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PIK3R2 encodes a ubiquitous regulatory subunit (p85β) of PI3K, an
enzyme that generates 3-polyphosphoinositides at the plasma
membrane. PI3K activation triggers cell survival and migration. We
found that p85β expression is elevated in breast and colon carcino-
mas and that its increased expression correlates with PI3K pathway
activation and tumor progression. p85β expression induced moder-
ate PIP3 generation at the cell membrane and enhanced cell inva-
sion. In accordance, genetic alteration of pik3r2 expression levels
modulated tumor progression in vivo. Increased p85β expression
thus represents a cellular strategy in cancer progression.

Activation of class I PI3K is involved in the pathogenesis of
cancer. PI3Ks are lipid kinases that phosphorylate mem-

brane phosphoinositides [i.e., phosphatidylinositol (PtdIns)] to
generate PtdIns(3,4)P2 (PIP2) and PtdIns(3,4,5)P3 (PIP3). PI3K
is composed of a regulatory and a p110 catalytic subunit. Four
genes encode the highly conserved p110 catalytic subunit
(PIK3CA, CB, CD, and CG). p110α, β, and δ associate with p85
regulatory subunits and are activated mainly by growth factor
receptors; p110γ associates with distinct regulatory subunits and
is activated preferentially by G protein-coupled receptors (1–3).
Three genes encode p85-type regulatory subunits: PIK3R1 (p85α,
p55α, p50α), PIK3R2 (p85β), and PIK3R3 (p55γ). R1 and R2 are
ubiquitously expressed and R3 expression is tissue-restricted (4).
p85β is expressed at lower levels than p85α in most tissues

(5–7). Whereas mice deficient in Pik3r2 develop normally and
exhibit only moderate metabolic and immunological defects (7)
Pik3r1−/− mice die perinatally (8). p85α controls p110 stability
and blocks p110 activity during quiescence (9). The inhibitory
role of p85α on p110 activity explains why WT PIK3R1 expres-
sion is normally reduced in tumors, and that p85α mutations that
relieve p110 from p85 inhibition have been found in cancer (10).
Despite extensive analysis of p85α mutations in tumors (10–12),
p85β involvement in cancer is less well studied. Here we analyzed
the potential contribution of p85β in cancer.

Results
p85β Expression Is Increased in Breast and Colon Carcinomas. By
using microarray technology, we performed a preliminary survey
of the expression of the genes that form part of the PI3K path-
way in a collection of clinical breast (n = 14) and colon carci-
nomas (n = 12). Comparison of PI3K subunit expression showed
that mRNA levels of PIK3R2 (which encodes p85β) were in-
creased in nearly half the carcinoma samples examined, whereas
PIK3R1 (which encodes p85α) was decreased (Fig. S1). To study
this finding in more detail, we compared 20 colon adenocarci-
nomas (CCs) and 35 breast carcinomas (BCs) with normal sur-
rounding tissue. Tumor and normal samples had comparable
numbers of epithelial cells, and normal tissue had a low per-
centage of malignant cells (0–10%).
To evaluate p85β expression levels, we prepared extracts from

normal and tumor samples and analyzed p85 levels by Western
blot (WB). We generated anti-p85β Abs and used the 1C8 Ab for

further analysis (Fig. S2). For each sample, we measured p85β and
p85α band intensity in the linear range, and normalized these to
the actin content (Fig. 1A). Each sample was analyzed three times,
and mean values were used for sample classification based on p85β
expression. We confirmed the ranking of p85β and p85α expres-
sion by examination of tumor samples in parallel with internal
control extracts of HeLa, U2OS, and Jurkat cells; this last cell type
expressed similar p85β and p85α levels (7) (Fig. 1B). In most
normal tissues, p85α is expressed at higher levels than p85β (5–7).
In contrast, many CC (55%) and BC (45%) samples showed in-
creased p85β expression and a decrease in p85α (Figs. 1 and 2).

Increased p85β Levels Correlate with Tumor Progression. To de-
termine whether an increase in p85β expression affects PI3K
pathway activation, we analyzed phosphorylation of the PI3K
effector protein kinase B [PKB; i.e., phosphorylated PKB
(pPKB)] by WB. We measured pPKB signal intensity, normal-
ized it for PKB levels (i.e., pPKB/PKB), and calculated the
pPKB/PKB ratio in tumor vs. normal tissue (Fig. 1C); protein
loading was controlled relative to actin. We confirmed PI3K
pathway activation by immunohistochemistry (IH) analysis of S6
phosphorylation. S6 kinase activation is generally downstream of
PI3K (13) and yielded a better IH signal than pPKB (Fig. 1D).
Increased pPKB (by WB) and phosphorylated pS6 (pS6; by IH)
were correlated in most samples (93%; Fig. 1D and Figs. S3 and
S4); in the very few samples with normal pPKB and increased
pS6, p70S6K could be activated in a PI3K/PKB-independent
manner (13). We sequenced PIK3CA (mutated in BC) and K-Ras
(mutated in CC) in the 20 CC and 20 BC samples. PTEN mRNA
levels (i.e., loss of heterozygosity in BC) (12) were determined by
quantitative PCR (qPCR) and confirmed in WB (Figs. S3–S7A).
The PI3K pathway was activated in ∼30% of BC and ∼50% of

CC samples (Fig. 2A and Figs. S3 and S4). Moreover, p85β levels
correlated with PI3K pathway (i.e., pPKB/PKB) activation and
tumor progression in BC and CC (Fig. 2A). We have used Dukes
staging to define CC progression, as it describes CC penetration
into deep colon layers and other organs. In BC, the Bloom–

Richardson criteria classify tumors according to cell differentia-
tion; thus, progression was evaluated as the percentage of af-
fected lymph nodes (14, 15). pPKB activation was not exclusively
found in samples with PIK3CA or K-Ras mutations, decreased
PTEN levels (Figs. S3–S7), or increased PKB levels, as de-
termined by qPCR. BC can be classified as luminal, HER2-
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positive, or basal (16); p85β increase was not selective for any
carcinoma subtype (Fig. 2A).
To determine whether enhanced p85β levels were a result of

increased transcription, we measured PIK3R2 and PIK3R1
mRNA levels by triplicate qPCR. PIK3R1 levels decreased in
most tumor samples; in contrast, PIK3R2 mRNA was often in-
creased in CC and BC (Figs. S5 and S6). It is currently unknown
how PIK3R2 expression is regulated. As miR126 reduces
PIK3R2 mRNA translation (17), we also measured miR126
levels, which are regulated by methylation of an upstream CpG
island (18). In BC, multiple linear regression analysis showed
that p85β levels are a function of increased PIK3R2 mRNA and
reduced miR126 expression (Fig. 2B). CC samples showed the
same tendency, although a larger panel is needed to evaluate
correlation. Nonetheless, contingency analysis showed that in-
creased p85β levels were more frequent in samples with in-
creased PIK3R2 as well as in samples with simultaneous increase
in PIK3R2 and reduced miR126 (Fig. 2C).

p85β Enhances Plasma Membrane PIP3 Levels. To test whether p85β
expression increases PI3K activation in normal cells, we
expressed p85β/p110α or p85α/p110α at similar levels in immortal
murine fibroblasts (NIH 3T3 cells). As PI3K activation increases
plasma membrane PIP3 (1–3), we examined PI3K activation by

membrane localization of the GFP-Btk-PH domain, which binds
PIP3 (19). In control quiescent cells, Btk-PH localized to the
cytoplasm and nucleus (its size permits nuclear entry), and serum
treatment triggered PH localization to the cell membrane (Fig.
3A). Even without stimulation, however, p85β/p110α cells (but
not p85α/p110α cells) showed PIP3 at the plasma membrane (Fig.
3A) and higher basal PI3K pathway activation (Fig. S7B).
To determine whether this action is p110-dependent, we

expressed a p85β mutant that does not bind p110 (Δp85β).
Δp85β/p110α did not trigger basal membrane PIP3 localization
(Fig. 3B and Fig. S7C). Transfection of p85β alone also induced
slight Btk-PH membrane localization and basal PKB activation;
this effect was p110-dependent, as it was not induced by Δp85β
and was reduced by PI3K inhibitors (Fig. S7 D–F). Over-
expression of p85α or p85β alone interfered with serum-induced
membrane PIP3 localization and PKB activation; this interference
was lower with p85β (Fig. S7D and E). In the absence of stimulus,
p85β and p85β/p110α also induced cell elongation, which is nor-
mally observed after cell activation (Fig. 3B and Fig. S7E). This
p85β-induced morphological change was p110-independent, as it
was also triggered by Δp85β (Fig. 3B and Fig. S7 C and E).

Enhanced PI3K Pathway Activation in p85β-Expressing Cells. We ex-
amined PI3K pathway activation in human U2OS cells transfected
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Fig. 1. Increased p85β expression in breast and colon carci-
nomas. (A–C) Extracts from representative CC and BC tumors
(T), surrounding normal tissue (N), and control cells (panel B)
were examined by WB using anti-p85α or anti-p85β Ab (A and
B) or anti-pPKB or anti-PKB Ab (C). Graphs show actin-nor-
malized p85β WB signal intensity in each sample, and the in-
crease in p85β levels in T vs. N ratio (A) or the ratio of pPKB
signal normalized to PKB in T vs. N (C). (D) IH of tumor samples
using anti-pS6 Ab. BC 13 and 33 show intense staining (score
2.5 of 3) in ∼70% of tumor cells; BC 27 shows intermediate
staining (score 2) in ∼50% of the cells. Inset: Normal acinus and
BC27 IH using anti-pPKB Ab. Lower: Normal tissue, intense
staining in CC10 (score 3, 50% of cells) and intermediate
staining in CC15 (score 2, ∼45% of cells). Original magnifica-
tion is indicated.
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with hemagglutinin (HA)-p85α or HA-p85β and p110α, and
confirmed similar expression of p85α and p85β by using anti-HA
Ab in WBs (Fig. 4A). As in NIH 3T3 cells, unstimulated U2OS
cells showed higher pPKB levels in p85β/p110α than in p85α/
p110α cells, and p85β alone interfered with serum-induced PKB
activation less than p85α (Fig. 4A). Finally, in the absence of
stimulus in U2OS cells, reduction of p85β levels, but not of p85α
levels, reduced PI3K pathway activation (Fig. 4B). Cell stimulation
is thus necessary for optimal PI3K pathway activation in p85β/
p110α- and p85α/p110α-expressing cells. In the absence of stim-
ulus, p85β, but not p85α, triggers basal PI3K pathway activation,
as also observed in PTEN−/− cells (20).

p85β/p110α Cells Have Greater Kinase Activity than p85α/p110α for
PtdIns(4,5)P2. The constitutive membrane localization of PIP3 in
p85β/p110α cells could indicate that this complex has a higher
intrinsic affinity for membrane phosphoinositides than p85α/
p110α. We compared the kinase activity of purified p85α/p110α

and p85β/p110α by using distinct phosphoinositides. p85α/p110α
showed higher kinase activity for PtdIns substrate; in contrast,
p85β/p110α phosphorylated PtdIns(4,5)P2 more efficiently than
p85α/p110α (Fig. S8A). We also tested HA-p85β/p110α and
HA-p85α/p110α activity in HA immune complexes by using
a mixture of PtdIns, PtdIns(4)P, and PtdIns(4,5)P2 (Fig. 4C),
which confirmed p85β/p110α preference for the physiological
substrate PtdIns(4,5)P2. PtdIns(3)P is a lipid product generated
only in in vitro reactions using purified p110, but does not
markedly increase in cells after p110 activation, when the prod-
ucts generated are PtdIns(3,4,5)P3 and PtdIns(3,4)P2 (21). De-
spite this distinct PI3K substrate specificity in vitro and in vivo,
the observation that p85β/p110α phosphorylates PtdIns (4,5)P2
more efficiently than p85α/p110α in the same conditions (Fig. 4C)
suggests higher intrinsic affinity of p85β/p110α for PtdIns(4,5)P2.

p85β Controls Tumor Progression in Mouse. p85β expression acti-
vates basal PI3K activity and might facilitate cell transformation
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or invasion. p85β, but not p85α, triggered cell transformation in
a focus formation assay and enhanced cell invasion (Fig. 4 D and
E); in agreement, p85β knockdown reduced invasion of NIH 3T3
cells as well as that of BLM and HT1080 cells, both of which are
highly invasive (Fig. S8B).
To study the influence of p85β deletion on carcinogenesis in

a genetically controlled model, we used azoxymethane/dextran
sodium sulfate (AOM/DSS) inflammation-dependent mouse
colon carcinogenesis. As Pik3r2 regulates inflammation (7),
Pik3r2−/− and WT mice were transplanted with WT bone marrow
(BM) before AOM/DSS treatment (Fig. 5A and Fig. S9A). In
WT and Pik3r2−/− mice, most tumors generated were flat colon
carcinomas that did not differ in distribution of tumor size; tu-
mor number was nonetheless significantly lower in p85β-deficient
mice (Fig. 5A). To determine whether BC responds to decreased
p85β levels, we examined eight BC cell lines with higher p85β
expression than p85α expression, and half of them responded
with reduced proliferation; we selected two representative lines
for careful examination (Fig. S9B). MDA-MB231 cells grew

more rapidly and were unaffected by a reduction in p85β or p85α
levels; in contrast, p85β siRNA-transfected MDA-MB468 cells
showed reduced growth and underwent cell death (Fig. S9B). As
well as acting as a BC invasion marker, p85β thus determines
survival of some BC cells; future studies will address the genetic
background needed for p85β-dependent BC cell survival.
To test the effect of increased p85β expression on carcino-

genesis, we augmented p85β levels by retroviral infection of the
BM and analyzed tumor progression in the N-ethyl-N-nitrosourea
(ENU) thymic lymphoma model in SCID mice. We infected
SCID mouse BM with p85β-encoding retroviruses (Fig. S9C).
Mice received transplants of control or p85β-infected SCID BM
and, after ∼1 mo, were treated with ENU. Tumors appeared at
∼7.5 mo in controls and at ∼3 mo in p85β-expressing mice, re-
ducing their lifespan (Fig. 5D). A larger percentage of p85β-
expressing mice showed spleen metastases compared with con-
trols, as determined by analysis of tumor phenotype (Fig. 5E and
Fig. S9D). Increased pik3r2 mRNA expression in mice was con-
firmed by qPCR (Fig. 5E). p85β expression and PKB activation in
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lymphomas was confirmed by WB (Fig. S9E); lymphomas were
otherwise similar in both mouse types (Fig. 5F). Increased p85β
expression thus regulates tumor progression in mammals.

Discussion
We showed that increased p85β expression correlates with PI3K
pathway activation and tumor progression in BC and CC. Ac-
cordingly, modulation of p85β levels regulated tumor progression
in mouse. p85β expression augmented plasma membrane PIP3
levels and activation of the PI3K effector PKB in the absence of

stimulus, and triggered focus formation and cell invasion, sug-
gesting that p85β regulates tumor progression.
p110α associates at a 1:1 ratio with p85α or p85β (6). Similar to

p85α, p85β mediates p110 translocation to receptors at the cell
membrane; indeed, double pik3r1/pik3r2-deficient mice die ear-
lier than those with single deletions (7, 8, 22). Both p85α/p110α-
and p85β/p110α-expressing cells showed maximal PI3K activa-
tion only after stimulation, suggesting that both p85 subunits
restrict p110α activation, possibly in a distinct manner. None-
theless, in the absence of stimulus, p85β alone and p85β/p110α
induced moderate PI3K activation. The higher affinity of p85β
than of p85α for membrane PtdIns(4,5)P2 might result in spon-
taneous p85β translocation to the cell membrane and partial
p110α or β activation. Whereas the effects of p85β on PI3K
pathway activation were p110-dependent, morphological effects
were at least partially kinase-independent.
With the exception of the brain, most normal tissues express

higher levels of p85α than of p85β (refs. 5–7 and data from ref.
23). It is thus possible that in physiological conditions, p85β ex-
pression increases only when higher basal PI3K activity is
needed. Whereas p85α-deficient mice die perinatally, p85β-
deficient mice grow normally and show only moderate immuno-
logical defects (7, 8). Somatic mutations in PIK3R1 are more
frequent than those in PIK3R2; p85α mutations concentrate in
critical hotspots and activate p110 (9, 10, 24). In contrast, the few
mutations described in p85β do not concentrate at hotspots
and show a modest functional difference with WT p85β (24).
Moreover, whereas genetic deletion of p85β impaired tumori-
genesis (Fig. 5), p85α deletion increases this process (11). This is
concordant with the observation that PIK3R1 expression is often
reduced, whereas PIK3R2 expression is increased, in BC and CC.
Although the tumor sample analyzed here is small, the tendency
toward increased PIK3R2 expression in BC and CC is supported
by other gene expression studies (data from ref. 25). p85β ex-
pression might have distinct effects in different tumor types.
p85β deletion in heterozygous Pten+/− mice does not change the
incidence of intestinal polyps (26); the different tumor type,
stage, or Pten status might explain the absence of an effect.
Several studies indicate that p85 associates with and regulates
PTEN. p85β might also affect tumor progression through distinct
binding or action on PTEN, although both p85α and p85β as-
sociate with PTEN (27).
We show here that p85β levels are frequently increased in CC

and BC, an increase that correlated with PI3K pathway activa-
tion and tumor progression. We confirmed that p85β levels
regulate tumor progression in vivo, that the p85β/p110α complex
shows preference for the physiological substrate PtdIns(4,5)P2,
and that p85β expression induces cell transformation and in-
vasion. The contribution of p85β to tumor progression indicates
new therapeutic possibilities for cancer treatment through in-
terference with p85β action (e.g., phospholipid analogues or
siRNA). Analysis of p85β levels could complement diagnosis and
help to identify which patients would benefit from classical or
PI3K-targeted chemotherapy.

Materials and Methods
cDNAs. p85β was subcloned into pSG5, and an HA epitope was added in-
frame at the N terminus. The p85β ATG codon was replaced with a CCG
codon (proline) and the HA-tag ATG codon was maintained (Quik-Change
mutagenesis kit; Stratagene). siRNA for human p85β and control were from
Invitrogen; siRNA for human p85α was from Dharmacon; and shRNA for
mouse p85β was from OriGene.

Human Tumor Analysis, WB, and PI3K Assays. BC and CC and adjacent normal
tissue samples were provided by the Tissue Bank Network funded by the
Molecular Pathology Program of the Spanish National Cancer Center. CCs
were classified according to modified Dukes criteria (D0 to DC). BCs were
graded using the Bloom–Richardson criteria (grades 1–3), and classified
as luminal A, B, HER2+, or basal-type (14–16). p85 protein content was
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examined by WB and mRNA levels examined by qPCR. WB and PI3K assays
were performed as described earlier (7). Additional methods are detailed in
SI Materials and Methods.
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