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Abstract

Different respiratory viruses induce virus-specific gene expression in the host. Recent evidence, including those presented
here, suggests that genetically related isolates of influenza virus induce strain-specific host gene regulation in several animal
models. Here, we identified systemic strain-specific gene expression signatures in ferrets infected with pandemic influenza
A/California/07/2009, A/Mexico/4482/2009 or seasonal influenza A/Brisbane/59/2007. Using uncorrelated shrunken centroid
classification, we were able to accurately identify the infecting influenza strain with a combined gene expression profile of
10 selected genes, independent of the severity of disease. Another gene signature, consisting of 7 genes, could classify
samples based on lung pathology. Furthermore, we identified a gene expression profile consisting of 31 probes that could
classify samples based on both strain and severity of disease. Thus, we show that expression-based analysis of non-infected
tissue enables distinction between genetically related influenza viruses as well as lung pathology. These results open for
development of alternative tools for influenza diagnostics.
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Introduction

The disease caused by the pandemic H1N1 influenza strains

(H1N1pdm) that emerged in 2009 differed from previously

circulating seasonal strains. Although most patients displayed

mild symptoms, the proportion of hospitalized and/or deceased

healthy young adults was significantly higher than that seen in

preceding influenza seasons [1,2]. Recent evidence suggests that

infection with genetically related H1N1pdm isolates results in

widely different pathology [3,4]. Current diagnostic approaches

used in most hospitals do not routinely discern between

influenza strains with minor genetic differences. Therefore,

strains that confer a higher virulence in patients can initially be

overlooked until a cluster of patients is noted with similar

severity. To establish the exact infectious strain, current

procedures require sampling of virus during shedding and then

either sequencing or analysis using a set of strain-specific PCR

primers, targeting the minute differences between strains.

Diagnostic procedures based on gene expression profiling of

non-infected blood cells have previously been used to discrim-

inate between infections with different respiratory viruses as well

as between symptomatic and asymptomatic subjects infected

with influenza (H3N2) [5,6]. Therefore, we hypothesized that

strain-specific host gene response after infection with different,

albeit genetically similar, influenza viruses would be sufficient to

correctly identify the infectious strain using sophisticated

statistical classification algorithms.

To test this hypothesis, we examined the systemic response to

infection of two pandemic strains (A/California/07/2009 and A/

Mexico/4482/2009) and compared these responses to those

triggered by a seasonal H1N1 strain (A/Brisbane/59/2007) in

blood samples from infected ferrets using a ferret-specific

microarray [7]. The domestic ferret is susceptible to most human

influenza isolates and develops clinical symptoms resembling those

seen in humans [8]. It should however be noted that the pathology

observed in human subjects is not always reflected in ferrets

infected with the same strain.

The analysis revealed that H1N1 infection in ferrets influenced

transcription of common functional gene clusters involved in

processes such as lysosomal protein degradation, virus response,

and apoptosis control in blood cells. However, the bulk of the

identified expression changes showed strain-specific patterns. We

utilized these strain-specific alterations to delineate the smallest

number of genes needed to identify the infectious strain and/or

severity of disease.
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Results

Clinical Evaluation, Virology and Histopathology
The clinical signs began 2 DPI, and resolved at 5 DPI for A/

Cal/07 and A/Bn/59 and at 6 DPI for A/Mex/4482. Sneezing,

nasal and ocular discharges were observed in all groups except the

control. The animals infected with the A/Cal/07-HD or A/Mex/

4482 had significantly increased body temperatures at 2 DPI

(P,0.0001, ANOVA followed by Bonferroni’s multiple compar-

ison test) as shown in Figure 1A. A/Bn/59 and A/Cal/07-LD

infected ferrets did not show significantly increased body

temperatures. A significant decrease in body weight as compared

to uninfected controls was detected at 2 and 3 DPI in A/Cal/07-

HD infected and at 3 DPI in A/Cal/07-LD infected ferrets

(P,0.001). Body weight loss was also seen in animals infected with

A/Mex/4482 and A/Bn/59 at 2 DPI only (P,0.001). By 28 DPI,

all animals had returned to the weight recorded at 0 DPI.

We analyzed nasal swabs, nasal turbinates and lungs for

presence of virus and confirmed that all three strains of influenza

established infection (Fig. 1B). The highest titers were detected in

the nasal swabs on 2 DPI in all groups except for A/Cal/07-LD,

which peaked at 3 DPI. The highest titers recorded were 103.8

TCID50/ml in A/Cal/07-HD, 104.5 TCID50/ml in A/Mex/4482

and 102.3 TCID50/ml in A/Bn/59 and 103.4 TCID50/ml for A/

Cal/07-LD. Similar results were obtained for nasal turbinates.

Virus could also be isolated from lungs from euthanized ferrets.

Virus production peaked at 3 DPI (A/Cal/07-HD, 102.3 TCID50/

ml; A/Mex/4482, 102.2 TCID50/ml and A/Bn/59, 102.5

TCID50/ml) for all groups but A/Cal/07-LD. The peak for this

group was seen at 5 DPI (102.3 TCID50/ml). Influenza virus was

not detected in any sample by 7 DPI. In addition, no virus was

detected in samples obtained from brain, jejunum, colon or liver

collected at 3 DPI.

Histopathological evaluation identified lesions in the airways

and lungs (Table S1 and Fig. S1). Microscopic lesions observed in

lung tissue were compatible with viral infection and inflammation.

Lesions were found in animals infected with any of the three

strains. The incidence and severity of microscopic lesions in the

H1N1pdm infected animals generally increased over time

(Fig. 1C). Lung pathology based on cumulative histopathology

score was most severe in A/Cal/07-HD infected animals, followed

by the A/Cal/07-LD infected ferrets. The cumulative histopa-

thology score in these two groups were significantly higher than

the A/Bn/59 infected animals at 7 DPI (ANOVA, p,0.05

followed by Bonferroni’s multiple comparison test). The animals

infected with A/Mex/4482 showed a higher, but not significant,

cumulative histopathology score than the A/Bn/59 infected

ferrets. By 28 DPI the pulmonary lesions were resolved in all

groups.

Influenza-specific IgM followed by Influenza-specific IgG

production was detected in all animals (Fig. 1D). An early peak

in IgM followed by IgG production is consistent with the kinetics

of immunoglobulin production in response to an infection.

Statistical and Functional Clustering Analysis of Gene
Expression Data
Prior to statistical analysis, correlation coefficients were calcu-

lated between each sample within each group. The overall

correlation between each sample was high (94% or higher, Fig.

S2A). In order to elucidate a possible batch effect, we used

unsupervised nonnegative matrix factorization (NMF) [9]. Since

we used three different strains and a control group, we performed

an NMF clustering of the samples into four ranks. Three of the

four clusters contained samples from more than one strain,

whereas one cluster was composed on samples from the A/Cal/07

infected group only. No obvious clustering was seen based on

methodological parameters, like hybridization date and slide

number (Fig. S2B). Variance analysis of the microarray data from

the blood samples identified 4098 of 30742 probes that were

significantly altered when grouping the animals according to

euthanasia day, infectious strain and dose (ANOVA, p-value

,0.01, Bonferroni FDR correction). As a number of genes on the

array were represented by multiple probes, we used CAP3 [10] to

identify probes with sequences that were overlapping by 90% or

more. These probes showed nearly identical expression patterns

(data not shown), and thus only one probe for each such gene was

used for further analysis. After CAP3 filtering, 3232 probes

remained.

Of these, 1997 probes displayed a fold change ratio that was

larger than +/2 two-fold for at least one time point for any of the

three influenza strains (Fig. 2). These probes represented 1200

annotated genes or transcripts. There were 1050 probes that could

be mapped against human orthologs using the Entrez gene

database, and these genes were clustered based on their biological

function using DAVID. Protein localization (GO: 0008104) and

phosphorous metabolic process (GO: 0006793) ranked highest

with 98 and 93 genes respectively. As expected, many of the genes

altered compared to the control animals were part of the

regulation of cell death (GO: 0010941, 77 genes) and immune

response (GO: 0006955, 72 genes).

Of the 177 probes that were commonly up- or down regulated

by all strains, 72 had human orthologs and were further analyzed

using DAVID to highlight involved biological processes. The

highest ranked gene ontology categories were immune response

(GO: 0006955) and apoptosis (GO: 0006915) (data not shown).

The majority of the altered genes did however show a strain-

specific expression pattern, and animals infected with A/Cal/07

displayed a larger fraction of altered probes compared to A/Mex/

4482 and A/Bn/59 (Fig. 1C). Confirmatory analysis using CYBR

green qRT-PCR was done on a limited number of genes (PTPRC,

DDX58, CD36 and MT-APT6), which showed levels similar to

those identified by the arrays (Fig. S3 and data not shown).

Identification of Gene Expression Profiles Capable of
Classifying Influenza Strain
Hierarchical clustering of the 1997 probes separated the

samples into three major clusters (A/Cal/07 infected animals in

cluster 1, A/Mex/4482 infected animals in cluster 2 and A/Bn/59

and CTRL animals in cluster 3, data not shown). We thus

hypothesized that we could identify a small set of genes capable of

classifying the influenza strain used to infect the ferrets. We used

uncorrelated shrunken centroid (USC) classification, as it provides

a supervised learning approach by which the known classes or

groups of samples are used to train the algorithm to isolate the

smallest number of genes capable of categorizing an unknown

sample [11]. To avoid over-fitting the algorithm, we divided the

samples into a training set, containing 51 of the samples, and a test

set with the remaining 12 samples (Fig. 3). The training set was

used by the USC algorithm to identify the smallest number of

‘‘classifier genes’’. These classifier genes were then used to identify

the classes of the test set.

Using the genes that were significantly altered between the

different strains (ANOVA, p-value ,0.01, Bonferroni FDR

correction) with the training set, the USC algorithm identified

an expression profile consisting of 10 genes. Several of these genes

have been implicated in innate immune response (F box protein 9

(FBXO9), protein tyrosine phosphatase, receptor type, C (PTPRC

or CD45), ecotropic viral integration site 2B (EVI2B or CD361),

Gene Expression Based Influenza Classification
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CD36 molecule (thrombospondin receptor) (CD36) and DEAD

(Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58 or RIG-I) [12–

16]. This classifier profile was then used to identify the infectious

strain of the samples in the test set. The infectious strain was

correctly classified in all samples this set of 10 genes (Fig. 3). Ten

genes selected randomly using the sampling function in Microsoft

Figure 1. Clinical evaluation, virology and immunology. Box-and-whisker diagram of the body temperature and body weight (A) for the
controls and the infected animals. The stars indicate significant increases of body temperature and significant loss of body weight (P,0.001, ANOVA
followed by Bonferroni’s multiple comparison test). The temperature and body weight recorded prior to infection was used as normal level. Panel B
shows the viral titers in the nasal turbinates. Significant difference in titers between strains were obtained at 1 DPI (A/Cal/07-HD vs. A/BN/59; A/Cal/
07-LD vs. A/Mex/4482) and at 2 DPI (A/Cal/07-LD vs. A/BN/59) (ANOVA, p,0.05, Bonferroni correction). Panel C shows the log2 increase in end point
titers of IgM and IgG between serum obtained prior to infection and at the time of euthanasia for each animal.
doi:10.1371/journal.pone.0040743.g001
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Figure 2. Global gene expression changes. Panel A shows a heat map of the 25% (7685 probes) most variable genes in the dataset for all
samples. Each sample day represents three individual animals, except the control group (CTRL, n = 6). HD and LD indicate high dose and low dose,
respectively. D1 through D7 designates the day of euthanasia. Panel B illustrates gene expression profiles of 1997 significantly changed probes with
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Excel could not distinguish between the strains with high accuracy.

Using these ten genes, 6 of 12 samples (50%) were incorrectly

classified (data not shown).

We also tested if the expression profile of the 10 genes selected

as strain classifiers were capable of categorizing samples generated

in data generated elsewhere [17]. Here, gene expression profiles

from A/Cal/07 and A/Bn/59 infected ferret lung samples

generated through cross-species hybridization to a canine-specific

microarray were obtained from the GEO omnibus database (Acc.

no. GSE17079). We isolated 16 probe sets corresponding to the 10

genes used to classify the strains in our data set. We then created

a training set with four of the six control samples and six of the

nine A/Cal/07 and A/Bn/59 infected samples, respectively. The

test set contained two control samples and three samples from

each of the infected groups. Using the training set to first build the

classifier, and then using this to identify the infectious strain in the

test set, resulted in correct classification of 7 of out of 8 samples.

One A/Cal/07 sample was classified as an A/Bn/59 infected

animal (data not shown).

Identification of Genetic Expression Profiles for
Classification of Lung Pathology
To investigate if there were any gene expression profiles that

correlated to lung pathology, we isolated the smallest number of

genes that could classify the cumulative histopathology score. The

samples in the training set were divided based on the cumulative

histopathology score. The cutoffs were set to less or equal to ten, or

eleven or higher. The USC algorithm then identified a gene profile

capable of predicting the severity of lung pathology, independent

of infectious strain. With a combined expression profile of seven

genes, correct classification was obtained for all but one sample in

the test set, (Fig. 3B). The genes used to classify the samples were:

tumor protein, translationally-controlled 1 (TPT1); nucleoporin

210 kDa (NUP210); DEK oncogene (DEK); THO complex 4

(THOC4); splicing factor, arginine/serine-rich 9 (SRSF9); myosin,

light chain 6 (MYL6) and tumor necrosis factor (ligand) superfam-

ily, member 13 (TNFSF13 or LIGHT). None of these genes

overlapped with those used to classify the infectious strain.

We also isolated the smallest number of genes that could classify

the samples with regards to strain and cumulative histopathology

score. In this analysis, all samples were grouped based on the

infectious strain as well as the cumulative histopathology score

(CTRL, A/Cal/07_Hist0–10, A/Cal/07_Hist11+, A/Mex/

4482_Hist0–10, A/Mex/4482_Hist11+ and A/Bn/59_Hist0–9).

USC classification using the training set isolated 31 probes, which

were able to correctly classify all but one sample in the

corresponding test set. One control animal was erroneously

classified as an A/Bn/59_Hist0–9 sample (Fig. 3C).

Discussion

In April 2009, a new strain of influenza A H1N1 was identified

in Mexico. The infection then spread rapidly around the world,

and was declared a pandemic by the World Health Organization

(WHO) in June 2009. The pandemic alert lasted until August

2010. Analysis of epidemiological data has indicated that several

risk factors (such as obesity or high age etc.) for development of

severe disease exist. Nevertheless, a remarkably large fraction of

severely affected patients during the most recent influenza

pandemic were among young and healthy individuals [1,2,18].

The explanation for this is currently not known, although recent

evidence, including those presented here, suggests that genetically

related influenza isolates can promote different host responses as

well as clinical manifestations [3,4,19].

Commercially available, widely used rapid influenza diagnostic

tests do not distinguish among influenza A virus subtypes and are

less sensitive than viral culture or RT-PCR [20]. However, viral

culture or RT-PCR has limitations, as they require isolation of

replicating virus. The 2009 pandemic influenza strains follow

standard influenza viral kinetics in humans. After an initial peak in

viral load occurring 2 to 3 days after infection, virus titers decline

and are undetectable after five days [21]. Several reports have

indicated that the day from onset of symptoms to hospital

admission varies from 0–22 days [22–24]. Thus, patients may

come to the clinic after viral shedding has ceased, and current

influenza diagnostics may thus fail to identify the exact infectious

influenza strain. Given the fact that genetically related H1N1pdm

isolates cause a wide range of clinical manifestations, identification

of patients infected with more virulent strains or at risk of

developing a more severe disease is of clinical relevance. Such

information can facilitate decision-making regarding need for

treatment vs. no need for treatment for individual patients, and

has thus life-saving potential.

Recently, host gene expression profiling has been used to

distinguish different respiratory viruses from patients infected with

rhinovirus, respiratory syncytial virus or influenza A virus [5]. In

addition, Huang et. al used gene expression profiling of peripheral

blood cells to study the temporal dynamics of host response in

human subjects infected with influenza A virus (A/Wisconsin/67/

2005), and identified gene expression profiles that could discrim-

inate between symptomatic and asymptomatic subjects [6]. To

investigate if strain-specific gene expression signatures derived

from infection with genetically similar influenza viruses could be

used to identify the viral etiology of infection, we examined the

systemic host response in peripheral blood samples from ferrets

infected with three A/H1N1 influenza viruses. The majority of the

transcriptional changes displayed a strain-specific induction or

reduction, despite up to 99.88% sequence similarity between the

strains. Previous studies have shown that influenza infection causes

an increase of immune cells in the blood, and that cytokines such

as IL-6, IL-8 and MCP-1 protein levels differ significantly in

macaques infected with different H1N1pdm strains [3]. Different

infection-induced protein levels in blood are likely connected to

differential gene expression. It is thus not surprising that we

detected different transcription profiles in the blood from ferrets

infected with different influenza strains.

Several different patterns of this strain-specific host response

were observed, including genes that were up- or down regulated as

a result of infection by one of the strains examined, but not the

other two. Alternatively, there were genes that were up- or down

regulated in all infected animals, albeit the induction or reduction

was several-fold different between the different strains. The

homogenous transcription profiles among the animals within each

group, and the large heterogeneity between the groups allowed for

identification of strain-specific gene expression signatures.

a fold change larger than +/22 in at least one group when compared to the control group. The average fold change from the three animals within
each group is shown. Red designate up-regulated genes, blue down regulated genes, where a more intense color illustrates a more pronounced fold
change. The Venn diagram in panel C shows the number of probes up or down regulated after infection by any of the three strains (177 genes), by
two of the three strains (228, 131 and 29 genes) and the number of probes aberrantly expressed in a strain specific pattern.
doi:10.1371/journal.pone.0040743.g002
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Figure 3. Classification analysis. Panel A shows the heat map of the 10 genes isolated by the USC algorithm to classify the samples with regards
to infectious strain. The samples are denoted by their ID number and the euthanasia day, and are sorted according to strain (and dose for A/Cal/07
infected animals). The asterisks denote gene expression verified by qRT-PCR. Panel B shows the 7 genes that were used to classify the samples based
on the cumulative histopathology score. The samples are denoted with ID number and euthanasia day, and are sorted according to cumulative
histopathology score (given as numbers under the sample names). Panel C displays the 31 genes required to classify the samples based on infectious
strain and histopathology score. The samples are denoted with ID number and euthanasia day, and are sorted according to strain and cumulative
histopathology score (given as numbers under the heat map). All samples were correctly classified with regards to strain. The samples used to train
the classification algorithm is denoted in black, correctly classified samples in the test set in green and incorrectly classified samples in red.
doi:10.1371/journal.pone.0040743.g003
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Using a supervised classification algorithm, we could identify 10

genes whose collective expression profile was capable of correctly

classifying all samples in a test set, where 12 of the samples in this

study had been deliberately set as ‘‘unknown’’, and had not been

used to train the classification algorithm. Several of the genes in

this profile have previously been shown to be involved in innate

immune response, such as DDX58, CD45, CD36 and EVI2B. It is

interesting to note that the different influenza strains used in this

study triggered a highly strain specific host response, also involving

genes transcribing key pattern recognition molecules for influenza

like the DDX58/RIG-I. This gene signature was further tested

using lung samples derived from influenza infected ferrets

generated by other investigators [17]. All but one sample in the

test group were correctly classified, even though the data had been

generated using lung tissue on another microarray platform.

Hence, the signatures identified here were not limited to our ferret

data.

We further used the classification algorithm to identify gene

expression changes that associated with lung pathology. We

identified 7 genes whose combined gene expression profile could

classify all but one sample according to their cumulative

histopathology score. One of these genes, TNFSF14 encodes for

a tumor necrosis factor (TNF) ligand superfamily member which

has previously been shown to be involved in regulation of dendritic

cells and stimulation of T cell proliferation [25]. Constitutive

expression of TNFSF14 has been shown to result in T cell

mediated inflammation and tissue destruction. Myosin, light chain

6, alkali, smooth muscle and non-muscle (MYL6), has been

indicated as a protein involved in cell migration, a key process in

regeneration of damaged tissue [26]. THO complex 4 (THOC4)

and serine/arginine-rich splicing factor 9 (SRFS9) are both

involved in mRNA processing. The influenza virus utilizes several

key host components for mRNA splicing and export, and it is thus

interesting to note that genes involved in these mechanisms were

expressed at higher levels in animals with a more severe disease. It

remains to be investigated if high expression values of these genes

are also present in human patients with severe influenza

syndromes.

It is likely that both host factors as well as the infecting strain will

determine the severity of disease in an individual patient. Thus,

a comprehensive diagnostic test should ultimately be able to

diagnose both the infecting strain and predict the severity of the

disease in a single step analysis. Strain information is essential to

identify patients infected with viruses that are resistant to available

antiviral drugs. Similarly, identification of patients with higher risk

of developing severe disease would help health care professionals

in providing medical attention where it matters the most.

Therefore, we tested if we could classify our samples with regard

to strain and severity of lung pathology. Using a profile containing

of 31 genes, we could classify all samples but one sample in the test

set with regard to strain and histopathology score.

It is plausible that the severity of the disease is dependent on

both host factors and the virulence of the infecting virus. Our study

was not designed to identify a gene profile capable of predicting

the clinical outcome, as some animals were euthanized prior to

onset of disease. In addition, all our samples were not analyzed at

one single time point, and were thus not fully randomized. This

may induce variability that is of non-biological origin, although the

NMF analysis done here argues against this. Also, since ferrets are

outbred, our sample groups were not necessarily large enough to

capture possible inter-individual ability to respond to the infection.

To identify genes with a higher predictive power, a repeated

sampling approach in a larger set of animals should be used,

preferentially with multiple strains and multiple doses. Neverthe-

less, the results obtained here further expand on the findings by

Zaas et al. where it was established that expression-based

diagnostics could differentiate between several respiratory viruses

[5], and shows promise for further development of a diagnostic

tool that could be used for early identification of patients infected

with highly pathogenic strains and facilitate early treatment as well

as isolation to prevent transmission of virulent virus. Whether the

combined expression profile of the genes used to classify the ferret

samples are capable of classifying samples from human influenza

patients’ needs to be further elucidated. However, based on our

results and the analysis of host response to different H1N1pdm

viruses in rhesus macaques [3], it can be extrapolated that

genetically similar influenza viruses result in strain-specific host

responses in humans. For clinical development, this approach

needs to be validated in human blood samples. Additional analysis

studying the overlap of gene expression changes between species

infected with the same influenza strains is needed. In conclusion,

we believe the results presented here open new avenues for precise

molecular diagnostic tools capable of predicting the clinical

outcome of influenza-infected patients.

Materials and Methods

Virus Preparation and Titer Determination
Viral stocks of the three H1N1 influenza strains A/California/

07/2009, A/Mexico/4482/2009 and A/Brisbane/59/2007 (A/

Cal/07, A/Mex/4482 and A/Bn/59) were obtained from the

Centers for Disease Control and Prevention. The viruses were

propagated for two to four days at 34uC in ten day old

embryonated hen’s eggs according to standard operating proce-

dures previously described [27,28]. TCID50 analysis in Madin-

Darby Canine Kidney (MDCK) cells was performed to assess the

viral load in swabs and tissues as has previously been described

[28].

Animal Care, Clinical and Microscopical Evaluation and
Sample Collection
All procedures were conducted in accordance with the Animal

Welfare Act and the CDC-NIH Biosafety in Microbiological and

Biomedical Laboratories and were approved by the Institutional

Biosafety Committee and Institutional Animal Care and Use

Committee (ACUP protocol #08-05-031B). The animal experi-

ments were performed in the AAALAC-accredited ABSL-2 and

ABSL-3 facilities at Southern Research Institute.

Castrated three to six months old ferrets (500–1800 g) were

used (Triple F Farms). All animals were seronegative for

representative currently circulating human influenza A strains as

determined by hemagglutination inhibition assay. The ferrets were

divided into groups defined by the strain used for infection and the

day of euthanasia. The animals had free access to water and food

and a maximum of two animals were housed per cage. All groups

were housed in separate rooms. On Day 0, each ferret was

anesthetized using a ketamine/xylazine/atropine mixture, formu-

lated to provide doses of 25 mg/kg ketamine, 1.7 mg/kg xylazine,

and 0.05 mg/kg of atropine to each animal, and challenged

intranasally with one ml of 106 TCID50/ml [A/Cal/07 high dose

(HD), A/Mex/4482, and A/Bn/59] or one ml of 104 TCID50/ml

[A/Cal/07 low dose (LD)] virus (0.5 ml per naris) diluted in PBS.

The mock-infected animals were challenged with PBS only.

Body weight, temperature and clinical signs of infection such as

nasal and ocular discharge, sneezing, presence of loose stool, and

inactivity were recorded daily. A post-mortem examination was

performed on the day of euthanasia. Lungs, nasal turbinates,

brain, jejunum, colon, and liver were collected for analysis of virus

Gene Expression Based Influenza Classification
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titers. In addition, lung samples were placed in 10% neutral

buffered formalin for histopathological examination. Hematoxylin

and eosin stained lung tissue was evaluated microscopically from

each animal. Microscopic Pulmonary lesions were graded for

severity using a numerical scoring system in which 1=minimal,

2 =mild, 3 =moderate, and 4=marked. The scores for each

animal were then summarized to generate the cumulative

histopathology score. Two ml of whole blood from each animal

was collected in PaxGene RNA tubes for the microarray analysis.

IgM and IgG ELISA
Serum was collected two weeks before infection and at 1, 2, 3, 5,

7, and 28 days post infection (DPI) and evaluated using virus-

specific ferret IgM and IgG ELISA. Plates were coated with 1:200

dilution of stock virus in PBS overnight at 4uC, and then blocked

with 2% donor goat serum (Sigma Aldrich) in PBS/0.05% v/v

Tween-20 for 30 min. Ferret serum was then added and 2-fold

serially diluted and incubated at 4uC overnight. HRP-conjugated

anti-ferret IgM or IgG was added and incubated at 37uC (1 h).

TMB substrate was added and the reaction was stopped using

1 M H3PO4, and read at 450 nm.

RNA Preparation, Labeling and Microarray Analysis
Blood from three animals per group was collected upon

euthanasia at 1, 2, 3, 5 and 7 DPI. For A/Bn/59, the samples

collected at 5 DPI did not meet the quality threshold, and were

discarded from the analysis. The blood collected in PaxGene tubes

was processed using the PaxGene RNA kit, according to the

protocol supplied (Qiagen). Quantity and quality of the total RNA

was analyzed using a NanoDrop 2000C Spectrophotometer

(Thermo Scientific) and an Experion automated electrophoresis

system (Bio-Rad) prior to labeling. To optimize detection of

critical host responsive genes and avoid the possibility of

identifying false positive and negative expression signals using

cross-species microarray hybridization [29,30], we used a ferret-

specific microarray that we recently developed [7]. 200 ng total

RNA was labeled using the one-color labeling kit from Agilent

technologies according to the supplied protocol. The labeled

cRNA was then hybridized on a previously described ferret

specific microarray for 16 h and washed according to the

supplier’s instructions. The slides were scanned at a GenePix

4000B scanner at five mm resolution. The raw image files were

then processed by the Agilent feature extraction software and raw

data files were obtained. The samples were analyzed in different

cohorts. RNA from animals infected with A/Cal/07-HD and A/

Cal/07-LD and the controls were hybridized first, followed by the

A/BN/59 and lastly the A/Mex/4482. The raw data files from all

samples were then normalized and filtered using the Agi4644-

PreProcess R-plugin available at the bioconductor website.

Agi4644 performed inter-microarray normalization (quantile

normalization) and filtered out spots below the low signal

threshold (Fig. S2). The data was then log2 transformed and

imported into Multi experiment viewer (MEV) v4.6 for statistical

analysis [31]. Fold changes (FC) were calculated using Microsoft

Excel and Access was used to combine results from the statistical

tests. The raw data was deposited at the Gene Expression

Omnibus data repository with access number GSE28967.

Functional analysis was done using the Database for Annota-

tion, Visualization and Integrated Discovery (DAVID), [32]).

DAVID performs batch annotation enrichment analysis to identify

frequently co-occurring biological functions, protein-protein inter-

actions, protein functional domains, disease associations, pathways

etc. in a set of genes identified e.g. as up or down regulated in

expression analysis. Concomitant gene clusters were ranked by

statistical significance to highlight the most relevant biological

functions. As no ferret genomic background was available, we used

the human genome as background for the functional annotation

investigations.

We used uncorrelated shrunken centroid classification (USC) to

identify the smallest number of genes capable of categorizing an

unknown blood sample with regard to which influenza strain had

caused infection. This algorithm utilizes a supervised learning

approach, in which the known classes or groups of samples are

used to train the algorithm. USC then identifies a subset of genes

which are then used to predict which group any unknown sample

belongs to [11]. For the classifications, a training set containing 51

of the 63 samples was used to train the algorithm. The validity of

the isolated genes was then tested using a test set, containing 12

samples intentionally left out during the training. In addition, we

used microarray data from a previously published study [17,33,34]

to confirm that the genes identified by the USC algorithm also

could classify influenza infected ferrets analyzed elsewhere. These

data sets were downloaded from the GEO omnibus repository

(acc. no. GSE17079), normalized using the PLIER PM option in

the Expression Console software from Affymetrix. Since this study

utilized a different platform, we had to create a new training set

containing eighteen of the samples and a test set contining the

remaining eight samples from this study. The algorithm was

trained using the probes sets that overlapped with the genes

selected from our study, and was then used to classify the samples

in the test set.

Supporting Information

Figure S1 Representative findings from the histopath-
ological examination of lung tissue. Examples of findings

from the histopathological examination of the influenza infected

ferrets. Panel A shows an example of chronic active perivascular

inflammation in a A/Cal/07 infected animal (black arrows), Panel

B indicate chronic active inflammation within the bronchiolar

lumen (orange arrows) and bronchiolar hypertrophy and re-

generation (black arrows). C illustrates bronchiolar hyperplasia

(green arrows), inflammation of the bronchiolar wall (black

arrows), perivascular interstitium (white arrow) and alveoli (orange

arrow). In panel D, chronic active inflammation of alveoli and

bronchiolar lumen is seen at the orange and the green arrow,

respectively. The white arrows indicate bronchiolar necrosis. Panel

E shows the geometric mean of cumulative histopathology score

for each strain and euthanasia day.

(TIF)

Figure S2 Normalization of microarray data and prin-
cipal component analysis of samples. Box-and-whisker

diagram of the microarray intensities before (A) and after

normalization (B). The average correlation coefficient for the

samples within each group is shown above the diagram in panel B.

Panel C shows the consensus matrix of an unsupervised Non-

negative matrix factorization (NMF) analysis, using the entire data

set prior to any statistical comparisons. The color of the heat map

indicates the cophenetic correlation used to quantify the

robustness of the rank’s evaluation. A strong correlation is

indicated as black and weak correlation as red. Strong correlation

between the A/Cal/07 infected animals was seen, whereas the

other animals did not form any obvious clusters. No obvious

clustering could be attributed to be the experimentally introduced

variability.

(TIF)
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Figure S3 qRT-PCR validation. Scatter plots showing the

DD2Ct values (blue diamonds) and the fold change ratio from the

microarray (red circles) for the PTPRC and MT-APT6 genes in

control samples and A/Cal/07 infected samples.

(TIF)

Table S1 Lung histopathology results. Microscopic Pul-

monary lesions were graded for severity using a numerical scoring

system in which 1=minimal, 2 =mild, 3 =moderate, and

4=marked. The scores for each animal were then summarized

to generate the cumulative histopathology score.

(XLSX)
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