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Abstract
For many years, subset analysis has been a popular topic for the biostatistics and clinical trials
literature. In more recent years, the discussion has focused on finding subsets of genomes which
play a role in the effect of treatment, often referred to as stratified or personalized medicine.
Though highly sought after, methods for detecting subsets with altering treatment effects are
limited and lacking in power. In this article we discuss variable selection for qualitative
interactions with the aim to discover these critical patient subsets. We propose a new technique
designed specifically to find these interaction variables among a large set of variables while still
controlling for the number of false discoveries. We compare this new method against standard
qualitative interaction tests using simulations and give an example of its use on data from a
randomized controlled trial for the treatment of depression.
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1 INTRODUCTION
The topics of treatment covariate qualitative interactions and patient subset analysis have
seen a good deal of attention throughout the last 30 years (Assmann et al., 2000, Byar and
Corle, 1977, Gail and Simon, 1985, Lagakos, 2001, Peto, 1982, Senn, 2001, Shuster and
Van Eys, 1983, Yan and Su, 2005, Yusuf et al., 1991), a large amount of it is seemingly
controversial. Some segments of the medical field are attempting to move in the direction of
individualizing treatment for patients (Evans and Relling, 2004, Sadee and Dai, 2005).
While biostatisticians often stress that the search for qualitative interactions should be
limited to a small number of pre-specified covariates, many areas of research, including
pharmacogenetics, lack prior knowledge or intuition as to which covariates might play an
important role in deciding which treatment is optimal. Most clinical scientists feel the search
for new qualitative interactions and patient subsets with altering treatment effects is
worthwhile and important. However, without proper guidance, these type of analyses are
often carried out in an unorganized or error prone fashion.

In this article, we address the problem of determining which of the many possible baseline
covariates are likely to qualitatively interact with the treatment. We discuss some of the
reasons why this task is difficult and propose a new method for finding these qualitative
interactions. We ensure that the method also maintains small susceptibility to finding
spurious results. In another paper, Gunter, Chernick and Sun (2011) study a simplification of
our method using stepwise selection in place of the approach we describe here. Their
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purpose is simplification and generalizability to other types of regression models while
maintaining low susceptibility to spurious interactions. However, simplicity has a cost in
terms of FWER and since it is not expected to be nearly as good as the method we use in
this paper for comparison of FWER for linear regression, we did not consider it in our
comparisons.

This work is motivated in part by the the Nefazodone CBASP trial data. The Nefazodone
CBASP trial (Keller et al., 2000) was a randomized controlled trial conducted to compare
the efficacy of three alternate treatments for patients with chronic depression. The study
randomized 681 patients with non-psychotic chronic major depressive disorder (MDD) to
either Nefazodone, cognitive behavioral-analysis system of psychotherapy (CBASP) or the
combination of the two treatments. Analysis of the trial data showed the combination
treatment to be superior to the two singleton treatments overall. We wanted to know whether
this relationship held true for all major subsets of patients, and if not, to discover which
patient characteristics would help to determine the optimal depression treatment for
individual patients.

The remainder of this article is organized as follows: Section 2 gives background material
on qualitative interactions. Sections 3 and 4 present a new algorithm designed to find
variables useful for decision making along with measures to control the familywise error
rate. Section 5 details our simulation results comparing the size and power of this new
algorithm against two popular qualitative interaction tests. Section 6 illustrates these
methods using data from the Nefazodone CBASP study and concluding remarks are given in
Section 7.

2 Qualitative Interactions
We consider the search for qualitative interactions in the simplest setting where one must
decide between two treatments. Let X = (X1,X2, …,Xp) be covariate observations about a
subject and let A represent the treatment. If the response to the treatment is labeled R, then
the goal in most clinical studies is to find the treatment a* for which

(1)

The idea of a ‘qualitative interaction’ was first introduced by (Peto 1982). Treatment
covariate qualitative interactions are important because they result in a reversal of the
treatment effect for some subset of patients. More formally, a variable Xj qualitatively
interacts with the treatment, A, if there exists at least two distinct, non-empty sets, S1, S2 ⊂
space(Xj) for which

for all xj1 ∈ S1, and xj2 ∈ S2. These variables are useful for prescribing treatment since they
help decipher which treatment is optimal for different subsets of patients.

To illustrate this idea, see the plots in Figure 1(c). These plots depict different possible
relationships between the conditional mean of R, A and a particular Xj, when averaging over
all other Xi, i ≠ j. Figure 1(a), shows a variable, X1, which does not interact with the action.
Figure 1(b) shows a variable, X2, that interacts with the action, A, but does not qualitatively
interact with the action. Figure 1(c), shows a variable, X3, which qualitatively interacts with
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the action. This type of interaction is more important since it impacts the best choice of
treatment.

There are currently only a few qualitative interaction tests that can be used to test a small
number of pre-specified interactions (ALLHAT Collaborative Research Group, 2002, Gail
and Simon, 1985, Krystal et al., 2001, Pan and Wolfe, 1997, Reynolds et al., 2006, Shuster
and Van Eys, 1983, Silvapulle, 2001, Yan, 2004, Yan and Su, 2005). These tests were not
designed to test a large number of variables in one setting. When controlling the error rate
for multiple testing, these tests can be quite conservative (Gail and Simon, 1985, Piantadosi
and Gail, 1993, Yan and Su, 2005). Yet the number of candidate variables a scientist might
want to examine for possible qualitative interactions can be rather large for the average
clinical trial. So any variable selection technique that looks for qualitative interactions
should deal with this challenge of having to look through or test a large number of
covariates.

The easiest way to examine a large group of variables for qualitative interactions is to
consider each variable individually. Analyzing the data in this fashion can be misleading,
however, if some of the candidate variables are correlated. A better option is to consider
subsets of variables. Since the number of candidate variables is often quite large this
prohibits considering all possible subsets. Thus, an intelligent way to determine which
subsets to consider is needed.

As with most hypothesis tests, the risk of falsely discovering a qualitative interaction
increases with the number of variables being tested. Failure to take this into account has lead
to a large number clinical trials claiming discovery of new qualitative interactions which are
later refuted. To counter this problem, much of the statistical literature suggests that the
search for qualitative interactions should be limited to only pre-specified covariates and any
qualitative interactions that are found should be initially mistrusted (Lagakos, 2001, Peto,
1982, Senn, 2001, Yusuf et al., 1991). However, this approach limits the ability of scientists
to make new scientific discoveries that may be critical toward improving the practice of
medicine. Thus, when doing variable selection for qualitative interactions, it is important to
control for the number of false discoveries. There are many ways to control the number of
false discoveries, but often they dramatically decrease the ability to find true qualitative
interactions, especially as the number of variables grows.

Other difficulties arise when trying to do variable selection for qualitative interactions. Most
of the qualitative interaction tests currently recommended are designed to test for certain
types of qualitative interaction, such as between categorical variables and the treatment.
These tests have a difficult time finding other types of qualitative interactions (Gail and
Simon, 1985). A good variable selection method needs to successfully handle qualitative
interactions with many different types of variables. Also predictive variables are important
for estimation and variance reduction when looking for qualitative interactions. Successful
variable selection methods should be able to utilize predictive variables, including strong
predictive interactions that are not qualitative, in order to improve the power to detect
qualitative interactions.

In the next section we present a new method for finding qualitative interactions that
demonstrates better power than current methods yet also limits the false discovery rate.

3 AGV LASSO
The new method we propose utilizes methods and concepts from multiple fields of research
to deal with the difficulties discussed in the prior section. A variable selection technique
designed for prediction is used to sort the data and inform which subsets to try. By using a
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predictive variable selection technique, important predictive variables are smoothly
integrated into the process.

Ideas from computer science and control theory are used to determine which subsets are
most likely to contain important qualitative interactions. One way to look for qualitative
interactions is to compare different strategies for choosing treatment. These strategies for
choosing a treatment are often referred to as policies or individual treatment rules. A policy,
π, is just a deterministic decision rule mapping the space of observations, X, to the space of
the treatment, A. In other words, π outputs a treatment A = a given the observation X = x.

We compare policies via the expected mean response, called the Value of a policy (Sutton
and Barto, 1998). Let the distribution of X be a fixed distribution f, and let the distribution
of R given (X,A) be a fixed distribution g. Then when treatments are chosen according to a
policy π, the trajectory (X,A,R) has distribution

If Eπ[] denotes the expectation over the above distribution, then the Value of π is

The optimal policy, π*, is defined as

or equivalently

Our variable selection algorithm focuses on the change in Value of the estimated optimal
policy when a variable is added to the model:

(2)

where a* = arg maxa Ê[R|A = a]. This is similar to the quantity Parmigiani refers to as the
value of information (Parmigiani, 2002).

The following is an overview of the algorithm.

Variable Selection Algorithm
1. Rank the variables: Rank the variables in (X,A * X) using Lasso. Define the

variable rank to be the order in which the Lasso coefficients becomes non-zero,
with the variable whose Lasso coefficient first becomes non-zero being ranked
first.

2. Create nested subsets of variables: Create 2p nested subsets of the variables
based on the rank order of the 2p variables in the previous step. Include Xj in the
subset if XjA is included in the subset.

3. Select between subsets using Adjusted Gain in Value Criterion:
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a. For each subset k = 1, …, 2p, estimate the maximal Value, e.g.

i. use subset k, A and a chosen prediction learning algorithm to
estimate Ê;

ii. estimate the optimal policy, ;

iii. estimate the Value of  by:

b. Select the subset, k*, that has the highest Adjusted Gain in Value (AGV)
criterion:

where m = arg maxk V̂k and V̂0 is the estimated Value of the policy

.

In the first two steps we seek a quick way to navigate through the space of all possible
combinations of the variables (X,A * X). First we use Lasso (Tibshirani, 1996) to rank the
variables. Lasso is a penalized regression procedure which returns a sparse, piecewise linear
coefficient vector. It utilizes the L1-norm of the coefficient vector, |β|1, as its penalty
function. The L1-norm causes some of the coefficients to be set exactly to zero. We fit the
Lasso on (X, A * X, A), but leave the coefficient of A unconstrained by the L1 penalty
function. The rankings for the variables in (X, A * X) are determined based on the order the
variables enter the Lasso model. These rankings are then used to create nested subsets of the
variables.

We rank all of the variables in the (X, A * X), including the main effects, X, because they
may be strongly predictive of the response variable, R, and will help reduce variability in the
estimates. Also, when testing for the interaction between Xj and A, researchers often prefer
to maintain a hierarchical ordering (Wu and Hamada, 2000) and thus the main effect of the
variable Xj is included. This helps to avoid finding spurious interactions that may appear
because the main effect is important but is not included in the estimation.

However, Lasso favors variables that are predictive, so we offset this by using the Adjusted
Gain in Value (AGV) criterion to select the optimal subset. The AGV criterion provides a
trade off between the complexity and the observed Value of each of the models. The
criterion selects the subset of variables with the maximum proportionate increase in Value
per variable. See Figure 2 for plots demonstrating the AGV criterion. The first plot in the
figure shows the average gain in Value, V̂k − V ̂0 for a simple toy example and the second
plot shows the AGV for the same example. The points marked with a ◦ represent subsets in
which a non-interaction variable was added to the model, the points marked with an ×
represent subsets in which an interaction has just been added to the model and the points
marked with a + represent the subset in which the true qualitative interaction has just been
added to the model. Ideally the gain in Value stays fairly stationary whenever a predictive
variable is added to the model and increases when a qualitative interaction is added to the
model. From the plot we see this is mostly true. The quotient, m*/k, acts as a penalty on the
inclusion of variables that do not substantially increase the Value. We include main effect
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variables in the counts m* and k because each main effect variable that is included decreases
the degrees of freedom. Also, the inclusion of main effects in the counts quickly deflates the
quotient as k increases, leading to a less severe penalty on larger models. This is helpful
since there are often many more useful predictive variables than qualitative interaction
variables.

The AGV criterion is similar to an adjusted R2 value as follows. The model with m = arg
maxk V̂k variables is akin to a saturated model, because the addition of more variables does
not improve the Value of the model. Thus the denominator is the observed maximum gain in
value, among the different variable subsets, divided by m, an estimate of the degrees of
freedom used to achieve that gain in Value. The numerator then measures the gain in Value
of the intermediate model, the model with k variables, divided by k, the estimated degrees of
freedom needed to achieve that gain in Value. So the AGV criterion tries to maximize the
gain in Value for the current model relative to the maximum observed gain in value while
penalizing for too many model parameters, much like adjusted R2 maximizes gain in
variance explained by the model relative to the variance left in the residuals while penalizing
for too many model parameters.

In the next section we address how to deal with the problem of controlling the number of
false discoveries.

4 CONTROLLING THE FAMILY-WISE ERROR RATE
The family-wise error rate (FWER) is the probability of making at least one false discovery
among all hypothesis when performing multiple testing procedures (Westfall and Young,
1993, Shaffer, 1995). In the context of variable selection for qualitative interactions the
FWER is the probability of selecting at least one spurious qualitative interaction among all
interaction variables being considered.

It may be acceptable in some instances to disregard the FWER when testing for qualitative
interactions between treatment and a small number of pre-specified variables. That is,
controlling just the per test error rate may be sufficient for the desired analysis. When
performing a large number of hypothesis tests, however, it becomes a necessity to employ
some method which adjusts for the multiplicity of testing to control the FWER or some
other measure of multiplicity (e.g. false discovery rate). This is important to consider in
variable selection, and in particular, variable selection for qualitative interactions. Naturally,
these multiplicity correction methods decrease the power to find qualitative interactions. The
failure to incorporate these methods in the variable selection process, however, may result in
wasted resources and weakened credibility. We illustrate this issue in the next section.

We suggest a combination of bootstrap sampling and permutation thresholding to help
control the FWER when using the algorithm proposed in Section 3. First we use bootstrap
sampling (Efron and Tibshirani, 1993) of the original data to give a measure of replicability
for each selected variable. The bootstrap samples allow us to determine the percentage of
time each interaction variable is selected by the method (this is similar in spirit to Gong,
1986). These selection percentages, with a slight adjustment, can be thought of as pseudo
test statistics for each interaction variable. We compute the adjusted selection percentages
for each variable as follows.

1. Take B bootstrap samples of the original data.

2. Run variable selection algorithm and record the interaction variables that are
selected along with the sign of the interaction coefficient for each bootstrap sample.
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3. Calculate the adjusted selection percentage across the B bootstrap samples for each
interaction variable: the absolute value of the number of times the interaction is
selected with a positive coefficient minus the number of times an interaction is
selected with a negative coefficient over the total.

This adjustment used in step 3 helps eliminate variables that, across the bootstrap samples,
do not consistently interact in one direction with the action. Computing an adjusted selection
percentage for each variable allows us to look at the individual contribution of each variable
while taking into account other variables in the model. This provides for individual selection
of variables, as opposed to group selection, which is important for controlling the number of
false discoveries.

Second, we construct a permutation threshold to control for the number of false discoveries
and determine which interaction variables to include in the final model. The threshold
estimates the selection percentages we would expect to see if the data contained no
interactions. To compute the permutation threshold:

1. Permute the X values of the X * A interactions in the (X,A,X * A) model matrix P
times.

2. On each permuted data set

a. take B bootstrap samples of the permuted data;

b. run the variable selection algorithm and record the interaction variables
that are selected along with the sign of the interaction coefficient for each
bootstrap sample;

c. calculate the adjusted selection percentage across the B bootstrap samples
for each interaction variable: the absolute value of the number of times the
interaction is selected with a positive coefficient minus the number of
times an interaction is selected with a negative coefficient;

d. record the maximum selection percentage observed across the p
interaction variables.

3. Define the permutation threshold to be the 100(1 − α)th percentile over the P
maximum selection percentages for each permuted data set.

In the first step toward determining this permutation threshold we permute the X values of
the X * A interactions to remove all treatment covariate interaction effects on the response
variable. We then rerun the bootstrap resampling and variable selection algorithm on the
permuted data to determine what the adjusted selection percentages would be if no treatment
covariate interactions existed. We record the maximum selection percentage across the p
interaction variables to determine the level of selection for which at least one variable would
enter the model. We then set the threshold to be the 100(1− α)th percentile over these P
maximum selection percentages to ensure that the FWER is maintained at the level α. We
chose all interaction variables whose adjusted selection percentage from the original data is
greater than the permutation threshold.

Permutation-based multiplicity correction procedures are discussed in detail by Westfall and
Young (1993). They have seen widespread use and success in many scientific applications
such as micro-array analysis and medicine and even variable selection for prediction
(Lindgren et al., 1996, Dudoit, Shaffer and Boldrick, 2003, Simon et al., 2004, Troendle,
2005).

In the next section we show simulation results testing the proposed variable selection
algorithm with permutation threshold. We reference this method as AGV Lasso.
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5 SIZE AND POWER COMPARISONS
We ran the AGV Lasso on realistically designed simulation data to test its performance and
compared the results to two different methods suggested for formally testing for qualitative
interactions.

In order to generate realistic simulation data, we randomly selected rows, with replacement
from X, the observation matrix from the Nefazodone CBASP trial data. We generated new
treatments, A, and new responses, R, that covered a wide variety of models. We report
results for the following generative models:

1. Main effects of X only, no treatment effect and no interactions with treatment;

2. Main effects of X, moderate treatment effect and no interactions with treatment;

3. Main effects of X, moderate treatment effect, multiple small non-qualitative
interactions, no qualitative interaction;

4. Main effects of X, moderate to large treatment effect, multiple moderate non-
qualitative interactions, no qualitative interaction;

5. Main effects of X, small treatment effect, no non-qualitative interactions, small
qualitative interaction with a binary variable;

6. Main effects of X, small treatment effect, no non-qualitative interactions, small
qualitative interaction with a continuous variable;

7. Main effects of X, small treatment effect, multiple small non-qualitative
interactions with treatment, small to moderate qualitative interaction with a binary
variable;

8. Main effects of X, small treatment effect, multiple small to moderate non-
qualitative interactions with treatment, small qualitative interaction with a
continuous variable.

For each generative model, we used main effect coefficients for the variables X, estimated in
an analysis of the real data set. In generative models 3–8 we randomly selected variables
from the Nefazodone CBASP data for each treatment covariate interaction and used these
same variables for each repetition. The treatment, qualitative interaction and non-qualitative
interaction coefficients were set using a variant of Cohen’s D effect size measure (Cohen,
1988) shown below:

(3)

We altered this formula by replacing the marginal variance, V ar(R), with the conditional
variance of the response V ar(R|X,A). However, we maintained the definitions of ‘small’
and ‘moderate’ effect sizes suggested by Cohen (1988) as D = 0.2 and D = 0.5 respectively.
Thus the effects are slightly smaller than as in the traditional definition.

When implementing AGV Lasso on the data, we used linear models with intercept terms for
all Ê[] estimations in Step 3. We also set the number of bootstrap samples to be B = 1000
and the number of data permutations to be P = 100.

We compared AGV Lasso to the likelihood ratio test (LRT) proposed by Gail and Simon
(1985). The LRT is designed to test for a qualitative interaction between a binary treatment
and a single categorical variable or a combination of categorical variables. Let δi, i = 1, …, I
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be the true treatment effects for each of the I categories of subjects and let Di, i = 1, …, I be

independent normal estimates of those effects with variances .

Define

(4)

and

(5)

The LRT for testing the null hypothesis that δi ≥ 0 for all i or δi ≤ 0 for all i is then

(6)

where the constant c is chosen to ensure a significance level α. Gail and Simon (1985) give

several values of c for different I and α. The  in Equations 4 and 5 above can be replaced
by a consistent estimate in large samples. The LRT test can be applied to interactions
between continuous variables and treatment, but the continuous variable must be
dichotomized first. This is one of the drawbacks to using the LRT as a variable selection
technique.

We also compared AGV Lasso to the qualitative interaction test proposed by Shuster and
Van Eys (1983). This test is based on joint confidence intervals and can be used to test for a
qualitative interaction between a binary treatment and any type of covariate(s). Assume the
response R is a linear function of the treatment and the covariates. For example it might be

(7)

where ε is an error term. The treatment difference for subjects with Xj = xj would be D(xj) =
β2 + xiβ3. The parameter −β2/β3, is the value of Xj for which the treatments are equal. A
asymptotic (1 − α)% confidence interval for −β2/β3 contains all values, xj for which

(8)

where Zα is the upper (100α) percent point of the standard normal curve and

(9)

is the asymptotic covariance matrix of β̂. All values falling in this confidence interval are
values of Xj for which no significant treatment difference exists. The null hypothesis of no
qualitative interaction is then rejected if the confidence interval for −β2/β3 is strictly
contained in the range of Xj within the data. In other words the null hypothesis is rejected if
there exists at least one xij in the range of Xj within the data for which there is a significant
positive treatment effect and at least one xkj in the range of Xj within the data for which
there is a significant negative treatment effect. We can express this formally as
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(10)

where

(11)

and

(12)

The test can also be modified to test multiple covariates at one time (see Shuster and Van
Eys, 1983). The Shuster-Van Eys test is more flexible because it allows one to test for
qualitative interactions with both continuous and categorical variables, however, Gail and
Simon found the test to be overly conservative with binary categorical variables (Gail and
Simon, 1985). This is a drawback to using the Shuster-Van Eys test as a variable selection
technique.

For each generative model, we ran AGV Lasso and the two qualitative interaction tests with
and without corrections for multiplicity. We tried two multiplicity corrections for each
qualitative interaction test. The first multiplicity correction method we tried was a
Bonferroni correction due to its easy application with non-standard tests such as the LRT
(Shaffer, 1995). This correction method tends to be conservative, however, so we also tried
a permutation threshold similar to what we used in the new method. The permutation
threshold was calculated in the same way except we replaced the selection percentages with
the individual T-statistics (Equations 6 and 10) for each variable. We then selected all
interaction variables whose T-statistic from the original data was greater than the
permutation threshold.

We ran the analysis 200 times. We recorded the percentage of time each method selected
one or more spurious interactions and the qualitative interaction (if one existed) to estimate
the size and power of each method. The results are listed in Tables 1 and 2. True non-
qualitative interactions that were selected were counted as spurious qualitative interactions
for all of the methods. The percentage of time one or more spurious qualitative interactions
was selected by each method over the 200 repetitions is listed in Table 1. The percentage of
time the true qualitative interaction was selected by each method over the 200 repetitions is
listed in Table 2. Note that since generative models 1–4 have no qualitative interactions with
treatment, power results are not applicable to these models.

Looking over Table 1 we see that without the multiplicity correction, the two test methods
have large Type I error rates. The Bonferroni correction method is far more conservative
than the permutation based multiplicity correction. However, the permutation based
multiplicity correction fails to maintain the desired significance level in a few of the
scenarios for the qualitative interaction tests. Further study of these scenarios showed that
this failure was due to moderate correlation between the true qualitative interaction variable
and one or two other variables not contained in the generative model. Since both of the
qualitative interaction tests allow testing of a qualitative interaction among multiple
covariates, one could attempt to solve this problem by trying to test for subsets of variables
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rather than variables individually. However, there is no apparent way to determine which
subsets to test and the tests do not attribute greater significance to different variables within
a subset.

AGV Lasso appears to maintain the desired FWER in all settings but one. Under generative
model 4 AGV Lasso fails to maintain the desired significance level. Upon closer
examination we discovered the failure was due to over selection of the larger true non-
qualitative interactions. We believe this is due to a combination of two factors, the
importance of the non-qualitative interactions in obtaining an accurate estimate of the Value
and the large treatment effect carried over in the permuted data sets leading to a smaller
threshold. While this over selection of larger true non-qualitative interaction may not seem
ideal, Oxman and Guyatt state that large non-qualitative interactions can be as important as
qualitative interactions in many situations (Oxman and Guyatt, 1992). They state that it is
important to know about substantial non-qualitative interactions because they can essentially
lead to a qualitative interaction when looking at a more comprehensive outcome for
treatment.

Table 2 shows that the LRT is better suited to find qualitative interactions with a categorical
covariate, as would be expected. Whereas, the Shuster-Van Eys test is much better at finding
qualitative interactions with a continuous covariate. The new method seems to have good
comparative power for finding both types of qualitative interactions against the methods
which control for the FWER.

Overall, we found that the new method performs better than the other two tests when
controlling for the FWER. Al of the methods seem to have difficulty universally maintaining
FWER, but the new method results in greater power to find the true qualitative interaction.
While, the competing methods each have strengths, they seem to lack consistent
performance to merit use as a generalized variable selection method for qualitative
interactions.

6 EXAMPLE
We applied AGV Lasso along with the LRT test and the Shuster-Van Eys test to the
Nefazodone CBASP trial (Keller et al., 2000) data introduced earlier. The trial was
conducted to compare the efficacy of three alternate treatments for patients with chronic
depression. We applied the methods to pinpoint if any of the patient characteristics might
help to determine the optimal depression treatment for each patient.

The study randomized 681 patients with non-psychotic chronic major depressive disorder
(MDD) to either Nefazodone, cognitive behavioral-analysis system of psychotherapy
(CBASP) or the combination of the two treatments. For detailed study design and primary
analysis see (Keller et al., 2000). We considered p = 61 baseline covariates for our
observation matrix X. The outcome, R, was the 24-item Hamilton Rating Scale for
Depression score (Hamilton, 1967), observed post treatment. As stated earlier, original
analysis of the trial data showed the combination treatment to be superior to the two
singleton treatments overall. For simplicity, we chose to only compare two treatments, the
combination treatment and Nefazodone alone. Thus the data used in this analysis is a subset
of the study consisting of the n = 440 patients who were randomized to either the
combination treatment or Nefazodone alone.

Using a 90% permutation threshold, AGV Lasso selected two variables. Both variables had
the same selection percentage of 21.9%, which was slightly higher than the 90% threshold
of 21.1%. These variables were past history of Obsessive Compulsive Disorder and past
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history of Alcohol Dependence. No variables were selected by the SVE and LRT qualitative
interaction tests using either multiplicity correction at α = 0.1.

We do not know whether there exists a true qualitative interaction between treatment and
either of these variables since we do not have the generative model. However, closer
examination of their relationship using the data set suggests that there is a strong non-
qualitative interaction with past history of Obsessive Compulsive Disorder and a qualitative
interaction with past history of Alcohol Dependence

7 DISCUSSION
Although multiple tests exist for evaluating qualitative interactions, they are designed to be
used on a small number of covariates, often of a particular form. We have proposed a new
technique that can be used to find qualitative interactions among a large number of
covariates. We have included measures to ensure the FWE error rate is controlled for, an
important characteristic for methods used in post-hoc analysis. The methods proposed here
can be used with multiple different types of covariates without predetermining the best
division into subsets.

In the future we plan to modify the way we permute the data in the permutation threshold so
that it targets just the qualitative interactions instead of all interactions. We believe this
would eliminate the over selection of non-qualitative interactions in data similar to
generative model 4. We also think it would be useful to try replacing the least squares in the
algorithm with other types of penalized regression models to allow for different types of
response variables such as binary or survival. Our ultimate goal, however, is to develop a
variable selection method for sequential decision making applications like SMART trials
(Murphy, 2005).
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Figure 1.
Plots demonstrating qualitative and non-qualitative interactions
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Figure 2.
Plots demonstrating the AGV Criterion.
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