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Purpose: To develop a new fully four-dimensional (4D), iterative image reconstruction algorithm for
cardiac CT that alternates the following two methods: estimation of a time-dependent motion vector
field (MVF) of the heart from image data and reconstruction of images using the estimated MVF and
projection data.
Methods: Volumetric image data at different cardiac phase points were obtained using
electrocardiogram-gated CT. Motion estimation (ME) and motion-compensated image reconstruction
(MCR) were performed alternately until convergence was achieved. The ME method estimated the
cardiac MVF using 4D nonrigid image registration between a cardiac reference phase and all the other
phases. The nonrigid deformation of the heart was modeled using cubic B-splines. The cost function
consisted of a sum of squared weighted differences and spatial and temporal regularization terms. A
nested conjugate gradient optimization algorithm was applied to minimize the cost function and es-
timate the MVFs. Cardiac images were reconstructed using a motion-tracking algorithm that utilized
the MVFs estimated by the ME method. The reconstructed images supplied the input to the ME of
the next iteration. The performance of the proposed method was evaluated using four patient data sets
acquired with a 64-slice CT scanner. The heart rates of the patients ranged from 52 to 71 beats/min.
Results: Motion artifacts were significantly reduced, and the image quality increased with the num-
ber of iterations. Without MCR, the right coronary artery (RCA) was deformed into an arc in axial
images of rapid phases. With the proposed method the RCA appeared sharper and was reconstructed
similar in shape to the reconstruction at the quiescent phase at mid-diastole. The boundary between
the interventricular septum and the right ventricle was also clearer and sharper using the proposed
algorithm. The steepness of the transition range at a rapid phase (35% R-R) was increased from 6.8
HU/pixel to 11.5 HU/pixel. The ME-MCR algorithm converged in just four iterations.
Conclusion: We developed a fully 4D image reconstruction method that alternates ME and
MCR algorithms in an iterative fashion. Performance tests using clinical patient data re-
sulted in reduced motion artifacts. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4725754]
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I. INTRODUCTION

Cardiovascular diseases remain the leading cause of death
in the western world, placing an ever-increasing burden on
both private and public health services. Electrocardiogram
(ECG)-gated cardiac computed tomography (CT) imaging is
a promising noninvasive technique for early detection of fatty
vulnerable plaque in coronary arteries. However, there are
two major problems with the current retrospectively ECG-
gated image reconstruction technique: large patient radiation
dose and insufficient temporal resolution, leading to some-
times severe motion artifacts. In the past five years, significant
technical efforts have been made including ECG-triggered
(or prospectively ECG-gated) sequential scan modes,1 to de-
crease radiation dose and to overcome arrhythmia and irregu-
lar heart rates. This scan mode with 64- or 128-row detectors
allows to complete the cardiac scan within several heart beats,
while decreasing the out-of-phase radiation dose for low-dose
scan and adjusting the scan flexibly for arrhythmia and irreg-
ular heart rates.2, 3

Current solutions to these problems have certain limi-
tations. Prospectively, ECG-gated helical scanning (a.k.a.,
ECG-pulsing) or sequential scan is a typical solution to the
dose issue, which reduces or turns off the x-ray flux for car-
diac phases that are outside the window of interest.1 How-
ever, this technique has the following complications: (1) the
user has to identify the patient-specific optimal phase with re-
spect to the ECG signals; (2) the heart rate must be stable
during the scan if the helical mode is employed; (3) the mo-
tion of the heart, which contains useful clinical information,
cannot be obtained unless data over the entire heartbeat are ac-
quired, which will significantly increase the dose. Therefore,
retrospectively ECG-gated cardiac CT is still commonly used.
Solutions to the temporal resolution include faster gantry ro-
tation speed and dual-source CT.4 However, these hardware-
based solutions increase the cost of the scanner.

A different, algorithm-based approach to reducing motion
artifacts is to incorporate information about the cardiac mo-
tion into the reconstruction process.5–12 By compensating for
the motion the acquired projection data can be fully utilized
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for image reconstruction. Motion compensated reconstruction
(MCR) has the additional potential benefit to improve my-
ocardium perfusion CT.13

In this paper, we propose a fully four-dimensional (4D),
iterative image reconstruction algorithm that alternates mo-
tion estimation (ME) and MCR. The ME method utilizes an
image-based registration procedure, and we adapt Schäfer’s
motion tracking cone-beam backprojection method6 for
MCR. The iterative process is terminated when the improve-
ment in image quality becomes negligible.

Recently, Isola et al.12 developed an image-based ME
method to estimate 4D cardiac motion. The authors used
gated cardiac CT images and selected a set of quiescent
phases during one heartbeat, one of which was chosen as an
anchor phase. Next, 3D nonrigid image registration was per-
formed to obtain 3D motion vector fields (MVFs) between the
anchor phase and all other quiescent phases. Cubic B-spline
interpolation was applied to obtain the 4D MVF between any
phase point during the cardiac cycle and the anchor phase.
Finally, vector field inversion and composition were used to
compute the 4D MVF between a rapid phase of interest and
another, arbitrary phase point.

In contrast, our ME approach is a 4D nonrigid image regis-
tration method which directly estimates 4D MVFs, fully uti-
lizing the volume images at all cardiac phases.14 Temporal
regularization is applied as well as a spatial regularization
in the cost function to ensure that the estimated 4D MVF is
smooth in both time and space. The weighting factor of the
temporal smoothness term varied with respect to the cardiac
phase, and stronger regularization was applied to faster car-
diac phases to reduce severe motion artifacts.

There are two main classes of MCR algorithms: nu-
merical or iterative methods12 and analytical methods.6, 15–18

Iterative MCR methods typically have large memory and
computational requirements. Considering the additional com-
putational burden, they are not suitable for our iterative
ME-MCR. Also, it has been shown that iterative meth-
ods may present artifacts due to subtle inconsistencies in
clinical data unless extra precautions are taken.19 Conse-
quently, we chose an analytical method for our study. Sev-
eral analytical MCR methods require motion models15–18

but do not utilize the MVFs directly. Here, we adapted
a motion tracking cone-beam backprojection method6

which is efficient and can be easily implemented with
MVFs.

The structure of this paper is as follows. In Sec. II, we
outline the ME method, the MCR method, and the itera-
tive ME-MCR algorithm. In Sec. III, the performance of
the proposed method is evaluated using clinical cardiac CT
data. Relevant issues are discussed in Sec. IV, followed by
conclusions.

II. ALGORITHMS

In this section, we outline the ME method, the MCR
method, and the iterative ME-MCR algorithm.

II.A. ME algorithm

The ME algorithm was developed in our previous work,14

which is briefly described here for convenience. Zeng et al.20

proposed a projection-based ME approach that maximizes a
regularized similarity metric between the measured and cal-
culated projection data by solving an optimization problem.
We modified their approach to an image-based ME and ob-
tained 4D MVFs, �Vr (�x, t), where �x is a 3D spatial vector. The
deformation vector �Vr (�x, t) is defined from a cardiac refer-
ence phase tr to another phase t.

II.A.1. Deformation model

An image volume at a quiescent motion phase was chosen
as reference fr (�x) and an image fw(�x) at phase t was obtained
by warping the reference image as follows:

fw(�x, t) = fr (�x + �Vr (�x, t), tr ). (1)

The deformation �Vr (�x, t) was modeled by a finite number
of knots using cubic B-splines as

�Vr (�x, t) =
K∑

τ=1

∑
�i

θ�i,τ b
(

t

�t
− τ

)
β

( �x
|��x| − �i

)
, (2)

where |��x| and �t are the knot spacing in the spatial and
temporal domain respectively, �i and τ are discrete sampling
indices in the spatial and temporal domain respectively, θ�i,τ
are the cubic B-spline coefficients, K is the number of knots
in time, b is a 1D cubic B-spline, and β is a 3D tensor product
of cubic B-splines.

II.A.2. Cost function

The deformation parameters θ�i,τ were estimated by min-
imizing a regularized weighted least-squared difference
�(θ�i,τ ) between the warped reference volume and the target
volumes

θ̂�i,τ = arg min
θ�i,τ

�(θ�i,τ ), (3)

�(θ�i,τ ) = Lω(θ�i,τ ) + R(θ�i,τ ), (4)

where Lω(θ�i,τ ) denotes a similarity metric

Lω(θ�i,τ ) = 1

2MN

∑
m=1,...,M

||ω(�x, tm)(f (�x, tm)−fw(�x, tm))||2,

(5)

and R(θ�i,τ ) denotes a quadratic penalty term

R(θ�i,τ ) = 1

2S
αx

∑
�i

∑
τ

|Cxθ�i,τ |2 + 1

2S
αt

∑
�i

∑
τ

|Ctθ�i,τ |2.

(6)

In Eq. (5), N is the number of voxels in a 3D image, m
is a phase index, M is the number of discrete phase points
in one heart beat at which images were reconstructed, and
ω(�x, tm) is a weighting function. In Eq. (6), S is the number
of 4D knots, αx and αt are weighting factors for the spatial
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and temporal smoothness terms respectively, and Cx and Ct

are differencing matrices in the spatial and temporal domains,
respectively. The number of knots in time was chosen to be
the same as the number of discrete time points, K = M.

II.A.3. Optimization

We used an iterative nested conjugate gradient (CG) algo-
rithm to minimize the cost function �(θ�i,τ ). The conjugate
gradient method was chosen because it typically provides fast
convergence and does not require inversion of the Hessian
matrix. To avoid calculating a very large Hessian matrix, up-
dates in the inner loop of the nested algorithm were calculated
in subsets of the B-spline coefficients. A subset contained B-
spline coefficients θk

�i,τ that were related to a specific 3D MVF
from the reference phase tr to another phase tm, m = 1, . . . , K.
Each subset was updated exactly once in the inner loop, and
the estimations θk+1

�i,τ were obtained from the current estima-

tions θk
�i,τ using the following update:

θk+1
�i,τ = θk

�i,τ + λkdk, (7)

where

λk = − (Bk)T dk

(dk)T Akdk
, (8a)

dk = −Bk +
k−1∑
j=0

ηjdj , (8b)

ηk = (Bk)T Akdk

(dk)T Akdk
. (8c)

Here, T is the transpose operator, k is the iteration number,
Bk = − ∂�

∂θ�i,τ
was evaluated at θk

�i,τ , and Ak = ∂2�
∂θ�i,τ ∂θ�i′τ ′ was

evaluated at θk
�i,τ , which is similar to Zeng’s derivation.18 This

procedure was iterated until the updates were small. To save
computation time, the Hessian matrix A was updated every
five iterations.

II.B. MCR algorithm

We adapted Schäfer’s motion tracking cone-beam back-
projection method6 for helical halfscan21 and reconstructed
volumes at cardiac phases tm. Schäfer’s method simply traces
the motion of each voxel during the backprojection process.
However, it is a very good approximation of an exact compen-
sation method when the object deformation can be described
by an affine transformation such as isotropic scaling (contrac-
tion and expansion), rotation, and translation.22 The method
is almost identical to the standard Feldkamp algorithm,23 ex-
cept that during the backprojection process a ray that corre-
sponds to a new pixel location, �x(t) = �x(tm) + �Vm(�x, t), is
chosen with the inverse squared-distance weight calculated
by the new pixel location. Both ends of the cardiac time win-
dow were feathered similar to a previous method,24 but the
projection range was fixed.

The MCR process required to estimate the MVFs �Vm(�x, t)
from the phases tm to an arbitrary, continuous phase t, which

in general was different from the K discrete phases for which
MVFs were estimated as described in Sec. II.A. The vector
fields �Vm(�x, t) were obtained using inversion, concatenation,
and interpolation of the existing MVFs �Vr (�x, tm) as follows.
First, we inverted the MVF from phase tr to tm, �Vr (�x, tm), and
obtained the MVF from tm to tr,

�Vm(�x, tr ) = invert ( �Vr (�x, tm)), (9)

using a fixed-point-based iterative method.25 Then, we ob-
tained MVFs from tm to all other discrete cardiac phases tn,
n = 1, . . . , K by concatenating �Vm(�x, tr ) and �Vr (�x, tn),

�Vm(�x, tn) = �Vm(�x, tr ) + �Vr (�x + �Vm(�x, tr ), tn). (10)

Finally, the motion vectors �Vm(�x, t) were obtained by
cubic B-spline interpolation on the discrete set of MVFs
�Vm(�x, tn) as

�Vm(�x, t) = interp ( �Vm(�x, tn),m, n = 1, . . . , K). (11)

II.C. ME-MCR algorithm

The general framework of the proposed ME-MCR method
was similar to that of Gilland et al. which was developed for
nuclear medicine.26, 27 The iteration started with a set of im-
ages f 0(�x, tm) reconstructed from ECG-gated helical, half-
scan data using the Feldkamp algorithm. The superscript “0”
indicates the initial iteration step. The two independent algo-
rithms for ME and MCR were performed alternately in one
loop of the iterative process. The iteration ended once the
change from one reconstructed images to the next iteration
step became small. The ME-MCR algorithm can be summa-
rized as follows (see also Fig. 1):

Step 1: k = 0: Reconstruct f 0(�x, tm) at all phases tm using
the Feldkamp algorithm and choose a reference phase tr.

Step 2: k+1 → k: Estimate MVFs �V k
r (�x, tm) from the ref-

erence phase f k
r (�x) to all other phases.

Step 3: Calculate MVFs �V k
m(�x, t), from phase tm toward

arbitrary phase t.
Step 4: Reconstruct f k(�x, tm) by the MCR method using

�V k
m(�x, t).

Step 5: Repeat steps 2–4 while the mean absolute differ-
ence MAD = 1

MN

∑ |f k(�x, tm) − f k−1(�x, tm)| is greater than
a stopping criteria ε.

III. EVALUATION

The proposed algorithm was implemented using C and the
CUDA programming platform to accelerate the computation
on a graphic processing unit (GPU) board. The performance
of the algorithm was evaluated with cardiac CT patient data.

III.A. Methods

Projection data of four patients were acquired with a 64-
slice CT scanner (Sensation 64, Siemens Healthcare, Forch-
heim, Germany) following a standard cardiac protocol. The
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FIG. 1. Flowchart of the proposed ME-MCR method.

detector collimation was 2 mm × 32 mm × 0.6 mm with z-
flying focal spot, the helical pitch was 0.29 per rotation, the
gantry rotation speed was 330 msec per rotation, and the num-
ber of projections per rotation was 1160. The ECG signals
were acquired during the scan.

The mean heart rate ranged from 52 to 71 beats/min as de-
tailed in Table I. The cardiac cycle was divided into 20 phases
corresponding to increments of 5% in the R-R interval. The
image volume at a single phase consisted of 512 × 512 × nz

voxels, with nz varying between 241 and 321 slices, and the
spacing was 0.43 mm × 0.43 mm × 0.50 mm. The MVF was
modeled using B-splines with 16 × 16 × 11 knots in the x,
y, and z axes, and 20 knots in the temporal axis. The knot
spacing was �x = 14.6 mm, �y = 14.6 mm, �z =12.0–16.0
mm. The quiescent cardiac phases with least motion were de-
termined manually as 5% of the R-R interval (end-diastole),
40% (end-systole), and 75% (mid-diastole) for all four pa-
tients. These three quiescent cardiac phases were chosen as
reference phases, and three sets of 4D MVFs (one for each
reference phase) were estimated independently.

TABLE I. Parameters of the patient data sets: Size of reconstructed image
volumes, average heart rate (HR), standard deviation (STD) of the HR, mini-
mum HR, maximum HR, and contrast. The contrast scores (10, best contrast;
1 worst contrast) were assigned by the authors by visually inspecting the pa-
tient images.

HR HR
Volume size average STD HRmin HRmax Contrast

Patient 1 512 × 512 × 289 51.7 3.0 47.1 58.3 10
Patient 2 512 × 512 × 245 56.3 3.0 50.2 61.2 8
Patient 3 512 × 512 × 321 52.2 4.2 48.2 64.0 6
Patient 4 512 × 512 × 241 70.7 9.2 59.3 97.1 6

Estimating large motion deformations is challenging for
nonrigid image registration and may lead to unrealistic mo-
tion patters such as folding. Several quiescent phases were
determined and used as reference phases, which is similar
to what Schirra et al. proposed.10 In their approach, phase
points from quiescent phases were grouped together into qui-
escent segments and one phase point from each segment
was chosen as a reference phase. The 3D image registration
was performed between each reference phase and all other
phases in the same quiescent section and between all refer-
ence phases. The motion vector field between arbitrary phase
points was finally obtained by temporal interpolation of the
motion fields between quiescent segments. In contrast, our
proposed method performed 4D image registration between
each reference phase and all other cardiac phases. Therefore,
three sets of motion vector fields were obtained. For the MCR
the cardiac cycle was divided into three parts, corresponding
to the three quiescent reference phases. Each of the 17 re-
maining phases was assigned to the reference phase that was
closest in space. Spatial closeness was defined by the trace of
the right coronary artery (RCA) as shown in Fig. 2. During
MCR at a target phase t, only the MVFs that were estimated
for the reference phase in the same group were used. As an
example, for the target phase t = 15% R-R only the MVFs
from end-diastole to all other phases were used, and for the
target phase t = 25% R-R only the MVFs from mid-diastole
to all other phases were used. This division into three parts
provided the most accurate MVFs for each target phase.

The four patient data sets were selected based on visual
inspection in order to present different scenarios to the ME-
MCR algorithm. For patient 2, all three reference phases
showed few motion artifacts. Patient 1 showed one motion
free reference phase (mid-diastole, 75% R-R) and patient 3
showed two motion free reference phases (end-systole, 40%
R-R and mid-diastole, 75% R-R). Patient 4 showed motion
blurring in all three reference phases.

The weighting factor for spatial smoothness in the ME al-
gorithm, parameter αx in Eq. (6), was set to a value of 8.0
and the weighting factor for temporal smoothness, αt, varied
with the cardiac phase as described in Ref. 14. The iteration
of ME and MCR was stopped when the MAD between re-
constructed images of consecutive iteration steps was smaller
than 2.5 HU.
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FIG. 2. Motion path of the right coronary artery. The reference phases (solid
black dots) are chosen at mid-diastole (75% R-R), end-diastole (5% R-R),
and end-systole (40% R-R). The two dashed lines divide the cardiac phase
into three groups. In each group, there is one reference phase and 5, 8, and 4
target phases (for end-diastole, mid-diastole, and end-systole, respectively).
Only MVFs between reference phases and target phases of the same group
were used for reconstruction.

III.B. Results

We discuss the results of the ME-MCR algorithm sepa-
rately for each patient data set.

III.B.1. A case with one clear and two blurred
reference phases (patient 1)

First, we outline the performance of the proposed method
in detail using a case with one clear and two blurred reference
phases. Figures 3 and 4 show the overall change of the images
with the iterative ME-MCR method. Figure 3 shows the MAD
between the 4D volume images at the current and the previ-
ous iteration. The MAD values decreased as the ME-MCR

iteration progressed and the change in Hounsfield units be-
came small. Figure 4 shows the MAD between the images at
the current and the previous iterations separately for each car-
diac phase. The MAD values decreased for all cardiac phases,
although the degree of improvement depended on the phase.
The MAD of some phases did not decrease monotonically.
The MAD for all phases continued to decrease after the 4th
iteration, and the image quality did not seem to be different
subjectively.

Figure 5 shows images of two rapid phases (15% and 35%
R-R) and the corresponding reference phases at 5% and 40%
R-R, reconstructed without motion compensation and with
the proposed method after the 1st, 3rd, and 9th iteration. The
motion artifacts near the RCA were substantially decreased
with the proposed method, and the degree of improvement
increased with the number of iteration steps, especially at
phases 5% and 15%. This shows that the proposed method
can improve the image quality, even if the reference image
(phase 5%) is degraded by minor or moderate motion ar-
tifacts. The improvement in motion blurriness was also in-
vestigated for regions other than the RCA. The circled re-
gion in Fig. 5 for phase 35% R-R includes the left ventri-
cle and the right atrium. The boundary between these two
chambers was severely blurred without motion compensation
[Fig. 5(a)], while it could be clearly depicted in the images
obtained with the proposed algorithm [Fig. 5(d)]. Figure 6
shows coronal images that correspond to Fig. 5, and demon-
strates the same level of reduction of motion artifacts with the
proposed method.

A quantitative evaluation of the improvement in image
quality was performed using the transition region indicated by
the dotted rectangle in Fig. 5 for 35% and 40% R-R. The re-
gion enclosed an area between the interventricular septum and
the right ventricle and hence contained two different tissue
types. The pixel values for the septum were around 90 HU.
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FIG. 3. Mean absolute difference of 4D image as a function of iteration numbers for all patients.
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FIG. 4. Mean absolute difference varying with iteration number and cardiac phase for patient 1.

(a) (b) (c) (d) 

5%

15%

35%

40%

FIG. 5. Reconstructed axial images of patient 1: Column (a) was reconstructed without motion compensation, and columns (b)–(d) were obtained after the 1,
3, and 9 ME-MCR iterations, respectively. The insets magnify the region indicated by the solid box. The window width and level were 500 HU and 50 HU. The
same window-level setting is used in the following figures unless noted otherwise.
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5%

15%
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40%

FIG. 6. Reconstructed coronal images of patient 1. The insets magnify the region indicated by the solid box (right coronary region). The 16-panel format is the
same as in Fig. 5.

The blood in the right ventricle was weakly enhanced due
to contrast agent with pixel values around 170 HU. Figure 7
shows histograms of the pixel values in this transition region
for images reconstructed without motion compensation and
with motion compensation after the 1st, 3rd, and 9th iteration.
At the quiet reference phase (40% R-R), the distribution of the
pixel values is separated into two distinct peaks. The motion-
compensated reconstruction does not improve the sharpness
of the separation. However, at the rapid phase 35% R-R with-
out motion compensation the boundary between septum and
right ventricle is blurred which is reflected in a single broad
peak of the pixel value distribution. The proposed algorithm
restored the separation between these two tissue types, yield-
ing an increasingly sharper boundary. After nine iterations the
two peaks in the pixel value distribution were separated sim-
ilar to those at the quiet phase. For this particular evaluation,
the standard deviations (STDs) of the pixel value distributions
could be used as a quantitative indicator for the separation of
the two peaks and are listed in Table II. The STD at 35% R-R
increased with the number of MC-MCR iterations and after
nine iterations it was similar to the STD value at the reference
phase 40% R-R.

The sharpness of the boundary between septum and right
ventricle is visualized in Fig. 8 by plotting the profile of the
pixel values along the short side of the dotted rectangle in
Fig. 5. For the reference phase, the profiles are almost identi-
cal for all iteration steps. For the rapid phase at 35% R-R, the

steepness of the profile in the transition region increased to
11.5 HU/pixel using the ME-MCR method compared to 6.8
HU/pixel without motion compensation (see Table II).

III.B.2. A case with three clear reference phases
(patient 2)

Figure 9 shows the MAD between the images at the current
and the previous iterations separately for each cardiac phase.
The MAD values decreased for all cardiac phases, although
the degree of improvement depended on the phase.

Figure 10 shows axial images at three rapid phases 10%,
25%, and 35% R-R and one quiescent phase 40% R-R, recon-
structed without motion compensation and by the proposed

TABLE II. Standard deviation (STD) of the pixel values in the rectangle re-
gion of Fig. 5 and steepness of the boundary along the profiles in Fig. 8. The
values were calculated at phases 35% and 40% R-R without MCR and after
1, 3, and 9 ME-MCR iterations.

STD (HU) Steepness (HU/pixel)

Iterations 35% R-R 40% R-R 35% R-R 40% R-R

Without MCR 41.54 46.44 6.82 13.13
1st iteration 45.52 46.76 11.10 13.10
3rd iteration 46.41 47.12 11.31 13.83
9th iteration 46.62 47.41 11.49 13.93
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FIG. 7. Histograms of the CT numbers in the rectangular region in Fig. 5 for
phase 35% R-R (a) and for phase 40% R-R (b) after 0, 1, 3, and 9 ME-MCR
iterations.

method. The RCA appeared as a bright dot at the quiescent
phase but was deformed into an arc due to motion at the rapid
phases [column (a)]. After one ME-MCR iteration, the RCA
appeared as a clear dot at phases 10% and 35% R-R and the
deformation was reduced at phase 25% R-R [column (b)]. The
MCR image at phase 40% R-R was as clear as the one without
motion compensation. The blurring artifacts were reduced by
the proposed method without degrading the image quality at
the quiescent phase.

Figure 11 shows coronal images corresponding to Fig. 10.
The RCA in column (b) is sharper than in column (a). Due
to the nonperiodic heart beat, banding artifacts appeared in
the RCA region (discontinuities in column (a), indicated by
arrows).

III.B.3. A case with two clear and one blurred
reference phases (patient 3)

Figure 12 shows the MAD between the images at the cur-
rent and the previous iterations separately for each cardiac
phase. The MAD values decreased for all cardiac phases.

Figures 13 and 14 present results when one reference phase
(at end-systole, 40% R-R) was blurred due to cardiac motion.
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FIG. 8. Profiles of the rectangle region indicated in Fig. 5. (a) and (b) cor-
respond to phases 35% and 40% R-R, respectively. The x-coordinate points
along the short side of the rectangles in Fig. 5. The y-coordinate is the mean
pixel value along the long side of the rectangles. The solid, dashed, dotted,
and dashed-dotted lines correspond to 0, 1, 3, and 9 ME-MCR iterations.

Figure 13 shows the axial images at three rapid phases 20%,
30%, and 50% R-R and the quiescent phase at 40% R-R. Im-
ages were reconstructed without motion compensation [col-
umn (a)], with one ME-MCR iteration loop [column (b)], with
three ME-MCR iteration loops [column (c)] and nine ME-
MCR iteration loops [column (d)]. The images in column (c)
have fewer motion artifacts than those in columns (a) and (b),
indicating the effectiveness of the proposed ME-MCR method
even if the reference image used for ME is blurred. The sharp-
ness of the RCA in the images at the quiescent reference was
not changed during ME-MCR. Figure 14 shows coronal im-
ages corresponding to Fig. 13. The sharpness (along the longi-
tudinal direction) of the RCA kept improving as the ME-MCR
iteration progressed.

III.B.4. A case with three blurred reference phases
(patient 4)

Figure 15 shows the MAD between the images at the cur-
rent and the previous iterations separately for each cardiac
phase. The MAD values decreased for all cardiac phases sim-
ilar to the other three cases.
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FIG. 9. Mean absolute difference varying with iteration number and cardiac phase for patient 2.

(a) (b) (c) (d) 

10%

25%

35%

40%

FIG. 10. Reconstructed axial images of patient 2. Column (a) was reconstructed without motion compensation, and columns (b)–(d) were obtained after 1, 3,
and 9 ME-MCR iterations. Three fast motion phases 10%, 25%, and 35% R-R and one quiescent phase 40% R-R are shown. The insets are the zoom-in of the
box (right coronary region).
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FIG. 11. Reconstructed coronal images of patient 2: The insets were the zoom-in of the box (right coronary region). The 16-panel format is the same as in
Fig. 10.

Figures 16 and 17 show results when all three reference
phases are affected by motion artifacts due to a more rapid
heart rate. Figure 16 shows axial images at three rapid phases
25% and 35% R-R and the quiescent phase 5%, 40%, and
75% R-R, reconstructed without motion compensation [col-

umn (a)], after one ME-MCR iteration [column (b)], after
three ME-MCR iterations [column (c)] and nine ME-MCR
iterations [column (d)]. Images reconstructed after three iter-
ations show fewer motion artifacts than those obtained with
only one iteration loop. The image quality at the reference
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FIG. 12. Mean absolute difference varying with iteration number and cardiac phase for patient 3.
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(a) (b) (c) (d) 
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FIG. 13. Reconstructed axial images of patient 3. Columns (a) was reconstructed without motion compensation, (b)–(d) were obtained after the 1, 3, and 9
ME-MCR iterations, respectively. Three fast motion phases 20%, 30%, and 50% R-R and one quiescent reference phase 40% R-R are shown. The insets are the
zoom-in of the box (right coronary region).

(a) (b) (c) (d) 

20%

30%

40%

50%

FIG. 14. Reconstructed coronary images of patient 3: The insets are the zoom-in of the box (right coronary region). The 16-panel format is the same as in
Fig. 13.
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FIG. 15. Mean absolute difference varying with iteration number and cardiac phase for patient 4.

5%

25%

35%

75%

40%

(a) (b) (c) (d) 

FIG. 16. Reconstructed axial images of patient 4: Column (a) was reconstructed without motion compensation, and columns (b)–(d) were obtained after the 1,
3, and 9 ME-MCR iterations, respectively. Two fast motion phases 25% and 35% R-R and three reference phases 5%, 40%, and 75% R-R are shown. The insets
are the zoom-in of the box (right coronary region).

Medical Physics, Vol. 39, No. 7, July 2012



4303 Tang et al.: Motion estimation and compensation method for cardiac CT 4303

5%

25%

35%

75%

40%

(a) (b) (c) (d) 

FIG. 17. Reconstructed coronal image of patient 4: The insets were the zoom-in of the box (right coronary region). The 20-panel format is the same as in
Fig. 16.

phases 5%, 40%, and 75% R-R was also improved. Figure 17
shows coronal images corresponding to Fig. 16. The sharp-
ness along the short axis direction of the RCA improved with
ME-MCR.

IV. DISCUSSIONS AND CONCLUSIONS

We developed a fully four-dimensional image reconstruc-
tion method that alternates ME and MCR algorithms in an
iterative fashion. The ME method estimated cardiac MVFs
using nonrigid image registration between reference phases
and all other phases. The MCR method reconstructed cardiac
images using the MVFs estimated by the ME method. Those
images were the input to the ME in the next iteration. The ME
and MCR were performed alternately until convergence was
achieved.

The performance of the proposed method was evaluated
on clinical data from four patients. These four cases rep-
resented a wide spectrum of difficulty for the motion es-
timation algorithm due to different levels of motion arti-
facts at the three quiescent reference phases at end-systole,
mid-diastole, and end-diastole. The motion artifacts at rapid
phases were reduced significantly in all cases with the pro-
posed method. This also indicates that the MVFs obtained
by the ME were sufficiently accurate. The motion blurring at
the reference phases in the moderate and difficult cases was
also suppressed. This indicates that the proposed algorithm
does not require motion-free reference phases and that it can
improve the image quality of the reference phases as well.
Consequently, the ME-MCR algorithm is beneficial in clini-
cal situations even if the images at quiescent phases are af-
fected by motion artifacts. However, if the reference image

suffers from severe motion artifacts, especially in the case
where there is no cardiac phase with acceptable image quality
that can serve as a reference phase, it is difficult to improve
the image quality by the proposed method. This is the lim-
itation of the proposed method. Also, the proposed method,
which assumes a regular heart motion, will not reduce cardiac
banding artifacts24, 28 caused by irregular heart motion. One
would have to incorporate a scheme to overcome such irregu-
larity into a motion estimation method such as Rohkohl et al.
proposed.29, 30

The results show that the reduction of motion artifacts im-
proved with more iteration steps. This indicates the stability
of the approach despite the fact that the two methods, ME
and MCR, are only loosely coupled and are not connected by
a common cost function. We hypothesize that the gradually
improved images result in more accurate MVFs in the next
iteration step, which in turn lead to reduced motion artifacts.
A theoretical and qualitative investigation of this hypothesis
is the subject of a future study. An advantage of the decou-
pled approach is that both parts of the ME-MCR method can
be modified independently. A disadvantage, however, is that
each part depends solely on improvements by the other part.

It was shown empirically that the use of MCR improved ar-
tifacts even if the MVFs were not completely accurate, for ex-
ample, if the initial reference phases were blurred. This con-
firms the hypothesis that MCR with slightly inaccurate MVFs
should still result in better images than using no motion infor-
mation at all—as long as the MVFs are reasonable.

The results are encouraging toward our ultimate goals:
improvement of temporal resolution, image noise, or radi-
ation dose reduction. The improved image quality indicates
that the effective temporal resolution was increased. By using
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current protocols but a larger range of projection data for re-
construction, the proposed method may improve the noise (or
the signal-to-noise ratio) while keeping sharpness and mo-
tion artifacts at a level comparable to current reconstruction
methods. Consequently, a lower tube current could be used
together with a larger projection range to reconstruct images
at any cardiac of phase of interest with a signal-to-noise ra-
tio comparable to current techniques and protocols. Results
of such studies will be presented in a future publication.

The proposed ME-MCR algorithm has some room for im-
provement: Motion artifacts remained present in some phases,
especially when the heart rate was high and the motion was
rapid. Candidates to advance the ME include methods to
improve modeling the cardiac motion, for example, using
a denser knot distribution or a different regularization. A
scheme to overcome the effect of motion artifacts may be
helpful as well. The use of projection data as a similarity mea-
sure instead of image data may be useful, although computa-
tionally expensive. The MCR could be improved further by
using techniques that compensate more accurately for a larger
class of deformations.18

Recently, the use of statistical methods in image recon-
struction has received increasing attention in the CT commu-
nity. A sinogram restoration approach31, 32 with the proposed
ME-MCR method is trivial, while the use of fully iterative
statistical reconstruction is a challenge. We acknowledge that
the best performance could be achieved if all of the physics
and object deformations were modeled accurately. However,
we postulate that such an algorithm would be computation-
ally too expensive for current hardware architectures and may
not converge in a stable and robust way because of the larger
number of unknowns (both pixel values and their temporal
change). The estimation of these two types of unknowns,
if alternated, may overcompensate and oscillate if the mod-
els are not accurate. It is known that even small data incon-
sistencies can lead to shading artifacts when using iterative
reconstruction.19

In conclusion, we developed a fully 4D image reconstruc-
tion method that alternates ME and MCR algorithms in an
iterative fashion. Performance tests using clinical patient data
resulted in reduced motion artifacts.
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