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Abstract

Human senescence patterns—Ilate onset of mortality increase, slow mortality acceleration, and
exceptional longevity—are often described as unique in the animal world. Using an individual-
based data set from longitudinal studies of wild populations of seven primate species, we show
that contrary to assumptions of human uniqueness, human senescence falls within the primate
continuum of aging; the tendency for males to have shorter life spans and higher age-specific
mortality than females throughout much of adulthood is a common feature in many, but not all,
primates; and the aging profiles of primate species do not reflect phylogenetic position. These
findings suggest that mortality patterns in primates are shaped by local selective forces rather than
phylogenetic history.

Humans are thought to age more slowly than other mammalian taxa [(1), but see (2)] on the
basis of their low early-adult mortality, slow mortality acceleration, and long life span.
However, it is not known if these human features are unique or are shared with other
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primates (3, 4). The rapid increase in human life expectancy in the 20th century (5) has
increased the proportion of individuals in older age classes (6), raising questions about the
flexibility of human aging patterns and the limits of the human life span [e.g., (7-9)]. These
questions necessitate a deeper understanding of natural aging patterns in other primates,
which represent our closest living relatives (10).

Nonhuman primates, like humans, are cognitively and socially complex and behaviorally
flexible. However, their long lives and the challenges of continuous, long-term observation
make longitudinal demographic data on nonhuman primates uncommon, especially for wild
populations [(11); see also (12)]. We compiled rare data sets from seven species that span
the Primate Order [one Indriid (a Madagascan prosimian), two New World monkeys, two
Old World monkeys, and two great apes] and carried out a comparative demographic
analysis of mortality. Our analyses used data from 226 observation-years of births and
deaths on more than 2800 individually recognized male and female primates (13, 14).

We produced species-specific mortality tables for each sex and computed actuarial estimates
of age-specific survival and mortality for each of the primate populations (15). Analysis of
mortality rates revealed the expected pattern for mammals: high infant mortality, followed
by a period of low mortality during the juvenile stage, and an extended period of increasing
age-specific mortality during mid to late life (Fig. 1). We focused on mid- to late-life
demography and modeled initial mortality rate at the start of adulthood for each species,
defined in Table 1, through the last age interval for which we had census data. For humans,
we used published male and female age-at-death data, from age 15 through 100 years, from
the U.S. Department of Health and Human Services life tables (16) and repeated the
analyses with a second, independent life table for humans (17), which confirmed our
findings.

Understanding flexibility and constraints in the expression and evolution of aging requires a
careful analysis of key aging metrics (1, 18, 19). We used a maximum-likelihood framework
for estimating two metrics that, together, describe the pattern of senescence for a population:
the initial adult mortality rate (/MR, the risk of death at onset of adulthood) and the rate of
aging (RoA, the rate of increase in the age-specific mortalities with advancing adult age).
These aging metrics are often best estimated by fitting the Gompertz model of increasing
failure time. We thus tested among competing models for accelerating risk of death with
advancing age on the basis of the Gompertz family of models in program WinModest (20)
model fitting as described in (21). Our tests included a standard two-parameter Gompertz
model and the Gompertz-Makeham and Logistic models. In all but 2 of the 13 species and
sex comparisons we examined, the standard two-parameter Gompertz model yielded the best
fit to the nonhuman primate data. In the other two cases (sifaka females and capuchin
males), the Gompertz-Makeham model was recommended, but because of particular
features of those two data sets (see table S1), we proceeded with the standard Gompertz
model for males and females of all species. Our model was of the form = IMR x dRoA)X
where uy is the age-specific mortality, i.e., instantaneous mortality probability, at age x
(results in Tables 2 and 3 for females and males, respectively).

We found significantly positive values for RoA in all study species, indicating that mortality
rate increased with advancing age [Tables 2 and 3 and fig. S1; see also (22, 23)]. Notably,
humans fell along a continuum with the other primate species for both /MR and RoA (Fig.
2). Furthermore, in neither females nor males did we find evidence of a negative correlation
between /MR and RoA, which would be indicative of a trade-off between these two
parameters (Fig. 2). Instead, our data suggest that they can evolve independently. Humans
had low values for both parameters, which explains their exceptional longevity.
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For females, we identified four distinct groups of /MR across the eight species (Fig. 2A). All
species comparisons were computed on the basis of /1/2 tests of pairwise comparisons of the
log-likelihood ratio of models with unique versus identical Gompertz parameters (table S2).
We identified three significant groups for RoA (Fig. 2A). The coefficient of variation among
species for female /MR was 111%, much greater than that for RoA, which was 30%;
females of these primate species exhibited a wide range of /MR values, whereas RoA was
less variable (equality of variance test: /7 7 = 6.44, P=0.02). Moreover, all combinations of
high and low /MR with high and low RoA were found in the females of the seven nonhuman
species. For example, female chimpanzees were characterized by both low /MR and low
RoA, whereas female sifaka exhibited high /MR but relatively low RoA. In contrast, female
gorillas had low /MR and high RoA, while female capuchins exhibited both high /MR and
high RoA. The RoA for human females was statistically indistinguishable from that of the
four other slowly aging female primates (Fig. 2A and table S2). Human females had one of
the two lowest /MRs (statistically indistinguishable from gorilla; Fig. 2A and table S2), but
this trait is arguably more reflective of environmental plasticity than is oA (24). This
similarity between humans and non-human primates indicates that aging in humans is not
evolutionarily divergent from that in other primate species [see also (1)]. This similarity is
particularly noteworthy given that our human-nonhuman comparison was a conservative
one, in that it used data from modern human populations rather than hunter-foragers or
historical populations [which might resemble wild nonhuman primates more than modern
humans do (23, 25)].

Among males, the coefficient of variation for /MR was 107%, much greater than the
coefficient of variation in oA, which was 40% (equality of variance Fg g = 26.0, P=
0.001). Males and females showed similar variation in /MR, but males showed greater
variation than females in RoA. Males exhibited fewer combinations of /MR and RoA than
females: Baboon, sifaka, and capuchin males were characterized by high /MR and high
RoA, whereas gorilla, muriqui, and chimpanzee males had intermediate /MR and
intermediate R0A. Like females, males exhibited four significant groupings of /MR and
three significant groupings of RoA (Fig. 2B and table S2). RoA in human males, unlike in
human females, was significantly lower than the next closest value, that of chimpanzees, and
the /MR for human males was relatively even lower (Fig. 2B).

Males of monogamous animal species tend to age at rates similar to those of females,
whereas males of polygynous species exhibit increased aging rates relative to females (26,
27). All of the nonhuman primate species studied here are polygynous (or more accurately
polygynandrous, as multiple mating is exhibited by females as well as males). Further, six of
the seven experience relatively intense male-male competition for access to mates [see (28)
for genus-level data on Cebus, Cercopithecus, Gorilla, Papio, and Par, (29) for data on
Propithecus]. The exception is the muriqui, a sexually monomorphic species in which male-
male competition for access to females appears to be absent (30). In the species with
relatively intense male-male competition for mates, males and females showed significant
differences in either /MR or RoA, and male life span was shorter than female life span
(baboons, sifaka, gorillas, chimpanzees, and capuchins; we lacked mortality data for male
blue monkeys; see Fig. 1 and table S3). In contrast, male and female muriquis were
indistinguishable in their /MRS, RoAs, and life spans (table S3). This male-female similarity
in muriqui aging patterns, combined with the observation of multiple mating by both sexes
in all of our study species, suggests that the male-male competitive environment, not just
multiple mating by males, may be a key factor driving faster aging in males in
polygynandrous species [see also (26)].

If demographic patterns of aging were evolutionarily constrained, we would expect closely
related species of primates to exhibit similar aging patterns. Instead, the species rankings of
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IMR and RoA in males and females showed no relationship to phylogeny (Fig. 2C and fig.
S1). This implies that the study species have not been constrained phylogenetically to high
or low aging rates, and have the flexibility to respond to evolutionary forces at the species
level or potentially even the local population level. Furthermore, within-species comparisons
of baboons (31), chimpanzees (23, 32), and humans (23, 25) all support the view that both
IMR and RoA can vary substantially among populations within a species. Notably, in all
three species, populations existing in more demanding habitats, without benefit of modern
medical intervention (e.g., hunter-forager humans and wild as opposed to captive primates),
exhibit higher /MR and, for both chimpanzees and humans, higher RoA. That is, aging
appears to be both evolutionarily labile and phenotypically plastic. The slowing of aging-
related disease under dietary restriction (33) is further evidence of the flexibility of aging
rates in primates.

We examined our data for the existence of mortality plateaus (34), a subject of much recent
interest in the aging literature, but none of the age-specific mortality relationships in our
non-human primate analyses demonstrated the type of leveling off that has been shown in
human and fly data sets [e.g., (35)]. Whether additional long-term data from natural primate
populations will demonstrate a generalized mortality deceleration in old age remains an
open question that should motivate future comparative analyses of aging in other natural
populations.

Supplementary Material
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IMR versus RoA for (A) females and (B) males. Phylogenetic relationships among species
are shown in (C). Letters over bars denote statistically significant groupings. [Female /MR:
human, gorilla (A) < gorilla, muriqui (B) < blue monkey, chimpanzee (C) < sifaka, baboon,
capuchin (D); female RoA: human, chimpanzee, sifaka, baboon, muriqui (A) < muriqui,
blue monkey, capuchin (B) < blue monkey, capuchin, gorilla (C); male /MR: human (A) <
muriqui, gorilla, chimpanzee, capuchin (B) < capuchin, sifaka (C) < baboon (D); male RoA:
human (A) < chimpanzee, muriqui, gorilla, sifaka (B) < muriqui, gorilla, sifaka, baboon,
capuchin (C).] See table S2 for tests of pairwise comparisons of /MR and RoA.
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