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Purpose: This work is to provide a direct, quantitative comparison of image features measured by
film and full-field digital mammography (FFDM). The purpose is to investigate whether there is
any systematic difference between film and FFDM in terms of quantitative image features and their
influence on the performance of a computer-aided diagnosis (CAD) system.
Methods: The authors make use of a set of matched film-FFDM image pairs acquired from cadaver
breast specimens with simulated microcalcifications consisting of bone and teeth fragments using
both a GE digital mammography system and a screen-film system. To quantify the image features,
the authors consider a set of 12 textural features of lesion regions and six image features of individ-
ual microcalcifications (MCs). The authors first conduct a direct comparison on these quantitative
features extracted from film and FFDM images. The authors then study the performance of a CAD
classifier for discriminating between MCs and false positives (FPs) when the classifier is trained on
images of different types (film, FFDM, or both).
Results: For all the features considered, the quantitative results show a high degree of correlation be-
tween features extracted from film and FFDM, with the correlation coefficients ranging from 0.7326
to 0.9602 for the different features. Based on a Fisher sign rank test, there was no significant difference
observed between the features extracted from film and those from FFDM. For both MC detection and
discrimination of FPs from MCs, FFDM had a slight but statistically significant advantage in perfor-
mance; however, when the classifiers were trained on different types of images (acquired with FFDM
or SFM) for discriminating MCs from FPs, there was little difference.
Conclusions: The results indicate good agreement between film and FFDM in quantitative image
features. While FFDM images provide better detection performance in MCs, FFDM and film images
may be interchangeable for the purposes of training CAD algorithms, and a single CAD algorithm
may be applied to either type of images. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4729740]

Key words: full-field digital mammography (FFDM), screen-film mammography, clustered microcal-
cifications, textural features, computer-aided diagnosis (CAD)

I. INTRODUCTION

Mammography is currently the standard clinical tool for
breast cancer screening. With the introduction of full-field
digital mammography (FFDM), there have been recent stud-
ies comparing FFDM images with traditional film mammo-
grams. These two types of mammograms, i.e., screen-film vs
FFDM, have advantages and limitations on certain aspects, re-
lated or unrelated to the diagnostic accuracy of breast cancer.1

The digital mammographic imaging screening trial (DMIST)
(Ref. 2) showed that radiologists’ screening performance us-
ing FFDM is similar to that obtained using screen-film mam-
mography (SFM); however, FFDM was superior when imag-
ing women with dense breasts.

There has been interest in comparing the effects of film and
digital mammograms on computer-aided diagnosis (CAD).
For example, in the study of Rana et al. the diagnostic per-
formance of existing CAD algorithms, developed based on
film mammograms, was investigated when applied to FFDM

images.3 It was demonstrated that similar results could be ob-
tained by FFDM mammograms, suggesting that CAD algo-
rithms developed using film mammograms can be applied to
FFDM mammograms without substantial modification. Also,
Boone et al. showed that FFDM images tend to have higher
signal-to-noise ratio than film images for the same x-ray
exposure.4

In this work, we conduct a direct, quantitative compari-
son of image features measured by film and FFDM images
acquired from same breast specimens. The goal is to investi-
gate in a controlled manner whether the two types of images
yield comparable image features for use in CAD algorithms.
It should be noted that this is quite different from previous
comparison studies, such as that of Rana et al., wherein the di-
agnosis performance was compared across different datasets.3

The use of cadaveric specimens is well suited for our pur-
poses, since it permits comparable images to be acquired on
screen-film and FFDM systems, thereby allowing meaningful
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quantitative comparisons. In addition, it permits multiple im-
ages to be acquired, which is not usually possible for live sub-
jects. There is ample precedent for this approach: mastectomy
specimens and cadaveric breasts have been used in numerous
studies to achieve anatomically realistic backgrounds,4–8 and
are particularly useful for comparisons between imaging sys-
tems. While it is possible to obtain FFDM and SFM on the
same patient, the two images are not comparable. It is im-
possible to position and compress a breast in the exact same
manner on both systems (with the possible exception of CR
mammograms). Therefore, a distinctive advantage of using
cadaver breasts over using multiple mammograms of same
subjects is that it allows for image acquisition of the breast
tissue in the same position and compression between film and
FFDM.

The motivation for our study is to determine whether im-
age features derived from film and FFDM are significantly
different from one another to warrant that they be treated sep-
arately when developing CAD algorithms. CAD development
requires the availability of a large database of mammograms;
thus, it would be desirable to utilize existing data sets of both
film and FFDM if it can be demonstrated that the features
derived from these two types of images are interchangeable.
This would greatly increase the amount of data available to
CAD systems.

We used pairs of images (acquired using film and FFDM)
to compare feature values obtained from these two types of
images; the features considered are ones that have been pre-
viously used in CAD to characterize microcalcifications.9 We
compared the paired feature values, and also studied the per-
formance of CAD algorithms derived using these values. In
particular, we consider both a CAD detection algorithm and a
CAD classification algorithm for discriminating against false
positives; for the latter, we investigate how the performance
of the CAD classifier will be affected when it is trained on
one type of images but tested on a different type.

In this study, we focus on analyzing images containing mi-
crocalcification (MC) lesions. MCs are tiny calcium deposits
which appear as bright spots in mammograms. Clustered MCs
can be an important early sign of breast cancer, appearing in
30%–50% of mammographically diagnosed cases.10 In the lit-
erature, there has been significant interest in the development
of CAD algorithms for detection and classification of MC le-
sions.

The rest of the paper is organized as follows. A description
of the image dataset and quantitative image features used in
this study is given in Sec. II, followed in Sec. III by a com-
parison study on how the image features from film or FFDM
images may affect the performance of CAD algorithms. Ex-
perimental results on image feature values and performance
of CAD algorithms are furnished in Sec. IV, and conclusions
are drawn in Sec. V.

II. QUANTITATIVE COMPARISON
OF IMAGE FEATURES

In this section, we focus on direct comparison of quanti-
tative image features extracted from film and FFDM images

of the same specimens. In particular, we consider two broad
types of quantitative image features: (1) image textural fea-
tures, and (2) microcalcification image features, both of which
have been commonly used in the literature for detection and
classification of MC lesions in CAD algorithms.11, 12

II.A. Description of dataset acquisition

We make use of a set of images of anonymized cadaveric
breast specimens obtained from the University of Chicago
Anatomical Gift Association. Each specimen was fixed in a
Lucite container and immersed in water. The x-ray attenua-
tion coefficient of water is similar to that of breast tissue, and
was used to minimize the radiographic appearance of macro-
scopic skin wrinkles. Simulated MCs consisting of bone and
tooth fragments with a range of sizes from 100 to 1000 μm
(on their long axes) were fixed in glass dishes, and were over-
laid on the breast specimens. The cadaver breasts overlaying
the simulated calcifications were imaged at 31 kVp with Mo
anode and a Rh filter. Using the automatic exposure control,
images were made on the screen-film system. The same ex-
posure conditions were used on the FFDM system.

The FFDM images were acquired using a Senographe
2000D FFDM system (General Electric Medical Systems;
Milwaukee, WI), with a resolution of 100 μm per pixel and
each pixel was represented using 14 bits. We used the for-
processing images. The film images were acquired using a
Min-R 2000 screen-film system (Eastman Kodak, Rochester,
NY) on a DMR mammography system (General Electric
Medical Systems; Milwaukee, WI). They were scanned on
a Lumiscan film digitizer (Lumisys; Sunnyvale, CA), which
produced images with spatial and gray-scale resolution of
50 μm and 12-bit, respectively. These were down sampled
to 100 μm to match the FFDM images.

Figure 1 shows regions of interest (ROIs) in two exam-
ple pairs of film and FFDM images, illustrating the relatively
subtle visual differences between film and FFDM. For quan-
titative comparison in this study, we extracted 20 matched
pairs of film and FFDM ROIs, each with dimension of 512
× 512 pixels. These ROIs were from cadaver breasts of five
different female subjects (four ROIs from each subject, all
with different simulated MC clusters) and they were spatially
nonoverlapping.

II.B. Quantification of textural features

To obtain textural features for each image, we use the
method of spatial gray level dependence (SGLD) matrices,13

a method that has found many applications in medical image
analysis, including characterizing tissue regions containing
clustered MCs in mammograms.9 For a given image, a SGLD
matrix (also known as a co-occurrence matrix) is formed by
the joint distribution of the gray levels at two pixels that are
separated by a specified distance along a fixed orientation. By
varying both the separation distance and orientation param-
eters, one can obtain a set of SGLD matrices. As an exam-
ple, we show in Fig. 2 the SGLD matrix of a sample FFDM
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FIG. 1. Two film-FFDM image pairs, in which bone and tooth fragments
with a range of sizes from 100 and 1000 μm were used to simulated MCs.

mammogram ROI obtained when the distance and direction
parameters were 16 pixels and 0◦, respectively.

From the SGLD matrices, we calculate a set of 12 tex-
tural features: (1) energy (ENER), (2) entropy (ENTR), (3)
difference average (DFAV), (4) difference variance (DFVR),
(5) difference entropy (DFEN), (6) sum average (SMAV), (7)
sum variance (SMVR), (8) sum entropy (SMEN), (9) inverse
difference moment (INVD), (10) correlation (COR), (11) and
(12) information measures of correlation (ICO1, ICO2). A de-
tailed definition of these textural features is given in the Ap-
pendix. These textural features are used to characterize image
properties related to transition of gray levels in an image. For
example, the entropy measures the uniformity of the SGLD
matrix. A large entropy value implies a more uniform SGLD
matrix and correspondingly more random variations in gray-
level pairs in the image. The features related to the sum (or
difference) are used to characterize the distribution of the sum
(or difference) of the gray-level pairs in the image. These fea-
tures were demonstrated previously to be salient for classify-
ing MC lesions.9

FIG. 2. A FFDM mammogram ROI (left) and its corresponding SGLD ma-
trix (right).

Prior to calculation of these features, a background cor-
rection step was first applied to the images to remove the
effect of nonuniform tissue background.9 Afterward, all im-
ages were normalized to have zero mean and unit variance.
Then the resulting images were quantized to the same num-
ber of gray levels and the SGLD matrices were formed, from
which the above textural features were calculated. Note that
the normalization step was to ensure that the same quantiza-
tion was applied to the different images, so that the extracted
texture features would be invariant to scaling in image inten-
sity. This is because the texture patterns in an image remain
the same when the intensity of the image is adjusted in a linear
proportion.

II.C. Quantification of MC image features

Besides textural features, we also characterized the indi-
vidual MCs by using a set of six features that have been used
previously to detect and classify clustered MCs:11, 14, 15 (1)
area (or size) of a MC, measured by the number of pixels,
(2) mean image intensity value of the pixels of a MC, (3)
standard deviation of the image intensity values among the
MC pixels, (4) image contrast, computed as the difference be-
tween the mean intensity value of the MC and its surrounding
background, (5) the effective volume of the MC (area times
effective thickness), and (6) shape irregularity, measured by
the variance of the distance from MC boundary to its geomet-
ric center.14

Prior to extraction of these features, the individual MCs in
the images were first segmented out using a local threshold
method.16 For each MC the segmentation threshold was set as
T = μ + c × σ , where μ and σ denote the local mean and
standard deviation, respectively, which were estimated from
a 101 × 101-pixel region centered around the MC, and the
coefficient c was set to 3. From the 20 ROIs, we extracted the
aforementioned six features for a total of 495 individual MCs.

III. COMPARISON OF IMAGE FEATURES
IN CAD ALGORITHMS

In this section, we investigate how choice of film or FFDM
may affect the performance of CAD algorithms. In particular,
we first study whether these two types of images would yield
the same level of detection accuracy when a CAD algorithm is
applied for MC detection. We then investigate how the perfor-
mance of a CAD classifier would be affected when it is trained
on features extracted from one type of images but applied to
images of a different type; the task of this classifier is to dis-
criminate true positives from false positives in the context of
MC detection.

III.A. Detectability of microcalcifications

In this study, the locations of the MCs in the test speci-
mens were known exactly, allowing us to measure and com-
pare the detectability of the MCs in the two types of im-
ages. To perform the MC detection, we applied the difference
of Gaussian (DoG) detector which was previously described
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in the literature.16, 17 While there exist other more sophisti-
cated methods for MC detection in the literature, we chose the
DoG detector in this study in favor of its simplicity because it
does not require retraining. The DoG detector consists of two
Gaussian kernels of different width parameters, which were
set to σ 1 = 1.1 and σ 2 = 1.4.16

For MC detection in each image, the DoG output was first
compared to an operating threshold; the surviving pixels that
were adjacent to each other were grouped to form MC ob-
jects. To reduce the number of false positives (FPs), detected
objects smaller than 3 pixels were discarded as spurious de-
tections. Afterward, the detection performance was computed
for each type of images (film or FFDM) using free-response
receiver operating characteristic (FROC) curves,18 which plot
the fraction of correct detections of MC objects (i.e., true
positive fraction (TPF)) versus the average number of FPs
per image, over the continuum of values for the operating
threshold.

III.B. Saliency of MC image features
in CAD algorithms

In this section, we investigate whether film and FFDM are
interchangeable when training a CAD system. Specifically,
when the task is to discriminate MC objects from FPs, we
seek to determine whether different results are obtained when
film images, FFDM images, or a mixture of both types are
used for training.

Our experiments consisted of the following steps. First, a
set of data examples of both MC objects and non-MC objects
(i.e., FPs) was extracted from all the film images (as described
later in detail), and the six image features in Sec. II.C were
extracted for each of these examples; this set of examples will
subsequently be denoted by S1. Next, a set of MC and non-
MC examples was similarly obtained from the FFDM images,
denoted by S2. Afterward, these two sets of examples were
used to compare the classifier performance across different
choices of the image types used in training and testing, as
further explained later.

To determine whether the classifier performance is affected
by the choice of the image type used for training (film or
FFDM), we tested and compared classifiers trained using the
following sources of training images: (1) film examples (S1)
only, (2) FFDM examples (S2) only, and (3) mixture of film
and FFDM samples (equal number of samples selected ran-
domly from S1 and S2).

The film examples in S1 were obtained as follows. First, all
the known 495 MC objects were extracted from the images as
MC-class examples. Afterward, an equal number of non-MC
class examples were extracted from these images; these non-
MC examples were randomly selected from the FPs generated
by the DoG detector in these images. The operating threshold
of the DoG was set as at a level such that the average number
of FPs would be about 5 times the number of true MCs in
each image, the purpose being to ensure the detection rate to
be above 90% for true MCs. The FFDM samples in S2 were
similarly obtained.

A support vector machine (SVM) classifier with Gaussian
radial basis function (RBF) kernel was used to classify the
MC and FP samples.19 The kernel width parameter σ and
the penalty parameter C were determined during training.
To evaluate the classifier performance, we applied a fivefold
cross validation procedure in which all the examples were ran-
domly partitioned into five equal-sized subsets. Each of these
subsets was held out in turn for testing, with the rest being
used to train the classifier. Afterward, the classifier output was
analyzed by the ROCKIT software,20 and the performance
was summarized using ROC curves.

It should be noted that the MC examples from film and
FFDM images have near-perfect correspondence in terms of
their locations, while non-MC examples have no accurate cor-
respondence, since they consist of mostly noise. For purpose
of fair cross validation as described earlier, we built a cor-
respondence map for non-MC examples based on their dis-
tance from each other, i.e., for each non-MC example in a
film image, its corresponding non-MC example from FFDM
image was identified as the one with smallest Euclidean dis-
tance from it. The purpose is to make sure that samples from a
film image are not used to train a classifier that will be tested
on their corresponding samples from a FFDM image if they
are too close to each other.

IV. RESULTS AND DISCUSSIONS

IV.A. Quantification of textural features

In Table I we show statistics (mean and variance) and com-
parison results (correlation coefficients and p-values) for the
12 textural features described in Sec. II.B obtained from the
20 film-FFDM image pairs. The Pearson’s correlation coeffi-
cient, which measures concordance between the feature val-
ues obtained from film and FFDM, ranges from 0.8303 to
0.9602 for the 12 textural features. When these features are
considered together as a vector for each image (after stan-
dardizing each feature to have zero mean and unit variance
so that the correlation coefficient will be not dominated by
those features with exceedingly large values), the correlation

TABLE I. Comparison between film and FFDM for 12 textural features.

Film value FFDM value
Features (std. dev.) (std. dev.) Corr. coeff. p-value

DFAV 21.88 (4.431) 21.69 (4.458) 0.9190 1.0000
DFVR 329.2 (123.7) 321.0 (126.3) 0.9602 1.0000
DFEN 5.809 (0.3456) 5.797 (0.3486) 0.9057 1.0000
SMAV 256.8 (3.648) 256.8 (3.063) 0.8338 0.8238
SMVR 1706 (257.2) 1731 (216.5) 0.8773 1.0000
SMEN 7.320 (0.1115) 7.335 (0.0930) 0.8568 0.5034
INVD 0.0487 (0.0149) 0.0494 (0.0127) 0.8801 0.5034
ENER 0.0003 (0.0001) 0.0003 (0.0001) 0.8910 0.5034
ENTR 12.04 (0.2924) 12.05 (0.2857) 0.9008 0.5034
COR 0.3790 (0.2357) 0.4035 (0.2364) 0.9435 0.2632
ICO1 0.1743 (.0264) 0.1753 (0.0235) 0.8303 0.8238
ICO2 0.9468 (.0186) 0.9480 (0.0158) 0.8534 0.8238
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FIG. 3. Comparison of film vs FFDM for four example textural features for
lesion region in the 20 ROIs.

coefficient between the film and FFDM is 0.8877. There is in-
deed a high degree of agreement between the textural features
extracted from film and FFDM image pairs.

As a further comparison of feature values derived from
film and FFDM, we applied Fisher sign test to the feature
pairs.21 The Fisher sign test is a nonparametric approach that
is robust to the underlying distributions. The results in Table I
show that all p-values exceed the significance level of 0.05 for
all 12 features (the smallest p-value being 0.2632). Thus, no
statistically significant difference was observed between the
features derived from film and that derived from FFDM. We
caution that the above comparison was based on only 20 sam-
ples, which did not show statistical significance between SFM
and FFDM features.

In Fig. 3 we show the scatter plots of the feature values
of the film-FFDM image pairs for the following four textural
features: DFAV, DFVR, SMAV, and SMVR; in these plots,
each data point represents the feature values from a particular
film-FFDM image pair. Note that in the ideal case of a perfect
match between film and FFDM, all the data points would fall
precisely on the 45◦ line. Similar plots were also obtained for
the other eight textural features, but since they look essentially
similar, they are not shown here. Collectively, these results
suggest strong agreement between the film and FFDM feature
values.

In the above results the following parameters were used for
calculating the SGLD matrices: 8-bit quantization intervals
were used, and the distance and direction parameters were set
to 16 pixels and 0◦, respectively. We also tested with other
parametric settings, and similar results were obtained.

IV.B. Quantification of MC image features

In Table II we summarize results obtained on the six MC
image features described in Sec. II.C, namely, (1) MC size

TABLE II. Comparison between film and FFDM for six image features
of MCs.

Film value FFDM value
Features (std. dev.) (std. dev.) Corr. coef. p-value

AREA 0.1349 (0.0706) 0.1370 (0.0701) 0.8909 0.3676
INTAV 1.392 (1.027) 1.398 (1.049) 0.8643 0.4930
INTSD 0.3630 (0.2105) 0.3720 (0.1997) 0.7448 0.1417
CONT 1.105 (0.5898) 1.058 (0.5545) 0.8812 0.2813
VOLU 17.01 (17.32) 16.64 (17.19) 0.9269 0.3781
SHAPE 1.030 (0.2483) 1.047 (0.6551) 0.7326 0.6244

(AREA), (2) mean image intensity value of the MC pix-
els (INTAV), (3) standard deviation of the image intensity
value among the MC pixels (INTSD), (4) MC image con-
trast (CONT), (5) effective volume of the MC (VOLU), and
(6) shape irregularity (SHAPE). These results were obtained
from all the 495 MCs in the 20 film-FFDM image pairs, from
which the mean and standard deviation were computed for
each feature.

Table II shows the correlation coefficients between MC
features derived from the film and FFDM images, ranging
from 0.7326 to 0.9269. When these features are considered
together as a vector for each MC, the correlation coefficient
between the film and FFDM is 0.8236. Similar to the textu-
ral features, there is considerable agreement between film and
FFDM. We also applied a Fisher sign test to the six MC fea-
tures, yielding no significant difference between the film and
FFDM distributions (p-values ranged from 0.1417 to 0.6244,
all greater than the significance level of 0.05).

In Fig. 4 we show the scatter plots for the AREA, IN-
TAV, INTSD, and SHAPE features. In these plots, each data
point represents the feature values of a particular MC in the

FIG. 4. Comparison of film vs FFDM for four image features obtained from
495 MCs.
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film-FFDM image pairs. Similar plots were also obtained for
the other two MC features, but not shown here for the sake of
brevity.

By comparing with the results earlier in Sec. IV.A, it is
noted that the agreement between film and FFDM is gener-
ally higher for the textural features than for the MC features.
This is likely caused by the fact that the textural features were
computed from the entire image region, while the MC fea-
tures were computed from individual MC objects which were
much smaller in size. The latter features would become more
sensitive to the image noise due to fewer pixels for averaging.
This in particular is reflected by the results for the SHAPE
feature, which has the smallest correlation coefficient among
the six MC features; the shape of a small MC object can be
easily affected by the noise even when only one or two pixels
are incorrectly segmented.

IV.C. Comparison of MC detectability

The MC detection results of film and FFDM images by the
DoG detector are summarized using FROC curves in Fig. 5.
In this plot, the abscissa is the average number of FP detec-
tions per image, and the ordinate is the detection rate of the
MCs. Thus, a higher FROC curve indicates better detection
by a detector. The figure shows that better detection is ob-
tained when the detector is applied to the FFDM images than
to the film images. For example, with the false detection level
at 20 FP signals per image, the MC detection rate is around
85% for FFDM, compared to about 80% for film. A p-value
of 0.0260 was obtained for comparison of the FROC curves
using a bootstrapping method,22 which implies a significant
difference between the detection performance by the DoG de-
tector on this set of film and FFDM images. This is likely a re-
sult of higher image quality (less noisy) in FFDM, as reported
in other studies in the literature.23, 24 For example, it was re-
ported that MC detection in patients was better on FFDM for
two of the three human observers.23 Equivalent or better MC
detection by FFDM was also reported in phantom studies.25, 26

FIG. 5. FROC curves obtained from film and FFDM obtained with DoG
detector.

Our results in Fig. 5 using matched film-FFDM image pairs
are consistent with findings from these reported studies.

IV.D. Comparison of saliency of MC features

In Fig. 6(a) we show the classification results obtained by
the SVM classifier on the set of MC and non-MC samples in
S1 (film images). For comparison, the resulting ROC curves
are shown when the classifier was trained with each of the
following: (1) film examples S1 (FF), (2) FFDM examples S2

(DF), and (3) a mixture of film and FFDM examples (MF);
the corresponding area under the ROC curve (AUC) for these
three cases was found to be 0.8990 (std. = 0.0102), 0.9042
(std. = 0.0102), and 0.8983 (std. = 0.0103), respectively. The
p-value from a statistical comparison between FF and DF was
0.2782, and the p-value between FF and MF was 0.6422.
These results indicate that the classification performance on
the film images does not depend substantially on whether the
classifier was trained with film images, FFDM images, or a
mixture of the two image types.

Similarly, in Fig. 6(b) we show the classification results
obtained by the SVM classifier on the set of MC and non-
MC samples in S2, which was from FFDM images; the

FIG. 6. Classification performance for discrimination of MC from false-
positives in different images: (a) film and (b) FFDM. In each case, the classi-
fier was trained with different types of images.
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classifier was trained on each of the three types of samples,
i.e., film samples S1, FFDM samples S2, or their mixture.
The corresponding area under the ROC curve was 0.9215
(std. = 0.0094), 0.9185 (std. = 0.0096), and 0.9197 (std.
= 0.0094), respectively. The p-value from a statistical com-
parison between DD and FD was 0.1814, and the p-value be-
tween DD and MD was 0.1514. Similar to the results on film
images above, there was no significant difference in the clas-
sification performance when the classifier was trained with
different types of images.

Furthermore, comparing the results in Fig. 6(a) with those
in Fig. 6(b), it is noteworthy that the overall classification per-
formance is higher when the classifier is applied to FFDM
images than to film images, with the average AUC = 0.9199
for FFDM and 0.9005 for film. The p-value from a statistical
comparison between the two was 0.0134. (It should be noted
that the non-MC samples from film and FFDM images have
only loose correspondence.) This indicates that the classifier
can better separate MCs from FPs in FFDM images than in
film images. This is likely due to the higher image quality in
FFDM. Interestingly, this is also consistent with the better de-
tection performance for MCs in FFDM images observed in
Sec. IV.C.

IV.E. Further discussions

The classification results for film and FFDM examples in
Sec. IV.D show slightly better classification performance for
FFDM images; however, the performance of the classifier is
observed to be relatively unaffected by the choice of image
types used for training. This is intriguing, as it may indicate
that, while there might be some difference in image quality
between film and FFDM, the extracted image features might
be interchangeable when training a CAD system.

To better understand this, we further investigated the dis-
tribution of the MC image features for both film and FFDM
by using principal component analysis (PCA). In Fig. 7(a),
we show a scatter plot of the first two PCA components of
the feature vectors of the film examples S1, where the MC
and non-MC samples are indicated with different symbols;
for clarity in the graph, only 100 samples randomly selected
from each class are shown. Similarly, in Fig. 7(b), we show a
scatter plot for the FFDM examples S2.

From Fig. 7 it can be observed that the film and FFDM
features show similar distributions in the scatter plots. This
is consistent with the results in Sec. IV.B, where good agree-
ment was observed between film and FFDM in terms of indi-
vidual features of MC. However, the scatter plots also reveal
that there is slightly better separation between MC and non-
MC samples in FFDM than in film. Indeed, we computed the
Fisher discriminant ratio (FDR) between the two classes in
the PCA plots in Fig. 7. The obtained FDR values are 1.99 and
2.15 for film and FFDM, respectively, indicating a higher de-
gree of separability in FFDM. Interestingly, this is consistent
with the better classification performance in FFDM observed
in Fig. 6. The plot in Fig. 7(a) shows more overlap between
non-MC and MC samples; such confusion is likely caused by

FIG. 7. PCA plot for MC and non-MC samples from different types of im-
ages: (a) film and (b) FFDM.

the higher noise in film. This is also consistent with the higher
detection performance in FFDM observed in Fig. 5.

V. CONCLUSIONS

In this work, we conducted a comparison study of image
features measured by film and FFDM. By making use of a
set of matched film-FFDM image pairs acquired from cadav-
eric breast specimens, we were able to provide a meaningful
comparison of the two types of images in terms of both their
quantitative image features and their influence on CAD algo-
rithms. The image features considered include textural fea-
tures of lesion regions and image features of individual MCs,
both of which have been used in CAD algorithms for breast
lesions. The results show that there is a great degree of agree-
ment in the image features measured from film and FFDM
images, and no significant difference was observed between
them. Furthermore, the results also show that there is little
difference in the classification performance of a CAD classi-
fier when it is trained with image features extracted from film
or FFDM images or even a mixture of them. However, bet-
ter detection performance for MCs was observed when the
algorithm is applied to the FFDM images than to the film
images, which is likely attributed to the better image qual-
ity (lower noise) in FFDM. These results indicate that film
and FFDM images may be used interchangeably in training
a CAD system without sacrificing performance. However, in
consideration of the specific imaging systems, limited num-
ber of images, features and specific algorithms investigated in
this work, the consistency between film and FFDM features
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should be examined with caution given the complexity of real
CAD systems.

ACKNOWLEDGMENT

This work was supported in part by NIH/NIBIB (Grant No.
R01EB009905).

APPENDIX: TEXTURAL FEATURES USED
IN THIS STUDY

Let p(i, j) denote the (i, j) th element in a SGLD matrix.
Then these 12 features are derived from p(i, j) as follows:

ENER =
Ng∑
i=1

Ng∑
j=1

{p(i, j )}2, (A1)

ENTP = −
Ng∑
i=1

Ng∑
j=1

p(i, j ) log{p(i, j )}, (A2)

DFAV =
Ng−1∑
i=0

i ∗ px−y(i), (A3)

DFVR =
Ng−1∑
i=0

(i − DFAV )2px−y(i), (A4)

DFEN = −
Ng−1∑
i=0

px−y(i) log(px−y(i)), (A5)

SMAV =
2Ng−1∑

i=0

i ∗ px+y(i), (A6)

SMVR =
2Ng−1∑

i=0

(i − SMAV)2px+y(i), (A7)

SMEN = −
2Ng−1∑

i=0

px−y(i) log(px−y(i)), (A8)

INVD =
Ng∑
i=1

Ng∑
j=1

p(i, j )

1 + (i − j )2
, (A9)

COR = 1

σxσy

⎡
⎣

Ng∑
i=1

Ng∑
j=1

(ij )p(i, j ) − μxμy

⎤
⎦ , (A10)

ICO1 = HXY − HXY1

max(HX, HY)
, (A11)

ICO2 = (1 − exp[−2(HXY2 − HXY)])1/2. (A12)

In the above definitions, px(i) = ∑Ng

j=1 p(i, j ) is the
marginal probability of the ith entry over x, μx, and σ x are
its associated mean and standard deviation, HX is its entropy,
and Ng is the number of gray levels. Furthermore,

px+y(k) =
∑

i+j=k

p(i, j ), (A13)

px−y(k) =
∑

i−j=k

p(i, j ), (A14)

HXY = −
Ng∑
i=1

Ng∑
j=1

p(i, j ) log{p(i, j )}, (A15)

HXY1 = −
Ng∑
i=1

Ng∑
j=1

p(i, j ) log{px(i)py(j )}, (A16)

HXY2 = −
Ng∑
i=1

Ng∑
j=1

px(i)py(j ) log{px(i)py(j )}. (A17)
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