in obesity. Roux-en-Y gastric bypass 
(RYGB) is a successful form of  bariatric surgery. RYGB 
reduces glucose absorption in the Roux limb, as well as in 
the remaining intestine[55].

Fructose is prevalent in the diet either as a free hex-
ose, as the disaccharide sucrose, and in the polymerized 
form, fructans. About 50% of  adults are unable to ab-
sorb a 25 g load of  fructose. Fructans are neither hydro-
lyzed nor absorbed in the small intestine. This osmotic 
load may alter intestinal motility and change the micro-
biota by producing a mucosal biofilm. Restricting dietary 
intake free of  fructose and/or fructan has symptomatic 
benefits in some persons with diarrhea and bloating[56].

The revised SLC Transporter Gene Tables are avail-
able online at http://www.bioparadigms.org/slc/intro.
htm.

Carbohydrate malabsorption, as assessed by hydro-
gen breath testing, is common in persons with Crohn’
s disease (CD) and celiac disease (CeD)[57]. The absolute 
increase in the rate of  fructose malabsorption is about 
20% higher in Crohn’s disease, and lactose malabsorption 
is 30% higher.

The BBM hydrolysis of  carbohydrates takes place by 
the BBM-bound glycoproteins sucrase-isomaltase (SI), 
maltase-glucoamylase, and lactase-phlorizin hydrolase 
(LPH). The pro-S1 passes from the ER to the Golgi ap-
paratus. With glycosylation it becomes targeted to the 
BBM, where it is cleaved by trypsin to form sucrase and 
isomaltase. Compound heterozygous mutation defects 
in the protein folding, the direct interaction between su-
crase and isomaltase, and an intermolecular chaperone 
included in the intracellular transport of  SI, all have a 
role in the development of  congenital sucrase-isomaltase 

deficiency[58]. Congenital lactase deficiency results from 
mutations in the coding region of  LPH, with misfolding 
of  LPH which prevents the mutant protein from exiting 
the ER[59].

Amino acids and proteins 
The numerous BBM transporters for amino acids are 
differentiated functionally by their substrate specificity 
and driving forces. Neutral amino acids are transported 
by the system B0+ (Na+-dependent transporter for 
neutral and cationic amino acids), as well as by the ASC 
system (Na+-dependent transporter for mid-size neutral 
amino acids). 

Glutamine comprises approximately 20% of  the total 
amino acid content in the human blood stream, and as 
such is an important amino acid. Glutamine is the pre-
ferred substrate for enterocytes, and is also important for 
mucosal integrity and the intestinal permeability barrier. 
The Na+-glutamine cotransporter in the BBM of  the en-
terocyte is B0AT1 (SLC6A19)[60]. Glutamine is converted 
to citrulline in the enterocytes. A citrulline generation 
test has been developed to assess enterocyte function, 
and the value of  the slope from baseline to peak plasma 
citrulline concentrations is reduced in persons with celiac 
disease[61].

Under the influence of  cholecystokinin (CCK), bile 
and pancreatic enzymes are secreted into the duodenal 
lumen where the pancreatic proteolytic enzymes (tryp-
sin, chymotrypsin, elastase, carboxypeptidase A and 
carboxypeptidase D) digest proteins and polypeptides 
into peptides, which are usually 2-6 residues in length. 
Conjugated bile acids accelerate protein hydrolysis by 
pancreatic proteases[62]. 

During chronic intestinal inflammation, there is a 
decrease in the activity of  several transporters such as 
the short-chain FA-bicarbonate exchanger, H+-dipeptide 
cotransporter, Na+-amino acid transporter, Na+-glucose 
cotransporter 1 (sglt-1), and Na+-bile acid transporter. 
There may be a decreased number of  sglt -1 trans-
porters in villus cells (lowering the value of  the maximal 
transport rate, Vmax), and decreased affinity of  the 
cotransporter for Na+-neutral amino acid transport (in-
creasing the value of  the affinity constant, Km). 

For amino acids, the reduction in transport during 
chronic inflammation arises from a decrease in the affinity 
of  the transport systems, and may be mediated through 
an increase in leukotriene D4 (an eicosanoid pathway 
product), which is released in chronic inflammation[63]. 

The proton-amino acid transporter 1 (PEPT1) trans-
ports small neutral amino acids as well as small peptides, 
through mediation of  an inwardly directed H+ gradient 
across the enterocyte BBM. PEPT1 also transports drugs 
such as β-lactam and angiotensin-converting enzyme 
inhibitors. PEPT1 is under diurnal variation, relating to 
food intake. It is also influenced by transcription fac-
tors, such as Sp1, Cdx2, and PPAR-α. Leptin treatment 
increases enterocyte uptake of  di- and tripeptides via the 
PepT1 transporter, through transcription activation of  
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the MAPK pathway as well as translational activation via 
ribosomal protein S6[64].

The albumin D site-binding protein (DBP) expression 
is regulated in a circadian manner by oscillators called 
“circadian clocks”. These circadian clocks reside in the 
suprachiasmatic nuclei (SCN) of  the anterior hypothala-
mus. This clock system consists of  single-cell circadian 
oscillators that are composed of  several clock genes. The 
expression of  DBP is in phase with that of  PEPT1. DBP 
binds to the DBP binding site in the distal promoter re-
gion of  the PEPT1 gene, and thereby induces transcrip-
tional activity[65]. 

The SLC6A19 gene encodes the main sodium-
independent BBM transporter for neutral amino acids, 
B0AT1. The expression of  B0AT1 requires angiotensin-
converting enzyme 2 (ACE2)[66]. It is unknown whether 
the use of  inhibitors of  ACE2 in humans alters the pro-
tein homeostasis of  the body by way of  inhibiting the 
intestinal uptake of  neutral amino acids in the small in-
testine (as well as in the proximal tubule of  the kidney).

Small peptides are absorbed predominantly in the 
proximal small intestine, and free amino acids in the dis-
tal intestine. The uptake of  sugars is increased by a high 
carbohydrate diet by upregulation of  the Na+-dependent 
BBM glucose transporter SGLT, and the amino acid ala-
nine also controls its own absorption, through capsaicin-
sensitive primary afferent neuronal fibers as well as by the 
peptide calcitonin gene-related peptide, CGRP[67].

Glutamines become conditionally essential during 
metabolic stress. Glutamine prevents apoptosis and also 
plays a role in regulating glucose metabolism. For example, 
during fasting as well as in diabetes, the intestine by way 
of  its glucose-6 phosphatase (G6Pase) contributes about 
a quarter of  endogenous glucose production through glu-
coneogenesis.

After a RYGB, used to treat severe obesity, the glu-
cose sensing vagal afferents in the portal vein influence 
glucose homeostasis. After RYGB, the absorption of  glu-
tamine by B0AT is increased in both the biliopancreatic 
(3.8-fold increase) and the Roux limbs (1.4-fold increase), 
but not in the common channel. The levels of  glutamin-
ase are also increased, but the levels of  GEPase (intestinal 
gluconeogenesis) and PEPCK-C (cytosolic phosphoenol-
pyruvate carboxykinase, a measure of  glutamine metabo-
lism) were not seen to be affected[68].

Biotin
Biotin is a coenzyme for the “carboxylases” which cata-
lyze essential steps in FA biosynthesis, gluconeogenesis, 
and catabolism of  several amino acids and FAs. Biotin 
is essential for cellular functions including growth and 
development. The human intestine utilizes the sodium-
dependent multivitamin transporter (hSMVT) for biotin 
uptake across the enterocyte BBM[69]. The uptake process 
is adaptively regulated during biotin deficiency, by induc-
tion of  protein and mRNA levels of  hSMVT, mediated 
by transcriptional regulatory mechanisms. 

Two other functionally unrelated nutrients, the water-

soluble vitamin pantothenic acid and the metabolically 
important antioxidant lipoate, share the biotin transport 
system (hSMVT). 

Iron
Dietary non-heme ferric (Fe3+) iron in the intestinal 
lumen is reduced to the ferrous (Fe2+) form by cyto-
chrome b reductase1 (Cybrd1) in the BBM of  the ma-
ture villus enterocytes of  the proximal small intestine. 
Iron is transported across the BBM by the divalent-
metal ion transporter 1 (DMT1). DMT1 is also known 
as solute carrier family 11, member 2, (SLC11A2). Fe2+ 
is transported through the cytoplasm of  the enterocyte, 
and is then transferred across the BLM of  the entero-
cyte and into the body by the BLM exporter ferroportin 
(solute carrier family 40, 1, Slc40a1). There is coordi-
nated expression of  ferroportin in enterocytes as well as 
in tissue macrophages[70]. 

Ferroxidase (hephaestin) in the BLM promotes the 
conversion of  Fe2+ to Fe3+. Once the Fe3+ is in the vas-
cular system, it binds to transferrin (Tf). There are two 
mechanisms by which mRNA levels of  iron homeostasis-
related genes are regulated; firstly, by post-transcriptional 
mechanisms mediated by the iron response element/iron 
regulatory protein system, and secondly, by mechanisms 
related to transcriptional regulation. In peripheral tissues, 
the Tf-Tf  receptor (TfR) system delivers iron in the Tf-
Fe loaded TfR by way of  endocytosis. Unlike TfR1, TfR2 
mRNA does not contain an Fe-responsive element, and 
TfR2 mRNA expression is not regulated by intracellular 
Fe levels. Instead, hepatic TfR2 protein is regulated post-
translationally by diferric (Fe2+) transferrin. In this way, 
TfR2 is a sensor of  body iron status, and regulates duo-
denal Fe2+ absorption and liver Fe3+ uptake[71]. Hephaestin 
expression also occurs in gastric antrum, enteric nervous 
system and pancreatic β-cells[72].

Fe2+ uptake across the enterocyte BBM responds 
to body iron stores, whereas transport across the BLM 
is regulated by the enterocyte iron status. When the 
enterocyte intracellular ferritin level is increased, iron 
will be transferred across the BLM and into the portal 
blood. In addition to a potential cytoplasmic route for 
iron across the enterocyte, there is evidence of  vesicular 
transport or transcytosis of  apotransferrin (apoTf). Ap-
proximately half  of  iron transfer across the enterocyte 
BLM is by way of  apoTf  and non-apoTf-dependent 
vesicular pathways[73]. 

Factors that affect hepcidin have recently been re-
viewed and include body iron stores, rate of  erythropoie-
sis, hypoxia and inflammation[74]. The amount of  iron ab-
sorbed is regulated by the hepatic synthesis of  hepcidin. 
The most common inheritable form of  iron overload is 
an autosomal recessive disorder caused by mutation in 
the HFE gene, HFE-associated hereditary hemochro-
matosis (HH). HFE codes for a major histocompatibility 
complex class I (MHC-I)-like molecule. HFE also needs 
to be associated with a β 2 microglobulin for its appro-
priate expression of  the cell surface. 

3358 July 14, 2012|Volume 18|Issue 26|WJG|www.wjgnet.com

Thomson ABR et al . Recent advances in small bowel diseases



3359 July 14, 2012|Volume 18|Issue 26|WJG|www.wjgnet.com

HFE modulates the expression of  hepcidin in the 
liver. HFE may influence iron status by acting on hepato-
cytes and/or Kupffer cells, as well as on duodenocytes[75]. 
Hepcidin inhibits cellular efflux of  iron by binding to 
and inducing degradation of  ferroportin[76]. Hepcidin 
causes ferroportin on the BLM to be internalized and de-
graded[77]. In macrophages, hepcidin inhibits iron export 
by inducing ferroportin degradation, whereas in entero-
cytes hepcidin inhibits DMT1 transcription and thereby 
reduces BBM iron uptake[76,78]. Other critical regulators of  
systemic iron homeostasis are intestinal hypoxia-inducible 
transcription factors (HIFs)[79]. HIFs (HIF-1 and HIF-2) 
are critical mediators of  cellular adaptation to hypoxia. 
HIF-2α, but not HIF-1α, promotes iron absorption in 
mice[80].

The normal decline in intestinal iron absorption which 
occurs from neonatal to adult animals is due to loss of  the 
iron transporters (particularly ferroportin) from the distal 
small intestine and colon[81]. Curiously, in iron deficiency 
there is altered intestinal lipid metabolism resulting in pro-
duction of  biologically active lipid molecules (12-HETE, 
13-HODE and 13-HOTE), arising as a result of  changes 
in arachidonate12-lipooxygenase (Alox15)[82]. It is un-
known if  this has any clinical significance.

The cytochrome b reductase in the BBM of  the duo-
denal enterocytes (Dcyt6) reduces dietary iron from Fe3+ 
to Fe2+. Fe2+ is transported across the BBM by divalent 
metal transporter (DMT). The Fe2+ is transported into 
vesicles containing either ferroportin (FPN1) or hepha-
estin (Heph). These Fe2+-containing FPN1 and Heph-
containing vesicles cross the enterocyte cytoplasm to the 
BLM. The Heph oxidizes the Fe2+ to Fe3+. Fe3+ binds to 
transferrin and is released into the circulation[83]. Hepici-
din is secreted from the liver in response to the body iron 
stores: increased body iron stores result in increased hep-
cidin, decreased FPN1 mRNA expression and increased 
FPN1 internalization and degradation. The end result 
of  this repositioning of  the FPN1 from the BLM is to 
reduce iron efflux from across the BLM of  the duodeno-
cyte, and thereby decrease iron absorption.

Heph, therefore, is a protein in the BLM of  the duo-
denum which has ferroxidase activity to oxidize dietary 
Fe2+ to Fe3+. Heph is also found by immunocytochem-
istry to extend from the gastric antrum along the length 
of  the entire GI tract, and to be present in both the 
submucosa and the myenteric plexi of  the entire nervous 
system[72].

In HH, the variable phenotypic expression of  the 
homozygous HFE C282Y genotype has been attributed 
to possible disease-modifying genes which affect the 
iron transporters. In HH “expressors” and “nonexpres-
sors”, there is a significant difference in the expression 
of  DMT1 and DMT1 (IRE), such that HFE C282Y ho-
mozygotes without phenotypic expression do not have 
significantly decreased duodenal gene expression of  non-
transport genes compared with HH subjects with iron 
overload[84]. Also, regardless of  phenotype, “…there is 
coordinated regulation between duodenal expression of  

FPN1 [ferroportin] and DMT1 [divalent metal trans-
porter 1], FPN1 and DCYTB [ferriductase duodenal 
cytochrome b] and FPN1 and HEPH [ferroxidase hep-
haestin] and also DCYTB and HEPH…”.

Calcium
Canonical transient receptor potential (TRPC)1 acts as a 
calcium channel, with the total calcium effect being medi-
ated by calcium influx through calcium-permeable chan-
nels in the plasma membrane, as well as calcium release 
from intracellular stores such as the ER and cytoplasmic 
reticulum[85].

Much of  our understanding of  calcium (Ca2+) ab-
sorption has come from studies in animals. Ca2+ enters 
the enterocyte across the BBM using TRPV6 (aka CAT, 
or ECAC2), a Ca2+ channel. Intracellular Ca2+ is bound to 
calbindin-D9K, maintaining a low intracellular concentra-
tion of  free Ca2+. PMCAI (a Ca2+ ATPase) pumps Ca2+ 
across the BLM. The major storage form of  vitamin D 
is 25-hydroxy vitamin D (25OHD). In humans, 25OHD 
is metabolized by the gene product of  CYP27B1 
[25-hydroxy vitamin D 1α-hydroxylase (1αOHase)] to 
the biologically active 1α, 25-dihydroxycholecalciferol 
[1,25(OH)2O3]. 1αOHase forms 25OHD, which in-
creases the transcription of  TRPV6, PMCA, and CYP24, 
thereby enhancing Ca2+ absorption[86].

The active hormonal form of  vitamin D is 1.25 dihy-
droxyvitamin D3 [1,25(OH)2D]. 1,25(OH)2D activates 
the vitamin D receptor (VDR) which heterodimerizes 
with the retinoid X receptor to interact on response units 
such as the apical membrane Ca2+ channel, TRPV6 (the 
transient receptor potential cation channel, subfamily V, 
member 6), and the Ca2+ binding protein calcium bind-
ing protein D9k (calbindin D9k). VDR and 1,25(OH)2D, 
acting on TRDV6 and calbindin D9k, maintain high rates 
of  Ca2+ absorption[87].

Copper
Copper is a mineral essential for normal growth and 
development. The level of  copper in the body is regu-
lated, because excessive amounts may be toxic. The cop-
per transporter (Ctr1) is copper-specific; its transport 
function is energy-independent and saturable. Copper 
efflux from enterocytes across the BLM is mediated by 
ATP7A. The ability of  suckling rat pups to tolerate vary-
ing amounts of  dietary copper may be due to changes in 
copper transporters, Ctr1 and ATP7A, facilitated by tran-
scriptional and post translational mechanisms[88]. 

The Steap proteins on the BBM reduce copper to 
the cuprous form, which is then transported by Ctr1 
across the BBM. In the enterocyte, copper is bound to 
chaperone Atox1, and reaches ATP7A for export across 
the BLM[89]. When copper intake is high, Ctr1 is endo-
cytosed into the enterocyte, where there is induction of  
the copper-binding protein metallothionein, and ATP7A 
moves to a more basal lateral location. Maturation of  
small intestinal copper transport occurs by way of  in-
creased abundance and local alteration of  Ctr1, ATP7A 
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and ATP7B.

Zinc
The intestinal absorption of  zinc is regulated to meet 
zinc requirements in the body. ZIP4 is a major intesti-
nal zinc transporter; absorptive upregulation of  ZIP4 
enhances the uptake of  zinc from the intestinal lumen, 
replenishing any deficiency. When the zinc content of  
the diet is low, there is induction of  the transcription 
factor Kruppel-like factor 4 (KLF4)[90], which leads to in-
creased intestinal zinc uptake, thereby preventing disease 
manifestations of  zinc deficiency such as acrodermatitis 
enteropathica.

SHORT BOWEL SYNDROME AND 
TRANSPLANTATION
“Intestinal failure” refers to a condition in which inad-
equate digestion and/or absorption of  nutrients leads 
to malnutrition and/or dehydration. The most common 
condition resulting in intestinal failure is the short bowel 
syndrome (SBS). The SBS occurs following massive 
resection of  the small intestine[91]. SBS may be defined 
anatomically as less than 30% of  the normal intestinal 
length (less than 200 cm in adults). In the United States, 
the estimated annual prevalence of  SBS in patients who 
have non-malignant intestinal disease, and who require 
home parenteral nutrition, is at least 4 per 105. The point 
prevalence is reported to be between 0.6 and 12.7 per 
105. The commonest cause of  SBS is surgical resection 
of  small intestine for Crohn’s disease. Other common 
causes include mesenteric infarction, congenital abnor-
malities, and multiple strictures due to adhesions or ab-
dominal irradiation. 

Early in the adaptive response after an intestinal re-
section, there is an increase in proliferation of  intestinal 
epithelium, with increased depth of  crypts, increased vil-
lous height, and increased microvillous surface area. The 
process of  adaptation involves the presence of  luminal 
nutrients, gastrointestinal secretions, the mesenchyme, as 
well as neuronal and hormonal factors. Expansion of  the 
number of  intestinal stem cells (ISC) occurs following 
intestinal resection. This increases the number of  intes-
tinal crypts, through the process of  intestinal dilation[92]. 
These ISCs are located deep in the crypts of  Lieberkuhn. 
Isolation of  ISCs has been simplified by the use of  side 
population sorting of  viable fractions of  cell progenitor 
characteristics[93].

Wnt proteins are regulators of  cell proliferation, 
differentiation and adhesion. Mutation in mice of  the 
adenomatous polyposis coli (APC) gene, together with 
augmented Wnt signaling in the intestine, results in an 
enhanced adaptive response to extensive small bowel 
resection[94]. The increased mucosal surface area occur-
ring following resection is due to sustained increases in 
crypt depth and villus height. This arises from resetting 
of  proliferative responses, with increases in expression of  
mRNAs associated with proliferation (c-MYC) and dif-

ferentiation of  goblet cells and Paneth cells[95]. This raises 
the possibility that early expansion of  intestinal secretory 
lineages within the epithelium may serve to amplify the 
signal(s) for initiating and sustaining intestinal adaptation. 
Further proof  of  concept studies are needed.

The Hedgehog (Hh) signaling pathway plays an im-
portant role in epithelial-mesenchymal interactions in gut 
morphogenesis and in epithelial cell proliferation. Hh 
proteins are produced in epithelial cells, and interact with 
underlying mesenchymal/stromal cell receptors. Blocking 
Hh signaling in the fetus or neonate leads to increased 
crypt cell proliferation, crypt-villus axis structural abnor-
malities, and alterations in enterocyte morphology. In 
Hh antibody-treated mice following intestinal resection, 
enterocyte migration from the crypt to the villus tip is 
increased, and apoptosis is also increased[96]. 

The epidermal growth factor receptor (EGFR) is 
important in the pathogenesis of  intestinal adaptation. 
This EGFR-mediated induction of  enterocyte prolifera-
tion requires induced expression of  the cyclin-dependent 
kinase inhibitor p21 to transcribe waf1/cip1, as well as 
mitogen-activated protein kinase (MAPK)[97]. The cyclin-
dependent kinase inhibitor (CDK1) p21waf1/cip1 may 
be necessary for induction of  enterocyte proliferation fol-
lowing initiation of  intestinal adaptation[98]. To maintain 
the new homeostasis achieved with adaptation, the high 
cell production rate must be matched by an equivalent 
rate of  cell loss. EGFR signaling regulates specific Dcl-2 
(Dax and Dcl-w) in the intestinal crypts, and this regula-
tion of  Dcl-2 influences apoptosis following extensive 
small bowel resection[99]. 

The vascular endothelial growth factor (VEGF) 
enhances angiogenesis (the growth of  new blood ves-
sels from pre-existing blood channels). Angiogenesis is 
a requirement for successful healing or adaptation. As 
expected, VEGF is important in the intestinal adaptive 
response[100]. 

The bcl-2 family of  intracellular proteins has apoptot-
ic properties. An increase in the ratio between pro- and 
anti-apoptotic members of  these pathways occurs after 
massive small bowel resection, with upregulation of  in-
ducers of  apoptosis including Fas and TNF-α by way of  
the death receptor pathway. Angiotensin converting en-
zyme (ACE) also promotes apoptosis in association with 
a reduced bax-bcl-2 protein ratio[101]. Thus, ACE may play 
an important role in epithelial cell adaptive responses.

GLP-2 is released from the ileum and colon in re-
sponse to nutrients in the intestinal lumen. GLP-2 en-
hances morphologic and proliferative indices of  intestinal 
adaptation, and this adaptation is inhibited by GLP-2 im-
munoneutralization[102]. GLP-2 administration enhances 
intestinal crypt cell proliferation and villus height, and 
increases expression of  glucose transporters. Basal and 
postprandial GLP-2 levels are correlated with the magni-
tude of  intestinal resection in experimental SBS[103]. 

A number of  hormones and peptides act on the in-
testinal tract[104]. For example, glucagon-like peptide-1 
(GLP-1) stimulates glucose-dependent insulin secretion, 
pancreatic B-cell proliferation, and reduces lipid absorp-
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tion, food intake and the rate of  gastric emptying[105]. 
GLP-2 may reduce Ach release from the enteric nervous 
system, and thereby reduce neuronally evoked intestinal 
crypt epithelial Cl- secretion[106]. GLP-2 enhances the 
absorption of  sugars and lipids[107] and has a therapeutic 
potential in patients with the SBS[108]. 

SBS patients with an end jejunostomy and no colon 
have limited meal-stimulated GLP-2 secretion. This is 
due to the removal of  GLP-2 secreting L cells which are 
located primarily in the terminal ileum and colon. Tedu-
glutide (ALX-0600), a dipeptidyl peptidase IV resistant 
GLP-2 analog, has been administered to enhance the 
adaptive process in patients with SBS, and to aid intes-
tinal absorption[109]. Thus, there is a therapeutic role for 
GLP-2 analogs in SBS.

Long-term parenteral nutritional (PN) support may be 
necessary in persons with SBS. Because of  the potential 
complications of  PN, such as infection or cholestatic liver 
disease, efforts have been undertaken to understand and 
to improve the intestinal adaptive process, and to thereby 
enhance nutrient absorption and to possibly reduce the 
need for PN[110]. The success of  surgical procedures de-
signed to optimize intestinal absorptive function, such as 
bowel tapering or lengthening, has only been modest. 

Small intestinal transplantation is an accepted treat-
ment for severe intestinal failure. Over the past 50 years, 
more than a thousand children have received small bowel 
transplantation (SBT), alone or with liver and other or-
gans. The one- and five-year graft survival routinely ex-
ceeds 90% and 80%, respectively[111]. However, transplan-
tation is usually used only in those persons who have SBS 
with complications from home PN. With good control 
of  acute rejection and infections, patient and graft surviv-
al after small intestinal transplantation is approximately 
77% and 65%, respectively. Patient and graft survivals 
of  60% and 59% are seen in those with combined liver 
and small bowel transplantation. Unfortunately, almost 
half  of  these transplanted patients require enteral nutri-
tion again within two years after transplantation[112]. Thus, 
small bowel transplantation has its risks and limitations 
for the SBS patient.

NOD2 is an intercellular microbial sensor present 
in macrophages, dendritic cells and Paneth cells. NOD2 
polymorphisms may be associated with impaired expres-
sion of  certain Paneth cell-derived antimicrobial peptides. 
The likelihood of  allograft failure is about one hundred-
fold higher in small bowel transplantation recipients with 
mutant NOD2 alleles, as compared with recipients with 
wild-type NOD2 loci[113]. 

While intestinal stem cell transplantation may play 
a role in refractory patients with Crohn’s disease (CD) 
or celiac disease, the role of  stem cells in treatment of  
other intestinal disorders remains at an early stage of  
consideration[114,115]. 

Patients with short bowel syndrome from other non-
CD causes were recently reported to develop CD in the 
residual intestine. The authors suggested that this short-
ened intestine may be a predisposing factor because of  

alterations in the motility of  the intestine as well as altera-
tions in the intestinal flora[116]. In persons with a short 
bowel syndrome, continuous tube feeding alone or with 
oral feeding enhances nutrient absorption, as compared 
with oral intake alone[117]. “SBS results from surgical re-
section, congenital defect, a disease-associated loss of  
absorption and is characterized by the inability to maintain 
protein-energy, fluid, electrolyte, or micronutrient balances 
when on a conveniently accepted, normal diet”[118].

SMOOTH MUSCLE FUNCTION AND 
INTESTINAL MOTILITY
Segmentation in the intestine consists of  rhythmic con-
tractions of  the inner circular muscle and occurs after 
meals. These rhythmic contractions are regulated by slow 
waves, with the enteric nervous system (ENS) having a 
permissive role. These stationary contractions are inde-
pendent of  slow-wave activity, while simultaneously acti-
vating surrounding inhibitory motor neurons[119]. 

The ENS “…coordinates the peristaltic and secretory 
activity of  the gut and is also involved in the regulation 
of  blood flow and modulation of  the immune system”[120]. 
ENS and enteric glial cells (EGCs) are in the submucosal 
plexus and the myenteric plexus. The ENS is composed 
of  two ganglionated plexuses, the submucosal and the 
myenteric plexus, as well as the mucosal plexus. This ex-
tends within the lamina muscularis mucosae and the lam-
ina propria mucosae beneath the epithelial lining of  the 
intestine. Activation of  human submucosal neurons de-
creases cellular permeability, and also decreases intestinal 
epithelial cell proliferation. Neurons respond to changes 
in intracellular calcium levels or to the expression of  
activation markers such as c-FOS. TTF-β1 mRNA is ex-
pressed and TGF-β1 is secreted by EGCs and they have 
anti-proliferative effects on intestinal epithelial cells[121]. 
EGCs promote neuronal survival by regulating substrate 
supply, and thereby help to maintain neuronal homeosta-
sis. EGCs also synthesize cytokines, and in inflammatory 
conditions may modulate glia proliferation. Glial disrup-
tion alters neurochemical coding of  the enteric neurons, 
and leads to dysmotility[122]. 

A method has been described for isolation and cul-
ture of  primary enteric neurons. These cell lines have 
neuronal characteristics similar to those of  primary en-
teric neurons[123]. It is possible to isolate and expand en-
teric progenitor cells from human adult tissue[120], thereby 
providing a potential future role for cell-based therapies 
for disorders of  the ENS. 

Patients with IBS may have abnormal colonic transit, 
as well as increased or decreased rectal sensation. The 
β3-adrenoceptor (β3-AR) is a member of  the family of  
G-protein-coupled receptors. β3-ARs are co-localized 
with choline acetyltransferase in human neurons in the 
cholinergic myenteric and submucosal plexus. Selective 
β3-AR agonists inhibit cholinergic contractions, and 
enhance the release of  somatostatin without altering car-
bachol-induced contractions. β3-ARs inhibit cholinergic 
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contractions and inhibit spontaneous contraction of  the 
human colon, as well as relaxing pre-contracted colonic 
longitudinal and circular muscle. Somatostatin may act as 
an endogenous analgesic substance, and a β-adrenergic 
agonist may modify visceral sensitivity. Solabegron is a 
β3-AR agonist which has been studied in healthy human 
volunteers, where it is well tolerated[124]. This raises the 
possibility that β3-ARs may be useful for the pain suf-
fered by persons with IBS. 

The IGF system influences cell development, growth, 
and apoptosis. IGF-binding proteins (IGFBP-1 to -6) 
transport IGFs in the blood. IGFBP-3 to -5 are present 
in human smooth muscle, and modify the interaction of  
IGF-I with its receptor, IGF-IR. IGFBP-5 has a role in 
regulating smooth muscle growth independent of  IGF-1, 
by activating the G protein Gi3[125].

Acetylcholine (Ach) is released from cholinergic neu-
rons in the myenteric plexus, and activates M2 and M3 
receptors on the smooth muscles of  the gastrointestinal 
tract. This results in smooth muscle contraction. The M2 
and M3 receptors are expressed in the ratio of  approxi-
mately 75%/25%, respectively, and are coupled to TRPC4 
and TRPC6 (transient receptor potential channels), which 
depolarize the intestinal smooth muscle cells[126]. Choliner-
gic nerves contain substance P, and there are also nitrergic 
nerves and nerves which release ATP as well as other me-
diators in the deep muscular plexus. 

Substance P (SP)-mediated sustained contraction of  
the small intestine is negatively regulated at a pre-synaptic 
level by the M2 receptor, whereas the atropine-sensitive 
phasic contraction is positively regulated at the M2 re-
ceptor[127]. Cytokines exert differential effects on the 
muscarinic receptors of  intestinal longitudinal smooth 
muscle[128]. Corticotropin-releasing-factor (CRF) acts 
through both central and peripheral mechanisms. CRF 
induces Ca2+ transients in myenteric neurons via a CRF-1 
receptor-dependent mechanism[129]. Calcium influx 
through voltage-operated Ca2+ channels, and in particular 
the R-type channels, causes the calcium transients neces-
sary for muscle contraction. 

Nonselective cationic channels in the smooth muscle 
cells generate muscarinic receptor-induced nonselective 
cation currents (MICAT), with increased Ca2+ influx by 
way of  voltage-dependent Ca2+ channels. The Ca2+ leads 
to smooth muscle contraction, and peristalsis.

The gastrointestinal tract contains most of  the sero-
tonin (5-hydroxytryptamine, 5-HT) in the body, where it 
acts as a neurotransmitter, neuromodulator, and a para-
crine factor. 5-HT is produced and released by entero-
chromaffin cells and by enteric nerves of  the intestine. 
In addition to 5-HT having an effect on motility, it also 
regulates cell survival and proliferation. The 5-HT2D 
receptors are expressed on the interstitial cells of  Cajal 
(ICC). Exogenous 5-HT regulates the number of  ICC 
through the 5-HT2B receptor, in part by increasing ICC 
proliferation[130].

The sensory intrinsic primary afferent neurons 
(IPANs) from an ENS network modify enteric reflexes, 

which in turn alter gastrointestinal functions. The sensory 
terminals of  IPANs are close to the enterochromaffin 
cells, which contain serotonin (5-HT). Extrinsic afferents 
(vagus and spinal afferents) have similar innervation ter-
ritories, and both respond to chemical and to mechanical 
stimulation. In response to mechanical stimuli, extrinsic 
afferent neurons do not crosstalk with the IPANs. 5-HT 
activates the extrinsic afferents by a Ca2+-dependent path-
way which is different from the N-type Ca2+ channels in 
IPANs[131].

The topic of  the role of  the ICC in gastrointestinal 
motility has been reviewed[132]. It has become controver-
sial with regard to the way nerves transmit their signals to 
regulate activity of  intestinal smooth muscle[133]: the c-kit 
receptor may be of  importance[134]. ICC help in maintain-
ing the gradient of  resting membrane potential, rather 
than by pacing the slow waves or assisting in their propa-
gation[135]. It is by volume transmission rather than wire 
transmission via the ICC that there is communication be-
tween the enteric neuronal varicosities and muscle cells. 
While the ICC may be impaired in numerous motility dis-
orders, “…a cause-and-effect relationship between ICC 
impairment and motility dysfunction is not established”. 
In the small intestine, ICC in the deep muscular plexus 
mediate neurotransmission, whereas ICC surrounding the 
myenteric plexus generate slow waves. The slow waves 
are transferred to the adjacent smooth muscles, and can 
be recorded as straight “…spontaneous, rhythmic, electri-
cal oscillations of  the resting membrane potential”[136]. 

The ICC occur in the myenteric plexus, within either 
the circular (CM) or longitudinal (LM) muscles, contrib-
uting to pacing these muscle slow waves. ICC also line 
the septa (ICC-SEP) separating circular muscle bundles, 
and ICC-SEP form an important conduction pathway 
for spreading excitation deep into muscle bundles in the 
human jejunum[137]. The Na+/K+/2Cl- cotransporter 
(NKCC1) is involved in generation of  slow waves in the 
jejunal musculature. ICC at the deep muscular plexus 
(ICC-DMP) are closely associated with the enteric nerve 
endings. Varicosities of  nitrergic and other nerves are 
found on ICC-DMP or on CD34-positive, c-kit-negative 
fibroblast-like cells. The gap junction coupling is neces-
sary for pacing or nerve transmission to the circuit or 
muscle of  the mouse intestine[138]. 

The ICC act as pacemakers, producing slow waves 
of  depolarization along the intestinal muscle. A transient 
outward K+ current may moderate the uptake of  the 
pacemaker potential, resulting in motility arising from the 
waves of  depolarization[139].

Bone morphogenetic protein 2 (BMP-2) is a regula-
tory molecule which induces the phosphorylation of  the 
Smad1 signaling cascade, and thereby increases the differ-
entiation of  the neurons of  the ENS[140].

Endogenous adenosine (eADO) is a metabolite of  
ATP that acts on A1, A2A and A2B receptors on enteric 
neurons to suppress coordinated responses triggered by 
immune-histamine H2 receptor activation[141].

Extracellular adenosine levels control adenosine re-
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ceptor signaling. Enzymes that produce CD73 or degrade 
adenosine deaminase (adenosine), and thereby alter activ-
ity of  transport systems in the plasma membrane, influ-
ence these extracellular adenosine levels, thereby affecting 
adenosine receptor signaling, which in turn alters intesti-
nal motility[142]. β-Adrenoceptors are G-protein-coupled 
receptors which, when activated by an agonist, stimulate 
adenylyl cyclase to produce the second messenger, cAMP. 
cAMP activates cAMP-dependent protein kinase (PKA). 
There is compartmentalization of  the process by which 
these proteins form an interaction. 

Caveolae are non-clathrin-coded plasma membrane 
invaginations which are present in a variety of  cells, in-
cluding monocytes. These caveoli are present in micro-
domains, also known as lipid rafts, an area of  the plasma 
membrane which is rich in cholesterol and sphingolipid. 
The caveolae are coated on their cytoplasmic side by ca-
veolins, a family of  integral membrane proteins including 
adenylyl cyclase, which are involved in signal transduc-
tion. In knockout mice depleted of  caveolin-1, there is 
reduced PKA activity and thereby reduced function of  
the β-adrenoceptors[143]. 

Adenosine is generally accepted to be the ligand for 
the P1 receptor, and ATP is the ligand for P2 receptors. 
Adenosine A2A receptors on neuronal cells are excitatory 
in nature, but A1 receptors in the submucosal plexus 
have inhibitory actions[144]. In the murine enteric nervous 
system, adenosine “… suppresses synaptic transmission, 
efferent function of  extrinsic capsaicin-sensitive sensory 
nerves, mucosal reflexes, neuroeffector transmission, 
and morphine withdrawal diarrhea”. Purinergic signaling 
pathways are important in sensory signaling in entero-
chromaffin cells and secretomotor reflexes in the intesti-
nal tract; purinergic modulation of  synaptic transmission 
also occurs in human intestine[145]. 

Intestinal motor activity and secretion are linked, and 
are changed cyclically in a rhythm called the migrating 
motor complex (MMC). Submucous neurons are both 
directly and indirectly mechanosensitive, and myenteric 
neurons can be activated by stretch. There are both rapid 
and slow components to the potential difference (PD) 
response to intestinal stretching or distension. The rapid 
component operates via nicotinic transmission and NK1 
receptors; the slow component operates by way of  VIP-
ergic transmission and involves both NK1 and NK3 
receptors[146]. 

Intestinal inflammation causes hyperplasia of  smooth 
muscle, and this thickening of  the smooth muscle layer 
results in dysmotility. IL-1β is a proinflammatory cyto-
kine which results in production of  PGE2 and NO from 
macrophages within the ileal smooth muscle tissue, and 
IL-1β acts as an anti-proliferative mediator[147]. Nematode 
infection in the small intestine induces a smooth muscle 
hypercontractility that depends on IL-4 and IL-3 (Th-2 
cytokines) activation of  the signal transducer and activa-
tor of  transcription (STAT) 6. 5-HT2A is one of  the mol-
ecules downstream from STAT6 activation that mediates 
changes in smooth muscle function[148]. 

Integrins are a family of  transmembrane proteins, and 
the expression of  integrins and their preferred ligands 
is tissue specific. In the small intestine, occupancy of  
a specific integrin receptor acts in concert with IGF-I-
stimulated receptor tyrosine kinase activity on muscle 
cell growth[149]. Both insulin and IGF-I prevent apoptosis 
through the activation of  phosphatidylinositosol 3-kinase 
(PIK3-kinase). Through the subsequent activation of  the 
downstream protein serine/3 kinase, Akt IGF-I stimu-
lates proliferation and inhibits apoptosis in intestinal 
smooth muscle[150]. 

Mechanisms underlying the sustained tonic contrac-
tion of  the intestinal smooth muscle include prolonged 
myosin-like chain phosphorylation, phosphorylation of  
cytoskeleton filaments and associated proteins, alterations 
in Ca2+ influx, and increased sensitivity of  contractile 
elements to Ca2+[151]. Muscarinic agonists acting through 
M3 receptors contract gastrointestinal smooth muscle by 
a protein kinase C (PKC)-dependent mechanism in the 
guinea pig ileum; this is thought to be through a novel 
PKC, PKC-δ[151]. 

Electrical stimulation may be synchronized with the 
intrinsic intestinal smooth muscle slow waves [synchro-
nized intestinal electrical stimulation (SIES)]. SIES in-
duces small intestinal contractions during phase I of  the 
MMC in the fed state, and improves postprandial small 
intestinal hypomotility[152]. SIES remains to be of  proven 
clinical use.

There are olfactory receptors in human mucosal en-
terochromaffin cells. Odorants present in the luminal en-
vironment of  the gut may stimulate serotonin release by 
way of  olfactory receptors present in these EC cells[153]. 

The “ileal break” describes the process by which high 
concentrations of  lipids in the terminal ileum will slow 
gastric emptying and intestinal transit. High intra-ileal 
carbohydrate and lipid loads induce phase Ⅲ motility, 
probably through release of  neurohormonal mediators, 
glucagon-like peptide (GLP-1) and peptideYY (PYY). 
Physiological postprandial ileal lipid concentrations in-
hibit human digestive pancreatic protease and bile acid 
output, but do not influence intestinal motor activity[154].

Acute radiation exposure of  the abdomen is associ-
ated with accelerated small intestinal transit through 
involvement of  cholinergic receptors. This raises the 
possibility that M3 receptors “…may provide specific 
therapeutic targets in acute radiation enteritis”[155]. The 
mucosal damage in the small intestine produced by ab-
dominal radiation may occur independently of  intesti-
nal dysmotility, and may result in diarrhea and nutrient 
malabsorption. Interestingly, the high molecular weight 
polyethylene glycol-based copolymer PEG 15-20 pre-
vents radiation-induced intestinal injury in rats, prevents 
apoptosis and lethal sepsis due to Pseudomonas aeruginosa in 
mice, and protects cultured intestinal epithelial cells from 
apoptosis and microbial adherence, possibly by binding 
characteristic lipid raft coalescence during the develop-
ment of  intestinal radiation damage[156].

The mechanisms of  drug-associated changes in intes-
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tinal motility have been reviewed[157]. Chronic intestinal 
dysmotility or chronic intestinal pseudo-obstruction may 
be primary, or secondary to disorders such as diabetes 
mellitus or scleroderma. These disorders may affect iso-
lated components of  the GI tract, or the entire GI tract. 
There may be absence of  the phase Ⅲ component of  the 
MMC, postprandial low amplitude contractions, bursts 
of  sustained uncoordinated phasic contractions, and clus-
ters of  contractions. All of  these mechanisms contribute 
to the pathophysiology and the high morbidity of  these 
dysmotility syndromes[158]. 

Cannabis (CB) and cannabinoid receptors inhibit in-
testinal motility. The CB1 receptor is present in the cen-
tral and peripheral nervous system, including the enteric 
nervous system, as well as in non-neural tissues such 
as liver and adipose tissue. CB2 receptor expression is 
present in cells of  the immune system as well as in the 
brain. Lipopolysaccharide (LPS) enhances intestinal 
transit, and this effect is reversed by cannabinoid CB2 
receptor agonists[159]. 

Lubiprostone is a bicyclic FA compound, a prostone 
derived from a metabolite of  prostaglandin E1. Prostones 
have highly selective activity on ClC-2 chloride channels, 
enhancing intestinal fluid secretion, but also accelerating 
small intestinal and colonic transit[160]. These compounds 
may be used clinically for the treatment of  constipation.

Bowel inflammation may lead to abnormalities in in-
testinal motor and secretory pattern, through changes in 
enterochromaffin cell activity, as well as through changes 
in the excitability of  primary afferent neurons of  the 
enteric nervous system. Inflammation at one site of  the 
intestine also alters the cellular components of  enteric re-
flux circuits in non-inflamed regions[161]. Intestinal inflam-
mation is a key event in the pathogenesis of  post-opera-
tive ileus, and in rats the degree of  intestinal paralysis is 
directly proportional to the degree of  intestinal handling 
and inflammation which occurs at the time of  surgery. 
Intestinal handling triggers mast cell activation and pro-
longs post-operative ileus[162]. The therapeutic role of  this 
observation in preventing or treating post-operative ileus 
remains to be proven.

There are three endogenously-produced biologically-
active gases, carbon monoxide, hydrogen sulfide and 
nitric oxide. Methane is also produced by enteric bacteria 
in one- to two-thirds of  humans, and may slow intestinal 
transit by augmenting small bowel contractile activity[163]. 
Excess methane production has been recognized in a 
proportion of  persons with constipation-predominant 
IBS. 

Substance P and neurokinin A are the main endog-
enous tachykinins in the enteric neurons. Stimulation 
of  the NK3R receptor in the GI tract activates protein 
kinase C, then protein kinase D, leading to noncholin-
ergic slow excitatory postsynaptic potentials in the my-
enteric intrinsic primary afferent neurons of  the guinea 
pig ileum[164].

The ICC generate pacemaker potentials which drive 
the electric slow waves that contribute to neuromuscular 

signaling leading to motor neurotransmission in the GI 
tract. ICC express receptor tyrosine kinase c-kit. Kit gain-
of-function mutations lead to hyperplasia of  ICC, with 
maintenance of  both pacemaker function and normal 
enteric neural responses[165]. This is in contrast to the as-
sociation between fewer ICC and the development of  
disturbances in GI motility. Ano1 is part of  a family of  
10 gene products, and labels ICC around ganglia in the 
deep muscular plexus[166]. Because Ano1 does not label 
mast cells, it may prove to be a better marker than c-kit 
for ICC and for mesenchymal tumors.

C-kit immunohistochemistry is used to diagnose gas-
trointestinal stromal tumors (GIST), since about 94% 
of  mesenchymal tumors are positive for c-kit receptors. 
Between 80% and 90% of  GIST tumors have gain-of-
function mutations in Kit.

Stimulation of  the myenteric plexus of  the ENS 
by food in the intestinal lumen or by stretching of  the 
intestine activates mucosal pathways to produce three 
different types of  slow excitatory post-synaptic poten-
tials (EPSPs) which are mediated by tachykinin or purine 
nucleotide neurons[167]. The predominant cell type in the 
ENS, the glial cells, provide functional purinergic neuron-
glia communication in the ENS[168].

Myofibroblasts are an intermediate cell type between 
smooth muscle cells and fibroblasts. In persons with 
Crohn’s disease, there is disruption of  the subepithelial 
myofibroblasts of  the epithelial sheath, adding to the 
suggestion that myofibroblasts may be involved in the 
pathogenesis of  inflammatory bowel disease[169]. This role 
of  myofibroblasts is likely because they serve as a com-
ponent of  the innate immune system, and respond to 
luminal bacterial adjuvants such as LPS[170].

Manipulation of  the intestine rapidly causes activation 
of  the p38 nitrogen-activated protein kinase (MAPK), a 
stress-activated protein kinase. There is liberation of  NO 
and prostaglandins from the macrophages in the muscu-
laris external to the intestine, and the extravasation of  im-
munocompetent white blood cells[171]. In turn, this leads 
to postoperative ileus, which can be prevented by giving 
mice a single preoperative dose of  semapimod, which 
inhibits p38-MAPK and NO production in macrophages. 
This is an exciting development for its possible future ap-
plication to humans undergoing abdominal surgery.

An increase in the intracellular concentration of  Ca2+ 
in the smooth muscle of  the intestine results from the re-
lease of  Ca2+ from intracellular stores, as well as from the 
entry of  Ca2+ into the cell through L-type Ca2+ channels. 
With stretching of  the wall of  the intestine there devel-
ops tension in the plasmalemmal membrane. This tension 
is transmitted to the mechanosensitive L-type Ca2+ chan-
nels, thereby leading to increased intracellular Ca2+ and 
the possibility for smooth muscle contraction[172].

The peristaltic reflex is mediated by IPANs (intestine 
sensory efferent neurons), interneurons, as well as excit-
atory and inhibitory motor neurons. The antipropulsive 
effect of  cannabinoids on the small and large intestine 
result from the inhibition of  the calcitonin gene-related 
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peptide (CGRP)-containing neurons that begin the peri-
staltic reflex, as well as the inhibition of  both the excit-
atory cholinergic/tachykininergic and inhibitory VIPergic 
motor neurons responsible for ascending contraction and 
descending relaxation, respectively[173].

The balance between myosin light chain kinase 
(MLCK) and myosin light chain phosphatase (MLCP) 
controls the overall phosphorylation of  the 20-kDa 
regulatory light chains of  myosin Ⅲ. Ca2+-independent 
contraction of  longitudinal ileal smooth muscle is poten-
tiated by a zipper-interacting protein kinase pseudosub-
strate peptide[174]. This raises the possibility of  developing 
synthetic peptides from the autoinhibitory region of  the 
smooth muscle myosin light chain kinase to treat hypo-
motility disorders of  the GI tract.

TUMORS
Small bowel cancers represent a heterogenous group of  
rare tumors, and the prognosis depends upon the cell 
type. The standardized incidence rate for primary ma-
lignant small bowel cancer is 1.2/105 men and 0.8/105 
women[175]. The four main histological types are adeno-
carcinoma (40%), carcinoid (31%), lymphoma (20%) and 
sarcoma (9%). The five-year survival rate is about 37%, 
and varies between 57% for neuroendocrine tumors and 
18% for sarcomas. 

The gastrointestinal tract is the most common ex-
tranodal site for non-Hodgkin’s lymphoma (NHL). GI 
NHL may be primary or secondary, the latter usually 
representing involvement from diffuse nodal disease. GI 
NHL used to be increased in the HIV-positive popula-
tion, but with HAART therapy, GI NHL has virtually 
disappeared[176]. One intestinal nuclear receptor map has 
been developed, which “…indicates that the localization 
pattern of  a receptor in normal intestine (signature) pre-
dicts the modulation of  its expression in tumors”[177].

DIAGNOSTIC IMAGING
Imaging techniques for the small intestine include the 
classic small bowel series, enteroclysis, CT enterography, 
MR enterography, and more recently capsule endoscopy 
(CE), push enteroscopy (PE), and double balloon enter-
oscopy (DBE)[178]. The topic of  recent developments in 
CE has been reviewed[179-182]. Optimal bowel preparation 
for CE is a PEG solution plus simethicone[183]. Using 
duodenal histology as the gold standard, the performance 
characteristics of  CE for the diagnosis of  celiac disease 
are: sensitivity 88% (95% CI: 76%-99%), specificity 91% 
(95% CI: 81%-100%), positive predictive value 97% (95% 
CI: 90%-100%), negative predictive value 71% (95% CI: 
56%-87%), as well as positive and negative likelihood ra-
tios of  9.6 and 0.14, respectively[184]. Of  43 celiac patients, 
42% had mucosal changes extending beyond the duode-
num, and in 7% the alterations involved the entire small 
intestine. Interobserver agreement for the diagnosis of  
celiac disease by CE ranges between 79% and 94%; and κ 

values range between 0.6 and 0.9. Murray et al[185] reported 
a sensitivity of  CE for the detection of  small intestinal 
mucosal atrophy, as compared with upper endoscopy, to 
be 92% vs 55% (P = 0.0005), with a specificity of  100%. 
Other authors have agreed with this high sensitivity of  
CE (over 90%), but reported a much lower specificity of  
approximately 64%[186]. 

The topic of  small bowel enteroscopy has been re-
viewed[187]. CE is contraindicated under a number of  
circumstances[188]: (1) Swallowing disorder; (2) Known 
or suspected intestinal obstruction, strictures, or fistulae; 
(3) Pregnancy; (4) Children less than 10 years old; and (5) 
Persons with implanted electromedical devices.

In 120 persons on long-term NSAIDs or COX-2 se-
lective agents, CE demonstrated that the 62% with abnor-
mal CE had denuded areas (39%), mucosal breaks (29%), 
or reddened folds (13%)[189]. CE demonstrated small in-
testinal polyps in 60% of  subjects with familial adenoma-
tous polyposis (FAP) and in 75% of  subjects with Peutz-
Jeghers Syndrome[190].

A meta-analysis of  nine studies compared CE vs other 
diagnostic methods for Crohn’s disease. The diagnostic 
yield for CE vs barium radiography was 63% and 23%, 
respectively. The yield for CE vs ileoscopy was 61% and 
46%, respectively, and the yield of  CE compared to com-
puted tomography (CT) enterography/CT enteroclysis 
was 69% and 30%, respectively. A meta-analysis of  the 
yield of  CE vs other modality examinations of  the small 
intestine in patients with non-stricturing Crohn’s disease 
showed that CE was superior to small bowel barium ra-
diography, ileoscopy, CT enterography, CT enteroclysis 
and PE, as well as small bowel magnetic resonance imag-
ing (MRI)[191]. In patients with previous surgical resection 
for Crohn’s disease, CE is inferior to ileocolonoscopy, 
but does detect about two-thirds of  lesions outside the 
reach of  the colonoscope[192]. These authors suggest that 
CE “…cannot systematically replace ileocolonoscopy in 
the regular management of  patients after surgery” (for 
Crohn’s disease). The CE findings have an impact on pa-
tient management: physicians change post-CE diagnostic 
strategy in 61% of  patients[193]. Clearly, CE has proven its 
diagnostic potential.

There is an incremental diagnostic yield (yield of  CE 
minus yield of  comparative modality) of  38% comparing 
CE to PE, and 22% compared to small bowel MRI. As 
compared with PE, CE provides superior identification 
of  obscure bleeding sites in the small intestine (50% vs 
24%). While CE missed 8% of  lesions, these sites were 
accessible to standard endoscopy; in contrast, PE missed 
lesions in 26% of  patients[194].

DBE may be used from the oral or anal route, or from 
both. The overall detection rate of  small bowel diseases 
using CE is superior to that with DBE (72% vs 41%, re-
spectively), and is also superior for the detection of  small 
bowel diseases in patients with obscure gastrointestinal 
bleeding (88% vs 60%, respectively)[195]. In another study, 
for detection of  causes of  obscure gastrointestinal bleed-
ing, 80% of  small bowel abnormalities were detected by 
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CE vs 60% with DBE[196]. PE may be inferior to push-and-
pull enteroscopy to find lesions in patients with suspected 
small bowel bleeding[197]. DBE performance has also been 
evaluated in patients with refractory CD who had circum-
ferential, discreet, or confluent ulcerations[196]. 

When patients with acute intestinal symptoms after 
allogeneic stem cell transplantation underwent esophago-
gastroduodenoscopy (EGD) with duodenal biopsies, as 
well as CE within 24 h of  the onset of  their symptoms, 
acute intestinal graft-vs-host disease (GVHD) was diag-
nosed by EGD with biopsies in 7 out of  13 patients, 3 
of  whom would have been missed by EGD alone but 
were detected by CE. In all 7 patients with histologically 
confirmed acute intestinal GVHD, CE revealed the typi-
cal lesions of  GVHD[198]. The authors concluded that CE 
showed comparable sensitivity with EGD plus biopsies, 
and CE also demonstrated a high negative predictive 
value for diagnosing acute intestinal GVHD. 

After the formation of  an ileal pouch anal anasto-
mosis (IPAA) in patients having a colectomy for ulcer-
ative colitis, development of  pouchitis is common. It 
is unknown how frequently lesions occur elsewhere in 
the small intestine. At small bowel follow-through of  
persons with pouchitis, 13% showed a focal ectasia of  
the middle ileum and a stenosis of  the pouch, whereas 
CE performed in patients with chronic pouchitis after 
IPAA showed diffuse lesions from the duodenum to the 
ileum in all evaluable patients[199]. These lesions included 
apthous ulcers, erosions, redness, atrophy, cobblestoning, 
and deep ulcers or fissures. 

A retrospective analysis of  the charts of  562 patients 
who underwent CE at the Mount Sinai Medical Centre 
(NYC) for a variety of  indications showed small bowel 
tumors in 9%[200]. In a report of  the largest series of  pa-
tients with small bowel tumors detected by CE, half  were 
identified in the jejunum and approximately a quarter 
were in the ileum or in the mid to distal small bowel[201]. 
The most common malignant small bowel tumors were 
adenocarcinoma, carcinoids, melanomas, lymphomas and 
sarcomas. The most common benign tumors were GIST, 
hemangiomas, hamartomas, adenomas, and granulation 
tissue polyps. In a three-center report of  Australian ex-
periences with CE, the usefulness of  CE was also con-
firmed, and the authors suggested that “in many patients, 
detection of  a tumor alters management and improves 
outcomes”[202]. 

CE found a median of  four small bowel polyps great-
er than 1 cm in size in persons with Peutz-Jeghers syn-
drome, while barium follow-through detected a median 
of  only one polyp[203]. In persons with known familial ad-
enomatous polyposis (FAP), regular examination of  the 
small intestine for small intestinal tumors is part of  the 
recommended management. CE detected ileal or jejunal 
polyps in 30% of  patients, and all polyps were less than 
5 mm in size. Upper gastrointestinal endoscopy detected 
duodenal polyps in 11 of  23 patients, and only four of  
these patients were identified as having duodenal polyps 
on CE. Thus, CE underestimated the number of  polyps 

and did not visualize the ampulla of  Vater. This suggests 
that CE is useful for detection of  jejunal and ileal polyps 
in patients with FAP, but standard forward- and side-
viewing endoscopic procedures are advised for detection 
of  duodenal polyps[204].

While duodenal biopsy represents the gold standard 
for the diagnosis of  celiac disease, CE has shown that 
over a third of  celiac patients have mucosal changes ex-
tending beyond the duodenum, and in approximately 7% 
the entire small bowel is involved[184]. As compared with 
duodenal biopsy for detecting celiac disease, the sensitiv-
ity of  CE was 88%, specificity 91%, positive predictive 
value 97%, and negative predictive value 71%.

Although CE provides excellent visualization of  the 
small intestinal epithelium, if  a small bowel lesion is 
identified, it cannot be biopsied. DBE is clinically useful 
to identify and biopsy such lesions[205-210].

Because of  the varying values of  the sensitivity and 
specificity of  the various diagnostic methods available to 
diagnose small bowel disease (such as capsule endoscopy, 
CT- or MRI- enteroscopy, ileocolonoscopy, small bowel 
follow-through), it is suggested that except for CE, “…a 
combination of  two of  the other available imaging meth-
ods is the best diagnostic option for small-bowel Crohn’s 
disease…”[211,212]. While CE gives a diagnostic yield in about 
two-thirds of  patients with obscure gastrointestinal bleed-
ing, DBE (when used within 1 mo after the last episode of  
overt bleeding) reveals positive findings in 84% and pro-
vides a means to control bleeding in 64%[213].

CYSTIC FIBROSIS
Meconium ileus occurs in approximately 20% of  new-
borns with cystic fibrosis (CF). The distal intestinal ob-
struction syndrome (DIOS) occurs in about 25% of  CF 
adults. Mucus accumulation in the CF intestine is partly 
due to the dehydrated, acidic environment, as well as to 
the altered glycosylation of  mucins. Mucin glycoprotein 
levels are increased, due to reduced mucus clearance rath-
er than an enhanced synthesis. This is suggested by the 
lack of  increase in the levels of  expression of  the major 
intestinal mucin genes (Muc2, Muc3). Interestingly, Muc1 
is not a major component of  the accumulated mucus of  
CF mice[214]. Mucin binds bacteria, both by nonspecific 
trapping as well as by binding to specific glycans, which 
help to carry bacteria aborally for efficient clearance from 
the small intestine. 

In human CF, there are mutations in the CFTR gene 
that result in little or no cystic fibrosis transmembrane 
conductance regulator (CFTR) activity. Some 30%-50% 
of  CF patients have small intestinal bacterial overgrowth 
(SIBO), thought to be due to slow small intestinal tran-
sit[215]. This SIBO may be due to impaired migrating mo-
tor complexes, which lead to less removal of  mucus and 
bacteria from the small intestine. Laxatives and N-acet-
ylcysteine (NAC) reduce bacterial overgrowth in the CF 
intestine of  mice, and this eradication is associated with 
normalized intestinal transit and a reduction in the innate 
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immune response[215]. 
Exogeneous pancreatic replacement enzyme therapy 

improves, but does not normalize, steatorrhea in CF 
patients. In CF mice, the crypt-villus axis height is de-
creased, there are fewer apoptotic cells in the intestinal 
crypts; there is also goblet cell hyperplasia and inflam-
matory cell infiltration[216]. In humans with CF, there is 
more than just defective lipolytic enzyme activity leading 
to the malabsorption of  lipids. Indeed, there is evidence 
for abnormal enterocyte intracellular lipid processing in 
intestinal biopsies from CF subjects, such as decreased 
lipid esterification and lipid secretion, decreased output 
of  triglyceride-rich lipoproteins, as well as diminished 
synthesis of  apoB48 and apoA-1[217].

Factors that may contribute to the incomplete nor-
malization of  fat malabsorption in CF patients who are 
compliant with their intake of  adequate amounts of  pan-
creatic replacement enzymes include the use of  outdated 
or inactivated enzymes, incorrect timing of  the intake of  
the supplements with regards to meals, excessive duode-
nal acid inactivation of  the enzymes, or reduced duode-
nal and pancreatic bicarbonate secretion leading to high 
intraduodenal acid concentrations, impaired formation 
of  mixed micelles, altered composition of  the BBM [de-
creased linoleic acid (18:2n-6) and docosahexaenoic acid 
(26:6n-3), as well as increased arachidonic acid (20:4n-6) 
and elevated (20:3n-9) to (20:4n-6) ES] with changes in its 
permeability and absorptive function, impaired esterifica-
tion of  lipids in the enterocytes, reduced apolipoprotein 
synthesis, chylomicron formation or secretion across the 
BLM. CFTR knockdown in Caco-2 cells stimulates both 
the synthesis and transport of  fat but not cholesterol[218]. 

Approaches are needed to prevent the CF-associated 
increased viscosity of  the intestinal luminal contents, and 
hopefully reduce the frequency of  meconium ileus in CF 
newborns, or DIOS in CF adults. The activation of  pro-
teinase-activated receptors on the BLM of  enterocytes by 
EGFR activation, MAP kinase signaling, Ca2+, PKA (and 
possibly PKC), causes chloride secretion. PKC enhances 
the activation of  PKA, or increases BLM NKCCI, there-
by enhancing the phosphorylation of  CFTR, and thus 
Cl- and water secretion. Basolateral PAR2-induced Cl- se-
cretion induces the activation of  PKCBI and PKCS via a 
phospholipase C mechanism, which results in the stimu-
lation of  cRaf  and ERK 1/2 signaling[219]. Reduction 
of  NHE3-mediated Na+ and water absorption helps to 
increase the fluidity of  the intestinal contents that would 
otherwise be very thick and dehydrated if  NHE3 activity 
remained normal in the presence of  reduced CFTR ac-
tivity[220]. Lubiprostone activates CIC-2 chloride channels, 
causing Cl- and water secretion[221].
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