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Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the
contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function
over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of
the signal and noise transfer properties of an imaging system. In this work, we derive the functional
form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate
and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT.
Methods: The DPC-CT is implemented with x-ray tube and gratings. The x-ray propagation and data
acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray
source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter
and beam hardening, while a 360◦ full scan is carried out in data acquisition to avoid any weight-
ing scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the
x-ray beam’s propagation through the gratings G1 and G2 with periods 8 and 4 μm, respectively, while
the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector
cell for data acquisition are 32 × 32, 64 × 64, 96 × 96, and 128 × 128 μm2, respectively, corre-
sponding to a 40.96 × 40.96 mm2 field of view in data acquisition. An air phantom is employed to
obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective
quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction
coefficient n = 1 − δ + iβ = 1 −2.5604 × 10−7 + i1.2353 × 10−10 is placed in air to measure the
edge transfer function, line spread function and then modulation transfer function MTF(k), of both
DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 × 106 photon/cm2

per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for
preclinical applications. Approximately 360 regions, each at 128 × 128 matrix, are used to calculate
the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing
in noise.
Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)]
comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical
difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional
attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based
CT are in principle identical.
Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer prop-
erty NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those
of the conventional attenuation-based CT. The findings reported in this paper may provide insight-
ful guidelines on the research, development, and performance optimization of DPC-CT for exten-
sive preclinical and clinical applications in the future. © 2012 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4730287]

Key words: CT, x-ray CT, x-ray phase CT, x-ray differential phase contrast CT, x-ray tube and
grating-based phase CT, imaging performance, modulation transfer function, MTF, noise, noise
power spectrum, NPS, noise equivalent quanta, NEQ, detective quantum efficiency, DQE.

I. INTRODUCTION

Motivated to reach higher subject contrast over soft tis-
sues in x-ray CT imaging, the scientific community has de-
voted increasing effort to the investigation of x-ray tube
and grating-based differential phase contrast CT (DPC-CT)
for early detection of cancer and other diseases.1–5 The ini-
tial exploration was relatively qualitative and demonstrated

significant improvement in the contrast of soft tissues in
human specimens or very small animals.1, 2, 4, 5 Recently, the
investigation has become quantitative, and preliminary re-
sults on the noise property of DPC-CT,6–13 such as pixel-
based gross variance,6–9 contrast-to-noise ratio,8, 10 and
spatial autocovariance function,7 have been reported. It is a
fundamental understanding that the subject contrast of soft
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tissues in an imaging system is intrinsically determined by
their interaction with the x-ray beam,14–16 while the system’s
performance is determined by its signal and noise transfer
properties.11, 17–35 In principle, the signal transfer property of
an imaging system is dependent on its modulation transfer
function MTF(k),17–30 while the noise transfer property can
only be thoroughly characterized by its noise power spectrum
NPS(k), i.e., the variation of noise intensity as a function over
spatial frequency k.17–35 It has been reported that there ex-
ists a radical difference in the noise power spectrum NPS(k)
between DPC-CT and the conventional attenuation-based CT
(referred to as conventional CT hereafter): the NPS(k) of
the former manifests itself with the trait 1/|k|, and the latter
with |k|.11, 12

In general, an imaging system can be cascaded into two
stages—image formation (or record or detection as termed
in the literature) and image presentation or display.20, 27, 28

Such a separation is straightforward in digital imaging modal-
ities, e.g., the DPC-CT and conventional CT to be investi-
gated in this work, but quite intricate in the early days when
only analog imaging modalities, e.g., x-ray screen-film ra-
diography, were available. Quite a few factors may degrade
the performance of an imaging system, which include but
are not limited to (i) the ubiquitous random fluctuation—
noise—in data acquisition, (ii) the anatomic and physiologic
variation in patient population, and (iii) the intra- and in-
terobserver variability when a diagnosis is made based on
the images presented.27, 28 These factors work in concert
with one another and thus make the performance assess-
ment of an imaging system extremely challenging. With re-
course to Bayesian statistical decision and information the-
ories, a framework for the performance assessment of an
imaging system has been established through the tremendous
and successful effort of leading scientists in this field,17–28

in which the detection of pathological lesions with a medi-
cal imaging system is mathematically treated as a decision
making process. An observer makes the decision between
two hypotheses—H1: lesion present (abnormal or positive);
H2: lesion absent (normal or negative)—according to whether
the value of a decision function exceeds a threshold or
not. If the decision function is the Bayesian likelihood,
the decision maker becomes an ideal observer, who mini-
mizes the risks while making the decision, i.e., maximizing
the area under the receiver operating characteristics (ROC)
curve.20, 27, 28

Suppose the imaging system under study is linear and
shift-invariant, and the noise corrupting the system is
Gaussian and stationary. Given a signal specified in the
spatial frequency domain as �S(k), i.e., the signal and
background known exactly (SKE/BKE),27, 28, 30 the squared
signal-to-noise ratio or the detectability index defined
by

SNR2
ideal =

∫
|�S(k)|2NEQ(k)dk (1)

is an ideal observer figure of merit (FOM) to assess an
imaging system’s performance,27, 30 wherein the spectrum of
noise equivalent quanta NEQ(k) may be in different func-

tional forms over imaging modalities.20, 21, 26, 28 An ideal ob-
server is assumed to have prior knowledge of the task and
the statistical properties of the noise. Equation (1) is an in-
tegration of factorization and implies that, given a specific
task |�S(k)|2, the ideal observer performance of an imag-
ing system can be optimized by maximizing its NEQ(k).27, 30

Usually, the task is to differentiate a lesion from the sur-
rounding tissues or organs or simply an object from its
background. Therefore, the signal �S(k) in Eq. (1) should
be perceived as a difference or contrast between the ob-
ject to be imaged and background.20, 21, 27, 30 In practice,
Eq. (1) can be extended to deal with more complicated sit-
uations, wherein the noise observes the Poisson distribu-
tion and is not stationary, the imaging system is nonlinear
and shift-variant, or the signal is superimposed on a random
background.20, 27, 28, 30

Recognizing the important role played by NEQ(k) as a
FOM to assess the ideal observer performance of an imag-
ing system,20, 27, 28, 30, 32–35 we investigate the NEQ(k) and re-
sultant spectrum of detective quantum efficiency DQE(k) of
DPC-CT in this work. In a way analogous to the investi-
gation of conventional CT’s NEQ(k) and DQE(k), we treat
the DPC-CT as a linear and shift-invariant system. Owing to
the fact that Gaussian noise approaches Poisson noise if the
detected number of photons is large, we assume the noise in
the DPC-CT is Gaussian.29 To avoid any interference caused
by scatter and beam hardening, a monochromatic x-ray source
is assumed in both the DPC-CT and conventional CT in this
investigation, though they are actually configured with a poly-
chromatic one in practice. Under the framework of an ideal
observer, we derive, analyze, evaluate, and verify the NEQ(k)
and DQE(k) of DPC-CT through computer simulation stud-
ies and compare the result with that of conventional CT. For
clarity in expression henceforth, �S(k), SNR2

ideal, NPS(k),
MTF(k), NEQ(k), and DQE(k) denote the quantities corre-
sponding to an imaging system in general, which can be ei-
ther DPC-CT or conventional CT. Specifically, the quantities
corresponding to the DPC-CT are denoted with subscript “p,”
while those corresponding to the conventional CT are denoted
with subscript “a.”

II. MATERIALS AND METHODS

To characterize the spectrum of noise equivalent quanta
NEQp(k) and spectrum of detective quantum efficiency
DQEp(k) of DPC-CT, we start out by deriving its functional
form and comparing it with that of the conventional CT.
Subsequently, we introduce the methods and procedures to
evaluate and verify the derived NEQp(k) and DQEp(k) and
compare them with their counterparts in conventional CT. We
constrain ourselves in this work to conducting computer sim-
ulation study only; thereby the systematic and random errors,
such as the fabrication accuracy and alignment of gratings,
and the effects due to beam hardening and scattering that
may exist in a physical DPC-CT and compromise or bias the
accuracy and precision of evaluation and verification can be
excluded.
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FIG. 1. The diagrams showing (a) the schematic of an x-ray tube and
grating-based DPC-CT and (b) the schematic of virtual grating decomposi-
tion, in which the upper and lower Talbot patterns are associated with gratings
A and B, respectively.

II.A. Imaging mechanism of DPC-CT implemented
with x-ray tube and gratings

The architecture of DPC-CT implemented with a micro-
focus x-ray tube and gratings2 is shown in Fig. 1(a). G1 is
a phase grating and G2 an absorption grating, which can
be fabricated with photolithography, deep chemical etching,
and electroplating.36 G1 and G2 work together as a shearing
interferometer37–39 to detect the wavefront alteration caused
by the object in x-ray beam. The x-ray tube irradiates the
specimen, while the specimen stage rotates by a range sat-
isfying the data sufficiency condition, and the CCD x-ray de-
tector is employed for data acquisition. The key component
of the imaging chain is grating G1, a diffraction interferom-
eter based on the Talbot effect.37–39 Figure 1(b) shows how
G1 works by virtually decomposing it into gratings A and B.
The extra optical path corresponding to grating B relative to
that through grating A is half wavelength, which is equivalent
to a 180◦ phase shift. The beams corresponding to gratings
A and B recombine after they pass through the gratings, and
interference fringe appears if the object to be imaged is in the
x-ray beam.

The imaging mechanism of x-ray tube and grating-based
DPC-CT is elaborated in Refs. 11–13 and 37–39 and only
a concise review is given below. According to Fresnel
analysis,40, 41 the irradiance I(x, z) at the CCD detector is

IA+B(x, z) ∼φ
(
x+�

x

2
, y

)
− φ

(
x − �

x

2
, y

)
∼= ∂φ(x, y)

∂x
�x, (2)

where �x is a displacement in the x-direction, and φ(x, y) is
the phase variation over �x, which is the projection of refrac-
tive coeffiecient δ̂(x, y, z) along the x-ray path

φ(x, y) = 2π

λ

∫
Z

δ̂(x, y, z)dz. (3)

Note that the refractive coefficient has been denoted by δ(x,
y, z) in the literature. However, to avoid its confusion with the
Dirac function and Kronecker delta that are used to derive the
functional form of NEQp(k) later in this paper, δ̂(x, y, z) is
adopted to represent the refractive coeficient.

Equation (2) shows that the irradiance depends on the
derivative of the phase variation along the x axis. After the
x-ray passes grating G2, the irradiance at detector D is41

Iu,v(x)=a0(u, v)+
∞∑

m=1

am(u, v) cos

(
2πmx

g2
+ ϕm(u, v)

)
,

(4)

where (u, v) is the coordinate of a detector cell and g2 the
period of grating G2. By linearly shifting grating G2 along the
x axis and carrying out a Fourier analysis, one can determine
a0(u, v), a1(u, v), and ϕ1(u, v) from Eq. (4).41 In fact, one has

∂φ(x, y)

∂x
= ϕ1(u, v)

g2

λzT

, (5)

where zT is the fractional Talbot distance.2, 37–41 Substituting
the φ(x, y) defined in Eq. (3) into Eq. (5), one gets

ϕ1(u, v) = λzT

g2

∂φ(x, y)

∂x
= 2πzT

g2

∂

∂x

∫
Z

δ̂(x, y, z)dz

= 2πzT

g2

∫
Z

∂

∂x
δ̂(x, y, z)dz. (6)

This means that the phase retrieved through a Fourier analy-
sis of Eq. (4) is the projection of the refractive coefficient’s
derivative, and this is the underlying reason that the phase
CT implemented with x-ray tube and gratings is called dif-
ferential phase contrast CT. Once data ϕ1(u, v) are acquired,
tomographic images of refraction are reconstructed using
the filtered backprojection (FBP) algorithms.42–45 Since the
reconstruction is carried out directly from ∂δ̂(x, y, z)/∂x, the
ramp kernel is replaced with the Hilbert kernel. It should be
pointed out that the modeling of data acquisition in the x-
ray tube and grating-based DPC-CT through the schematic of
Fig. 1(b) and Eqs. (2)–(6) has been evaluated and veri-
fied in Ref. 11, which is in principle the same as the five
steps detailed in Ref. 13. The well-known contrast-detail (C-
D) phantom29 (see Sec. III) is used to evaluate and verify
the correctness and accuracy of the data acquisition mod-
eling and image reconstruction, and the result is presented
in Fig. 2.

II.B. Spectrum of noise equivalent quanta in DPC-CT
and conventional CT

In the early days of conventional CT, an observation of
the morphologic difference in the noise of CT images against
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(a)

(b)

FIG. 2. Transverse images of the C-D phantom generated by the x-ray tube
and grating-based DPC-CT CT (a) and the conventional CT (b) (x-ray expo-
sure 107 photon/cm2 per projection, detector cell 48 × 48 μm2).

the white noise suggested that there existed an interpixel cor-
relation. By analyzing the distribution of noise power over
spatial frequency k, i.e., the noise power spectrum NPSa(k),
the interpixel correlation is confirmed, even though there is
no intercell correlation in the noise of the detector used for
data acquisition. Since then, the groundwork of using noise
power spectrum NPSa(k) and spectrum of noise equivalent
quanta NEQa(k) to analyze the signal and noise behavior of
a conventional CT system or CT imaging method has been
laid out.17–25 In this section, we follow the mathematic treat-
ment to derive the functional form of NPSp(k) and NEQp(k)
in the DPC-CT implemented with x-ray tube and gratings and
compare it with that of the conventional CT.

II.B.1. Spectrum of noise equivalent quanta NEQa(k)
of the conventional CT

A number of strategies, e.g., the method proposed by
Barret,18 the central slice theorem,19 information theory,20

and statistical detection theory,21 have been exercised to ob-
tain the noise power spectrum NPSa(k) of the conventional

CT, and all lead to the same functional form

NPSa(k) = aπ

NθN̄
|k| |MTFa(k)|2

= π

bNθI0
|k| |MTFa(k)|2 , (7)

where a is the detector pitch, b is the detector height, and k is
the radial frequency defined as

k =
√

k2
x + k2

y. (8)

Nθ is the number of angular locations at which the projection
data are acquired, I0 is the measured photon flux, and N̄ is
the mean number of x-ray photons detected at each detector
cell. Since no object should be placed in the x-ray beam in
the investigation of noise property, N̄ is assumed equal across
all the detector cells. MTFa(k) is the overall algorithmic con-
tribution, including the windowing and/or boosting in the fre-
quency domain for an optimization between noise and spatial
resolution, to the modulation transfer function.

The multiplication of Nθ and I0 has been defined as the
noise equivalent quanta.20, 21, 23 Accordingly, Eq. (7) can be
expressed as

NPSa(k) = π

bNEQa

|k| |MTFa(k)|2 . (9)

Consequently, the spectrum of noise equivalent quanta
NEQa(k) and detective quantum efficiency DQEa(k) of the
conventional CT are18–21

NEQa(k) = π

bNPSa(k)
|k| |MTFa(k)|2 , (10)

DQEa(k) = NEQa(k)

NθI0
. (11)

II.B.2. Spectrum of noise equivalent quanta NEQp(k)
of the DPC-CT

As indicated above, the phase information ϕ1(u, v) can be
retrieved by stepping grating G2 linearly along the x axis (see
Fig. 1). At each step

xg = k

M
g2, k = 1, 2, . . . ,M, (12)

the measured x-ray irradiance at (u, v) in a detector repre-
sented in Eq. (4) can be rewritten as

N (k) (u, v) =
M
2 −1∑

l=− M
2

Nl

1+δl0

2
exp

[
iϕl (u, v) +2πi

lk

M

]
,

(13)

where Nl is non-negative and real and δl0 is the Kronecker’s
delta δlm by setting the 2nd subscript m equal to zero, i.e.,

δl0 =
{

1 l = 0

0 l �= 0
. (14)

Note that ϕl(u, v) (l = 1) is the phase we want to retrieve for
reconstruction of the 3D distribution of refractive coefficient
[see Eq. (6)].
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The discrete Fourier transform of both sides of Eq. (13)
gives

1

2
MN1exp [iϕ1 (u, v)] =

M∑
k=1

N (k) (u, v) exp

(
−2πi

k

M

)
.

(15)

Since N1 is non-negative and real, Eq. (15) further gives

exp [iϕ1 (u, v)] =
∑M

k=1 N (k) (u, v) exp
(−2πi k

M

)∣∣∣∑M
k=1 N (k) (u, v) exp

(−2πi k
M

)∣∣∣ , (16)

or equivalently

exp [iϕ1 (u, v)] =
∑M

k=1 N (k) (u, v) exp
(−2πi k

M

)
{[∑M

k=1 N (k) (u, v) exp
(
2πi k

M

)] [∑M
k=1 N (k) (u, v) exp

(−2πi k
M

)]}1/2 . (17)

Differentiating both sides of Eq. (17), one gets

iexp [iϕ1 (u, v)] �ϕ1 (u, v)

=
∑M

k=1 �N (k) (u, v) exp

(
−2πi

k

M

)
{[∑M

k=1 N (k) (u, v) exp

(
2πi

k

M

)] [∑M
k=1 N (k) (u, v) exp

(
−2πi

k

M

)]}1/2

−1

2

[∑M
k=1 N (k) (u, v) exp

(
−2πi

k

M

)]2 [∑M
k=1 �N (k) (u, v) exp

(
2πi

k

M

)]
{[∑M

k=1 N (k) (u, v) exp

(
2πi

k

M

)] [∑M
k=1 N (k) (u, v) exp

(
−2πi

k

M

)]}3/2

−1

2

[∑M
k=1 N (k) (u, v) exp

(
−2πi

k

M

)] [∑M
k=1 N (k) (u, v) exp

(
2πi

k

M

)] [∑M
k=1 �N (k) (u, v) exp

(
−2πi

k

M

)]
{[∑M

k=1 N (k) (u, v) exp

(
2πi

k

M

)] [∑M
k=1 N (k) (u, v) exp

(
−2πi

k

M

)]}3/2 . (18)

Substituting Eq. (15) into Eq. (18) yields

iexp [iϕ1 (u, v)] �ϕ1 (u, v)

=
∑M

k=1 �N (k) (u, v) exp

(
−2πi

k

M

)
1

2
MN1

−1

2

exp [2iϕ1 (u, v)] 2−2M2N2
1

[∑M
k=1 �N (k) (u, v) exp

(
2πi

k

M

)]
2−3M3N3

1

−1

2

2−2M2N2
1

[∑M
k=1 �N (k) (u, v) exp

(
−2πi

k

M

)]
2−3M3N3

1

, (19)

which can be concisely rewritten as

�ϕ1(u, v) = −i

M∑
k=1

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−2πi

k

M

)
MN1exp [iϕ1(u, v)]

− exp
(
2πi k

M

)
MN1exp [−iϕ1(u, v)]

⎫⎪⎪⎬
⎪⎪⎭�N (k)(u, v). (20)

Consequently, one has
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〈�ϕ1 (u, v) �ϕ1 (u1, v1)〉 = −
M∑

k,k1=1

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−2πi

k

M

)
MN1exp [iϕ1 (u, v)]

−
exp

(
2πi

k

M

)
MN1exp [−iϕ1 (u, v)]

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−2πi

k1

M

)
MN1exp [iϕ1 (u1, v1)]

−
exp

(
2πi

k1

M

)
MN1exp [−iϕ1 (u1, v1)]

⎫⎪⎪⎬
⎪⎪⎭ 〈�N (k) (u, v) �N (k1) (u1, v1)〉, (21)

where (u1, v1) represents a location that is different from (u, v) in the detector. Since the measured x-ray flux observes the Poisson
distribution and is spatially uncorrelated, one has

〈�N (k)(u, v)�N (k1)(u1, v1)〉 = N (k)(u, v)δkk1δ

(
u − u1

a

)
δ

(
v − v1

b

)
, (22)

where subscripts k and k1 correspond to different shifting steps of grating G2. Inserting Eq. (22) into Eq. (21) and substituting
N(k)(u, v) with Eq. (13), one obtains

〈�ϕ1 (u, v) �ϕ1 (u1, v1)〉

= −
M∑

k=1

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−2πi

k

M

)
MN1exp [iϕ1 (u, v)]

−
exp

(
2πi

k

M

)
MN1exp [−iϕ1 (u, v)]

⎫⎪⎪⎬
⎪⎪⎭

2

N (k) (u, v) δ

(
u − u1

a

)
δ

(
v − v1

b

)

= 2

M2N2
1

⎧⎪⎪⎨
⎪⎪⎩

M∑
k=1

N (k) (u, v) − 1

2

M∑
k=1

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−4πi

k

M

)
exp [2iϕ1 (u, v)]

+
exp

(
4πi

k

M

)
exp [−2iϕ1 (u, v)]

⎫⎪⎪⎬
⎪⎪⎭N (k) (u, v)

⎫⎪⎪⎬
⎪⎪⎭ δ

(
u − u1

a

)
δ

(
v − v1

b

)

= 2

M2N2
1

{
MN0 − M

4

{
N2exp [iϕ2 (u, v)]

exp [2iϕ1 (u, v)]
+ N−2 exp [−iϕ2 (u, v)]

exp [−2iϕ1 (u, v)]

}}
δ

(
u − u1

a

)
δ

(
v − v1

b

)
. (23)

It is interesting to note that only N−2, N−1, N0, N1, and N2

survive the last step in getting Eq. (23).
Subsequently, defining

ε1 = N1

N0
, (24)

ε2 = N2

4N0

[
exp (iϕ̄2)

exp (2iϕ̄1)
+ exp (−iϕ̄2)

exp (−2iϕ̄1)

]
, (25)

Eq. (23) can be concisely rewritten as

〈�ϕ1 (u, v) �ϕ1 (u1, v1)〉

= 2 (1 − ε2)

MN0ε
2
1

δ

(
u − u1

a

)
δ

(
v − v1

b

)
. (26)

Note that the random variables N0, N1, and N2 have been
replaced with their corresponding mean values N0, N1 and
N2, respectively, in a way analogous to that in Ref. 10. Con-
sequently, one gets

σ 2
ϕ = 2 (1 − ε2)

MN0ε
2
1

. (27)

Meanwhile, according to Eq. (6), it is not hard for one to get

Nθ

σ 2
D

=
(

λzT

g2

)2
Nθ

σ 2
ϕ

=
(

λzT

g2

)2
ε2

1

2 (1 − ε2)
NθMN0

=
(

λzT

g2

)2
ε2

1

2 (1 − ε2)
NθMI0abq0, (28)

where Nθ is the total number of projections in data acquisi-
tion, σ 2

D is the noise at each detector cell, and q0 = N0/abI0.
In a way analogous to that of the conventional CT,20, 21, 23 we
define the noise equivalent quanta as

NEQp = NθMI0, (29)

and then Eq. (28) can be rewritten as

Nθ

σ 2
D

=
(

λzT

g2

)2
abq0ε

2
1

2 (1 − ε2)
NEQp. (30)

On the other hand, according to Eq. (A25) in the Appendix,
one has

Nθ

σ 2
D

= a

4π |k| NPSp (k)
MTF2

p (k) . (31)

Medical Physics, Vol. 39, No. 7, July 2012



4473 Tang, Yang, and Tang: Spectrum of noise equivalent quanta NEQ(k) of DPC-CT 4473

By equating the right sides of Eqs. (30) and (31), one attains

NEQp(k) =
(

g2

λzT

)2 1 − ε2

2πbq0ε
2
1 |k| NPSp (k)

MTF2
p (k) ,

(32)

DQEp(k) = NEQp(k)

NθMI0
. (33)

Furthermore, as derived in the Appendix, the noise power
spectrum NPSp(k) is

NPSp(k) =
(

g2

λzT

)2
a (1 − ε2)

2πε2
1 |k| NθMN0

MTF2
p (k)

=
(

g2

λzT

)2 1 − ε2

2πbq0ε
2
1 |k| NEQp

MTF2
p (k) . (34)

It should be pointed out that, if N2 and N−2 are assumed to be
zero, one gets ε2 = 0 and Eq. (27) becomes exactly the same
as that derived in Ref. 10, in which only N0, N1, and N−1 are
considered. In general, however, N2 and N−2 are small but not
equal to zero. Hence, the derivation given here is a more gen-
eral treatment in physics and mathematics. In addition, the
factor |k| in the numerator of Eqs. (9) and (10) moves to the
denominators of Eqs. (32) and (34). Readers are referred to
the Appendix of this paper for the details related to the deriva-
tion of Eq. (34).

II.C. Measurement of the modulation transfer function
MTFp(k) of DPC-CT

It has been an established practice in conventional CT to
measure the MTFa(k) with a thin wire phantom.29, 46, 47 The
wire is usually made of metal, such as tungsten, and placed
in either air or water, as long as the attenuation of the thin
wire does not exceed the dynamic range of the CT detec-
tor. Moreover, it has been well evaluated and verified that,
as long as its diameter is substantially smaller than the detec-
tor cell dimension, the influence of the wire’s thickness on the
MTFa(k) measurement can be ignored.47 Unfortunately, how-
ever, this approach cannot be directly adopted for measure-
ment of MTFp(k) in the x-ray tube and grating-based DPC-
CT, because the detection of the signal generated by such
a thin wire may be substantially compromised.13 The major
reasons underlying this difficulty are: (i) the signal gener-
ated in the DPC-CT is the projection of the refractive coef-
ficient’s derivative, which is an odd function in the case of a
cylindrical object; (ii) the detection of such a projection can
be severely compromised because the integration of an odd
function over the finite dimension of a detector cell may be
null. As indicated in Ref. 13, a better approach is to utilize
a cylindrical object with a diameter substantially larger than
the detector cell dimension. The cylinder is placed parallel to
the y axis of the DPC-CT and thus it becomes a circle in a
reconstructed transverse image. The distribution along a line
starting at the center of the circle (namely, a semiradial line)
is actually an edge spread function (ESF). In order to reduce

random interference, a total of 360 semiradial lines at 1◦ in-
tervals are engaged, and the intensity profiles reconstructed
along these semiradial lines are averaged to get the ESF. The
line spread function (LSF) is attained from the ESF via a nu-
merical method, in which an adequate upsampling is carried
out to assure that the distance between adjacent pixels along
each semiradial line be 4.0 μm for numerical accuracy. Sub-
sequently, the DPC-CT’s MTFp(k) is attained through a 1D
discrete Fourier transform of the LSF. To assure a fair evalu-
ation and comparison between the DPC-CT and conventional
CT, this ESF → LSF → MTF(k) approach, rather than the
conventional method using a thin wire, is also employed to
obtain the MTFa(k) of the conventional CT.

It should be noted that, in theory, the so-called phase wrap-
ping phenomenon, i.e., the detected phase exceeds the unam-
biguous 2π phase range, can occur in the measurement of
DPC-CT’s MTFp(k) with the method specified above. As indi-
cated in the literature [Eq. (19) in Ref. 13], given a cylindrical
object, phase wrapping occurs at

xw = ∓ R√
1 + (mg2α

/
π )2

, (35)

where m is the index of fractional Talbot distance, R is the
radius of the cylindrical object, and α is the phase shift in-
duced by the object per unit length along the x axis. Since
g2 is very small in comparison to α, [e.g., α ≈ 46 rad/mm in
soft tissues at 25 keV (Ref. 13)], xw is almost equal to R, i.e.,
phase wrapping occurs at the locations immediately adjacent
to the cylinder’s edge. It is argued in Ref. 13 that, because of
the finite size of a detector cell, the phase wrapping in the case
of a cylindrical object made of soft tissue may be reduced to
an extent that is not detectable in the DPC-CT. This may be
perceived as a form of the partial volume effect as we ex-
perienced in the conventional CT, and interested readers are
referred to Ref. 13 for more details.

II.D. Quantitative evaluation of the spectrum of noise
equivalent quanta NEQ(k) and detective quantum
efficiency DQE(k)

According to Eqs. (9) and (34), the noise power spectrum
NPS(k) and modulation transfer function MTF(k) are the
two prerequisites to obtain the spectrum of noise equivalent
quanta NEQ(k). The noise power spectrum can be calculated
by taking the Fourier transform of the autocorrelation func-
tion that is obtained using a large number of noise images.
An alternative approach that is more efficient in computation
is to take the average of the squared Fourier transform of a
large number of noise images or regions within the images
containing noise only.21 The obtained 2D NPS(k) is circularly
symmetric about its origin, as predicted in Eqs. (9) and (34).
The modulation transfer function MTF(k) is acquired using
the method depicted in Subsection II.C and is also in circu-
lar symmetry. Thereby, the spectra of noise equivalent quanta
NEQ(k) of the conventional CT and DPC-CT can be ob-
tained using Eqs. (10) and (32), which are also in circular
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symmetry, followed by the spectra of detective quantum ef-
ficiency DQE(k) using Eqs. (11) and (33), respectively.

III. EVALUATION VIA SIMULATION STUDIES

The spectrum of noise equivalent quanta NEQa(k) of con-
ventional CT specified in Eq. (10) has been evaluated and
verified through studies based on computer simulation and
physical CT systems.20, 21, 23, 33–35 It is essential for us to eval-
uate and verify the DPC-CT’s spectrum of noise equivalent
quanta NEQp(k) derived in this paper. We carry out a com-
puter simulation study as the initial effort. For the following
reasons, we constrain ourselves to conducting the computer
simulation study in the parallel beam geometry: (i) the x-ray
beam in differential phase contrast CT satisfies the paraxial
condition and thus the beam is almost parallel, (ii) the im-
age reconstruction algorithms in the parallel beam geometry
outperform those in the fan beam geometry from the perspec-
tive of noise uniformity and thus almost all the clinical CT
scanners based on the third generation geometry (fan beam or
cone beam) adopt the parallel beam reconstruction algorithms
via fan-to-parallel rebinning,45, 46 and (iii) most of the simu-
lation studies to investigate the noise power spectrum of CT
imaging thus far have been carried out in the parallel beam
geometry to exclude the influence of rebinning and weight-
ing schemes. The x-ray source is assumed monochromatic at
30 keV, which irradiates an object by 360◦ at 1◦ steps so that
no weighting effect can be induced to degrade the noise uni-
formity. At 30 keV, a 20-fold upsampling is assumed to sim-
ulate the x-ray beam’s propagation through the gratings G1

and G2 with periods 8 and 4 μm, respectively, while the dis-
tance between these two gratings is 193.6 mm, i.e., 1/16 of
the Talbot distance. The field of view (FOV) in data acqui-
sition and image reconstruction is 40.96 × 40.96 mm2. The
size of each detector cell is set at 32 × 32 μm2, 64 × 64 μm2,
96 × 96 μm2, and 128 × 128 μm2, resulting in the detec-
tor consisting of 1280, 640, 426 and 320 cells, respectively.
Grating G2 shifts ten times at step 0.4 μm along the x axis to
retrieve the phase information corresponding to the refractive
property of the object to be imaged.

Since the purpose of this work is to investigate the po-
tential imaging performance of the DPC-CT and compare it
with that of the conventional CT, no windowing or boosting
techniques42 are adopted in image reconstruction for both the
DPC-CT and conventional CT. The data ϕ1(u, v) specified in
Eq. (6) is used to reconstruct the DPC-CT images, in which
the classical FBP (Ref. 42) with the Hilbert transform43, 44 is
used. The projection data corresponding to the conventional
CT are acquired without the G1 and G2 gratings in place, and
the ramp filter is used to reconstruct the images with the clas-
sical FBP algorithm.42 It has been claimed in the literature
that the data corresponding to the a0(u, v) in Eq. (4), which
are acquired with the gratings G1 and G2 in place, are equal
to the attenuation projection data acquired in the conven-
tional CT. However, we agree with the discussion presented in
Ref. 13 that such a claim only holds approximately, i.e., the
a0(u, v) in Eq. (4) is not exactly the same as the attenuation
projection acquired in the conventional CT. Hence, we do not

include the results corresponding to the a0(u, v) in Eq. (4) in
this paper.

Prior to analyzing the spectrum of noise equivalent quanta
NEQ(k), the C-D phantom24 with outer dimension 37.68
× 28.26 mm2 is employed to evaluate and verify the mod-
eling and simulation accuracy of x-ray propagation, data ac-
quisition and image reconstruction of the DPC-CT. The bulk
of the C-D phantom is made of water with its complex refrac-
tive coefficient equal to n = 1 − δ + iβ = 1 −2.5604 × 10−7

+ i1.2353 × 10−10, which is consistent with that specified in
Ref. 2. Other parameters used to simulate the C-D phantom
are: rod size (left to right): 16, 32, 64, 96, 128, 192, 256, 384,
512, and 1024 μm; contrast of the rods against phantom body
(bottom to top): 5%–50% at step 5%.

To have an accurate and precise measurement of the modu-
lation transfer functions MTFp(k) and MTFa(k), a cylindrical
water phantom at diameter 5.1 mm is placed in air and thus
the edge is sharp and at high contrast. To avoid any interfer-
ence caused by noise nonuniformity, other than a water phan-
tom, an air phantom, i.e., nothing placed in the x-ray beam,
is employed to study the noise power spectra NPSp(k) and
NPSa(k), and the spectra of noise equivalent quanta NEQp(k)
and NEQa(k). The x-ray flux observing the Poisson distri-
bution is set at 5 × 106 photon/cm2 per projection in the
simulation study, which is consistent with that of an x-ray
micro-CT in preclinical applications. At the detector cell size
corresponding to 32 × 32 μm2, 64 × 64 μm2, 96 × 96 μm2,
and 128 × 128 μm2, ∼360 regions of interest (ROI) at 128
× 128 matrix dimension are used to obtain the noise power
spectrum via 2D Fourier transform,16 in which the technique
of zero padding is implemented to convert the data matrix
from the dimension 128 × 128 to 256 × 256 so that the noise
aliasing effect can be avoided.

By definition, the noise equivalent quanta is the total effec-
tive number of x-ray quanta detected per unit of detector area
in the data acquisition.20–23, 27, 28, 30, 32 Hence, the specification
of the total number of x-ray quanta, i.e., x-ray exposure, is
crucial in the investigation of noise equivalent quanta, partic-
ularly in the scenario wherein two imaging methods are to be
compared. As indicated in Sec. II.A, at each angular position
in the data acquisition of DPC-CT implemented with x-ray
tube and gratings, grating G2 needs to linearly shift M steps
(M = 10 in this work). To take this fact into account, we set
the x-ray exposure corresponding to the conventional CT as M
times as that of the DPC-CT at each angular position. Thus,
the x-ray exposure in the data acquisition of DPC-CT and the
conventional CT are kept identical.

IV. RESULTS

IV.A. MTFp(k) of DPC-CT compared with MTFa(k)
of the conventional CT

The modulation transfer functions of the DPC-CT and con-
ventional CT have been thoroughly evaluated in our quantita-
tive investigation. Plotted in Figs. 3–6(a) are the MTFp(k) and
MTFa(k) at detector cell size 32 × 32 μm2, 64 × 64 μm2,
96 × 96 μm2, and 128 × 128 μm2, respectively. A close
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FIG. 3. The imaging performance of DPC-CT compared with that of the
conventional CT: (a) MTFp(k) and MTFa(k), (b) NEQp(k) and NEQa(k), and
(c) DQEp(k) and DQEa(k) (detector cell dimension: 32 × 32 μm2; x-ray
exposure 5 × 106 photon/cm2 per projection).

inspection of these plots shows that their spatial resolution
measured by the modulation transfer functions MTFp(k) and
MTFa(k) is almost identical. We have experienced in the con-
ventional CT that a difference in the noise texture/granularity
in general means a difference in the spatial resolution. For-
tunately, however, this is not the case with regards to the
MTFp(k) and MTFa(k) between DPC-CT and conventional
CT. It is important to note that the equality between MTFp(k)
and MTFa(k) is of theoretical and practical relevance, and a
detailed discussion on this respect is deferred to Sec. V.

IV.B. NEQp(k) of DPC-CT compared with NEQa(k)
of the conventional CT

The profiles along the radial line that crosses the 2D
spectra of noise equivalent quanta NEQ(k) of both DPC-
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FIG. 4. The imaging performance of DPC-CT compared with that of the
conventional CT: (a) MTFp(k) and MTFa(k), (b) NEQp(k) and NEQa(k), and
(c) DQEp(k) and DQEa(k) (detector cell dimension: 64 × 64 μm2; x-ray
exposure 5 × 106 photon/cm2 per projection).

CT and conventional CT at 45◦ are plotted in Figs. 3–6(b),
corresponding to detector cell dimension 32 × 32 μm2,
64 × 64 μm2, 96 × 96 μm2, and 128 × 128 μm2, respec-
tively. As such, the variation of NEQp(k) of the DPC-CT as
a function over the detector cell dimension can be evaluated.
Note that the fluctuation in the profiles of the spectra of noise
equivalent quanta NEQp(k) and NEQa(k) are quite severe, be-
cause only 360 ROIs at matrix dimension 128 × 128 in the air
phantom are engaged in the measurement. With an increasing
number, e.g., more than 1000 (see Ref. 21), of ensemble sam-
ples (images or ROIs within the images of the air phantom),
smoother profiles corresponding to the noise power spectra
can be obtained. Note that the order of the polynomial fit-
ting is determined empirically via trial-and-error to assure that
the fitted profile adequately follows the trend in NEQp(k) and
NEQa(k).
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FIG. 5. The imaging performance of DPC-CT compared with that of the
conventional CT: (a) MTFp(k) and MTFa(k), (b) NEQp(k) and NEQa(k), and
(c) DQEp(k) and DQEa(k) (detector cell dimension: 96 × 96 μm2; x-ray
exposure 5 × 106 photon/cm2 per projection).

IV.C. DQEp(k) of DPC-CT compared with DQEa(k)
of the conventional CT

The profiles along the radial line that crosses the 2D spec-
tra of detective quantum efficiency DQE(k) of both DPC-
CT and conventional CT at 45◦ are plotted in Figs. 3–6(c),
corresponding to detector cell dimension 32 × 32 μm2, 64
× 64 μm2, 96 × 96 μm2, and 128 × 128 μm2, respectively. It
should be noted that the only difference between Figs. 3–6(b)
and 6(c) is the scaling by the x-ray exposure in the DPC-CT
and conventional CT, respectively.

V. DISCUSSIONS

This work is a continuation of our previous investigation
focused on the noise power spectrum NPSp(k) of DPC-CT.11

The primary contribution of this work is derivation of the
functional forms of noise power spectrum NPSp(k), spec-
trum of noise equivalent quanta NEQp(k), and DQEp(k) of
the DPC-CT. By conducting a computer simulation study, we
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FIG. 6. The imaging performance of DPC-CT compared with that of the
conventional CT: (a) MTFp(k) and MTFa(k), (b) NEQp(k) and NEQa(k), and
(c) DQEp(k) and DQEa(k) (detector cell dimension: 128 × 128 μm2; x-ray
exposure 5 × 106 photon/cm2 per projection).

evaluate and verify the derived functional forms and compare
them with their counterparts in the conventional CT. To sum-
marize the results, a number of observations and clarifications
are given below.

In general, the spectrum of noise equivalent quanta of an
imaging system is in the functional form20, 21, 26–30

NEQ(k) = G2 MTF2(k)

NPS(k)
. (36)

By definition, G, MTF(k) and NPS(k) denote the imaging
system’s transfer characteristics of large area gain, signal, and
noise, respectively. In various imaging modalities, Eq. (36)
can be in different expressions. For instance, the spectrum of
noise equivalent quanta of x-ray radiography and fluoroscopy
is expressed in exactly the same way as Eq. (36), whereas that
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of the conventional CT is expressed in Eq. (10). The spectrum
of noise equivalent quanta NEQp(k) of the DPC-CT imple-
mented with x-ray tube and grating is specified in Eq. (32).
It is interesting and important to note that the term |k| is in
the denominator of NEQp(k), whereas it is in the numerator
of NEQa(k).

The computer simulation study shows that, given detec-
tor cell dimension, the modulation transfer function MTFp(k)
of the DPC-CT is virtually the same as the MTFa(k) of the
conventional CT [see Figs. 3–6(a)]. It should be indicated
that no widowing or boosting technique is utilized to ob-
tain the modulation transfer functions investigated in this
work. This means that, despite the difference in the imaging
mechanisms between DPC-CT and conventional CT, their
modulation transfer functions are essentially determined by
dimension of the detector cells used for data acquisition, war-
ranting that the signal transfer characteristics and spatial res-
olution are in principle identical in these two imaging meth-
ods. This result is consistent with what has been published in
the literature.12, 13 Note that such a fact is of not only theo-
retical but also practical importance, especially in the scenar-
ios wherein the complementary information drawn from the
DPC-CT and the conventional CT are jointly of relevance for
applications.

The primary finding of this work is that, except at the spa-
tial frequency close to zero, the spectrum of noise equivalent
quanta NEQp(k) and detective quantum efficiency DQEp(k)
of DPC-CT are in principle identical to their counterparts
NEQa(k) and DQEa(k) in the conventional CT, though there
exists a radical difference in their noise power spectrum
NPSp(k) and NPSa(k). This means that the DPC-CT makes
use of x-ray flux as efficiently as the conventional CT if
the object to be imaged is of finite size. This fact ini-
tially seems surprising since there is a significant difference
between NPSp(k) and NPSa(k). However, it should become
readily understandable if we inspect Eqs. (10) and (32) care-
fully. The term |k| is at the numerator and denominator of
NEQa(k) and NEQp(k), respectively, offsetting the substan-
tial difference in their corresponding NPSa(k) and NPSp(k).
Hence, NEQp(k), DQEp(k), NEQa(k), and DQEa(k) are essen-
tially determined by MTFa(k) and MTFp(k), as analytically
specified by Eqs. (10), (11), (32) and (33) and experimentally
verified by the simulation study as demonstrated in Figs. 3–
6(b) and 6(c).

By referring to Eq. (1), one may reason that the advan-
tage of DPC-CT in squared signal-to-noise ratio or detectabil-
ity index over the conventional CT is solely dependent on
the extent to which the �Sp(f) in DPC-CT is larger than its
counterpart �Sa(f) in the conventional CT, since the NEQp(k)
and NEQa(k) are essentially identical. Again, this seems in-
consistent with our anticipation based on the observation that
there exists a radical difference in their noise power spectrum
NPSp(k) and NPSa(k). However, it should be understood that
the SNR2

ideal specified in Eq. (1) is defined under the frame-
work of ideal observer, wherein an ideal observer is assumed
to be capable of undoing or removing any correlation in noise,
i.e., “pre-whitening” colored noise.26, 28 It is interesting and
important to note that, the “pre-whitening” is accomplished

by the term |k| at the numerator and denominator of NEQa(k)
and NEQp(k), respectively, which offsets the substantial dif-
ference in their corresponding NPSa(k) and NPSp(k).

We would like to point out and emphasize that a human
observer is not an ideal observer, i.e., a human observer is not
able to “pre-whiten” colored noise while making a decision.
The colored noise plays a significant role in disturbing a hu-
man observer’s realistic decision-making capacity.26, 28 As we
have observed, the noise in DPC-CT is abundant at low fre-
quencies (see Fig. 2), while that in the conventional CT occurs
at high frequencies. Hence, it is reasonable to anticipate that,
if the object to be imaged is of relatively higher frequency,
i.e., smaller in size, a human observer may make a better de-
cision based on DPC-CT images than that made based on
conventional CT images. This means that, even if �Sp(f)
= �Sa(f), the SNR2

nonideal of DPC-CT can still be higher than
SNR2

nonideal of the conventional CT, while the object to be
imaged is small in size. In practice, a tomographic imaging
method that is less susceptible to high frequency noise has
been desired for a long time. The DPC-CT implemented with
x-ray tube and grating is just such an imaging modality, which
can be of profound significance in clinical and preclinical ap-
plications, e.g., the early detection of tumor or atherosclerosis,
because a pathophysiological lesion usually starts at a small
size.

We have indicated that the root cause for the radical dif-
ference between NPSp(k) and NPSa(k) is the adoption of the
Hilbert filter kernel, rather than the ramp filter kernel, for im-
age reconstruction in the DPC-CT using a filtered backprojec-
tion algorithm.11 However, it is interesting to note that such a
radical difference between the NPSp(k) and NPSa(k) has also
been reported in Ref. 12, wherein an integration is carried
out on the projection data, followed by the well-known ramp
filtering, i.e., no Hilbert filtering is carried out explicitly. In
fact, however, a cascading of integration and ramp filtering
is equivalent to a Hilbert filtering. Thus, we still believe that
the root cause underlying the significant difference between
NPSp(k) and NPSa(k) and the resultant difference in NEQp(k)
and NEQa(k) is that the data acquired in DPC-CT is the pro-
jection of the derivative of the refractive coefficient and in
principle only a Hilbert filtering is needed for image recon-
struction. In addition, we would like to indicate that, though
the image reconstruction scheme used in Ref. 12 may be ben-
eficial in terms of inheriting the filtering strategies established
in the conventional CT, the degradation in accuracy and spa-
tial resolution due to the cumulative sum cannot be ignored
in practice, especially in the cases wherein the detector cell
dimension is not small.

The imaging chain of both DPC-CT and conventional CT
is assumed ideal, which should not be confused with the con-
cept of an ideal observer mentioned above, in its system mod-
eling, analysis, and evaluation. For example, the x-ray source
is assumed monochromatic in this work and thus the conven-
tional CT investigated in this work is actually a “monochro-
matic” one. However, the conventional CT in reality usually
utilizes a polychromatic x-ray source. Hence, the readers are
advised to understand that the imaging performance, includ-
ing the spectrum of noise equivalent quanta and detective
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quantum efficiency, of both DPC-CT and the conventional CT
may be degraded by the imperfection in its imaging chain in
practical situations.

The implementation of a DPC-CT is more challenging,
because of the stringent requirements on the optoelectronic
accuracy of grating fabrication, mechanical alignment, and
stability. The time for data acquisition in the grating-based
DPC-CT can be longer if grating G1 or G2 needs to shift mul-
tiple times. Owing to the phase wrapping phenomenon, the
unambiguous phase detection range of DPC-CT is 2π , which
may impose limitations on the dynamic range over preclini-
cal and clinical applications. In addition, the noise morphol-
ogy in DPC-CT images is similar to the texture of some soft
tissues. On the other hand, it has been tabulated in Ref. 15
that the refractive coefficients of low atomic number materials
are substantially larger than their attenuation counterpart. The
preliminary data reported in the literature1, 4, 5 have demon-
strated that the �Sp(f) in soft tissues is significantly larger
than its counterpart �Sa(f). Moreover, as indicated above,
there may exist an extra gain in the DPC-CT’s SNR2

nonideal

over that of the conventional CT. Hence, it is hoped that the
potential of significantly increased contrast sensitivity over
soft tissues may outweigh the DPC-CT’s implemental short-
comings and enable it to outperform the conventional CT
as an imaging modality for extensive preclinical and clinical
applications.

VI. CONCLUSIONS

The spectrum of noise equivalent quanta NEQp(k) and de-
tective quantum efficiency DQEp(k) of the DPC-CT is ana-
lytically derived in this paper, followed by an evaluation and
verification via computer simulation study, as well as its com-
parison with that of the conventional CT. The signal trans-
fer property of the DPC-CT characterized by the modulation
transfer function MTFp(k) is virtually identical to the
MTFa(k) of conventional CT. Moreover, though there exists
a radical difference in their noise property characterized by
the noise power spectrum NPSp(k) and NPSp(k), the spectrum
of noise equivalent quanta NEQp(k) and detective quantum
efficiency DQEp(k) of DPC-CT are essentially identical to
their counterparts NEQa(k) and DQEa(k) in the conventional
CT. It is believed that the NEQp(k) and DQEp(k) character-

istics of the DPC-CT unveiled in this study can be of theo-
retical and practical relevance in the design and optimization
of DPC-CT for extensive preclinical and ultimately clinical
applications.
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APPENDIX: DERIVATION OF THE NOISE POWER
SPECTRUM NPSP(K) IN DPC-CT

Letting the projection of an object function f(x, y) be

Pθ (t)=
∫ ∞

−∞
dx

∫ ∞

−∞
dyf (x, y)δ(x cosθ+ysinθ−t),

(A1)
the object function f(x, y) can be reconstructed from its pro-
jection by

f̂ (x, y) =
∫ π

0
dθ

∫ ∞

−∞
|k|Sθ (k)

× exp[2πik(x cosθ + y sinθ )]dk, (A2)

where the character ∧ is used to differentiate the reconstructed
object function from the original object function. The Fourier
transform of projection Pθ (t) is defined as

Sθ (k) =
∫ ∞

−∞
Pθ (t) exp (−2πikt) dt, (A3)

and its inverse Fourier transform can be written as

Pθ (t) =
∫ ∞

−∞
Sθ (k) exp (2πikt) dk. (A4)

According to the property of Fourier transform, if Dθ (t) de-
notes the derivative of Pθ (t), one has the Fourier transform
pair

Dθ (t) = ∂Pθ (t)

∂t
=

∫ ∞

−∞
2πikSθ (k) exp (2πikt) dk,

(A5a)

Dθ (k) =
∫ ∞

−∞
Dθ (t) exp(−2πikt)dt = 2πikSθ (k).

(A5b)

Substituting Eq. (A5b) into Eq. (A2), one obtains

f̂ (x, y) = 1

2π

∫ π

0
dθ

∫ ∞

−∞
Dθ (k)

|k|
ik

exp[2πik (x cosθ + y sinθ )]dk

= 1

2π

∫ π

0
dθ

∫ ∞

−∞
Dθ (k) (−i sgn(k)) exp[2πik (x cosθ + y sinθ )]dk

= 1

2π

∫ π

0
dθ

∫ ∞

−∞
Dθ (k) H (k)exp[2πik (x cosθ + y sinθ)]dk , (A6)
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where H(k) represents the Fourier transform of Hilbert filter kernel h(t), i.e.,

H (k) =
∫ ∞

−∞
h(t)exp (−2πikt) dt, (A7a)

h (t) =
∫ ∞

−∞
(−i sgn(k)) exp (2πikt) dk. (A7b)

In the way similar to Ref. 20, without losing generality, we assume the object function f(x, y) is circularly symmetric, i.e., f(x, y)
= f(r, θ ) = f(r, 0) = f(r). In the polar coordinate system, one has

f̂ (r) = 1

2π

∫ π

0
dθ

∫ ∞

−∞
Dθ (k)H (k) exp (2πikr cosθ ) dk. (A8)

Note that the subscript θ is kept in Dθ (t) for consistence in expression, though Dθ (t) is actually not a function of θ due to the
circular symmetry in f(x, y). It should be easy to show that the Fourier transform F(k) of a circularly symmetric function f(r) is
an even function and thus

f̂ (r) =
∫ 2π

0
dθ

∫ ∞

0
dkF̂ (k) k exp (2πirk cosθ)

=
∫ π

0
dθ

∫ ∞

0
dkF̂ (k) k exp (2πirk cosθ ) +

∫ 2π

π

dθ

∫ ∞

0
dkF̂ (k) k exp (2πirkcosθ )

=
∫ π

0
dθ

∫ ∞

0
dkF̂ (k) k exp (2πirk cosθ ) +

∫ π

0
dθ

∫ ∞

0
dkF̂ (k) k exp (−2πirk cos θ )

=
∫ π

0
dθ

∫ ∞

0
dkF̂ (k) k exp (2πirk cosθ ) −

∫ π

0
dθ

∫ −∞

0
dkF̂ (−k) |k| exp (2πirk cos θ)

=
∫ π

0
dθ

∫ ∞

0
dkF̂ (k) |k| exp (2πirk cosθ ) +

∫ π

0
dθ

∫ 0

−∞
dkF̂ (k) |k| exp (2πirk cos θ )

=
∫ π

0
dθ

∫ ∞

−∞
dkF̂ (k) |k| exp (2πirk cosθ) . (A9)

Comparing Eqs. (A8) and (A9), one gets

F̂ (k) = Dθ (k) H (k)

2π |k| . (A10)

Letting the object function f(x, y) be a delta function, i.e., f(x, y) = δ(x)δ(y), the magnitude of the Fourier Transform of the
reconstructed object function is the modulation transfer function, i.e.,

MTFp (k) = |F̂ (k)| while f (x, y) = δ(x)δ(y) . (A11)

Noting that

Dθ (k) =
∫ ∞

−∞
dt exp (−2πikt)

∂Pθ (t)

∂t
= 2πik

∫ ∞

−∞
dtPθ (t) exp (−2πikt)

= 2πik

∫ ∞

−∞
dt exp (−2πikt)

∫ ∞

−∞
dx

∫ ∞

−∞
dyδ (x) δ (y) δ (x cosθ + y sinθ − t)

= 2πik

∫ ∞

−∞
dt exp (−2πikt)δ (−t) = 2πik, (A12)

and substituting Eqs. (A11) and (A12) into Eq. (A10), one obtains

MTFp (k) =
∣∣∣∣ ikH (k)

|k|
∣∣∣∣ = |i sgn(k)H (k)| = |H (k)| . (A13)

On the other hand, the autocovariance function of the reconstructed object function is

C(x, y) = 〈�f̂ (x, y)�f̂ (0, 0)〉, (A14)
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where �f̂ (x, y) represents the deviation of f̂ (x, y) from its mean value.20 Substituting Eqs. (A5b) and (A7a) into Eq. (A6), one
gets

f̂ (x, y) =
∫ π

0

dθ

2π

∫ ∞

−∞
dk exp[2πik (x cosθ + y sinθ)]

∫ ∞

−∞
dtDθ (t) exp (−2πikt)

×
∫ ∞

−∞
dt1h (t1) exp (−2πikt1)

=
∫ π

0

dθ

2π

∫ ∞

−∞
dtDθ (t)

∫ ∞

−∞
dt1h (t1)

∫ ∞

−∞
dk exp[2πik (x cosθ + y sinθ − t − t1)]

=
∫ π

0

dθ

2π

∫ ∞

−∞
dtDθ (t)

∫ ∞

−∞
dt1h (t1) δ (x cosθ + y sinθ − t − t1)

=
∫ π

0

dθ

2π

∫ ∞

−∞
dtDθ (t) h (x cosθ + y sinθ − t), (A15)

�f̂ (x, y) =
∫ π

0

dθ

2π

∫ ∞

−∞
dt�Dθ (t) h (x cos θ + y sin θ − t). (A16)

Subsequently, the autocovariance function becomes

C(x, y) =
〈∫ π

0

dθ

2π

∫ ∞

−∞
dt�Dθ (t) h (x cos θ + y sin θ − t)

∫ π

0

dθ1

2π

∫ ∞

−∞
dt1�Dθ1 (t1) h (−t1)

〉

=
∫ π

0

dθ

2π

∫ ∞

−∞
dth (x cos θ + y sin θ − t)

∫ π

0

dθ1

2π

∫ ∞

−∞
dt1h (−t1)〈�Dθ (t) �Dθ1 (t1)〉. (A17)

Assuming the recorded data Dθ (t) are uncorrelated, i.e.,∫ π

0
dθ1

∫ ∞

−∞
dt1h(x cosθ + y sinθ − t)h(−t1)〈�Dθ (t)�Dθ1 (t1)〉 (A18)

= aπ

Nθ

σ 2
Dh(x cosθ + y sinθ − t)h(−t) (A19)

where σ 2
D is the noise at each detector cell, a is the detector pitch, and Nθ is the total number of projection Dθ (t). Then, Eq. (A17)

becomes

C (x, y) = aσ 2
D

4πNθ

∫ π

0
dθ

∫ ∞

−∞
dth (x cosθ + y sinθ − t) h (−t) . (A20)

Again, without losing generality, we assume a circular symmetry in C(x, y), i.e.,

C (x, y) = C (r, 0) = C (r) = aσ 2
D

4πNθ

∫ π

0
dθ

∫ ∞

−∞
dth (r cosθ − t) h (−t) . (A21)

Substituting Eq. (A7b) into Eq. (A2a), one gets

C (r) = − aσ 2
D

4πNθ

∫ π

0
dθ

∫ ∞

−∞
dt

∫ ∞

−∞
dkH (k) exp [2πik (r cosθ − t)]

∫ ∞

−∞
dk1H (k1) exp (−2πik1t)

= aσ 2
D

4πNθ

∫ π

0
dθ

∫ ∞

−∞
dkH (k) exp (2πikr cosθ)

∫ ∞

−∞
dk1H (k1)

∫ ∞

−∞
dtexp (−2πik1t − 2πikt)

= aσ 2
D

4πNθ

∫ π

0
dθ

∫ ∞

−∞
dkH (k) exp (2πikr cosθ)

∫ ∞

−∞
dk1H (k1) δ (k1 + k)

= aσ 2
D

4πNθ

∫ π

0
dθ

∫ ∞

−∞
dk |H (k)|2 exp (2πikr cosθ ) . (A22)

The noise power spectrum NPSp(k), defined as the Fourier transform of autocovariance function, is an even function. Thus, the
autocovariance function becomes20, 21
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C (r) =
∫ 2π

0
dθ

∫ ∞

0
dkNPSp (k) k exp (2πikr cosθ )

=
∫ π

0
dθ

∫ ∞

0
dkNPSp (k) k exp (2πikr cosθ ) +

∫ 2π

π

dθ

∫ ∞

0
dkNPSp (k) k exp (2πikr cosθ)

=
∫ π

0
dθ

∫ ∞

0
dkNPSp (k) k exp (2πikr cosθ ) +

∫ π

0
dθ

∫ ∞

0
dkNPSp (k) k exp (−2πikr cosθ)

=
∫ π

0
dθ

∫ ∞

0
dkNPSp (k) |k| exp (2πikr cosθ ) −

∫ π

0
dθ

∫ −∞

0
dkNPSp (−k) |k| exp (2πikr cosθ )

=
∫ π

0
dθ

∫ ∞

−∞
dkNPSp (k) |k| exp (2πikr cosθ ) . (A23)

Comparing Eqs. (A22) and (A23), one obtains

NPSp (k) = aσ 2
D |H (k)|2

4πNθ |k| . (A24)

Substituting Eq. (A13) into Eq. (A24) and reformatting,
one finally arrives at

Nθ

σ 2
D

= a

4π |k| NPSp (k)
MTF2

p (k) . (A25)
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xiangyang.tang@emory.edu; Telephone: (404) 778-1732; Fax: (404) 712-
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