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The fossil record suggests a rapid radiation of placental mammals following the Cretaceous–Paleogene

(K–Pg) mass extinction 65 million years ago (Ma); nevertheless, molecular time estimates, while

highly variable, are generally much older. Early molecular studies suffer from inadequate dating methods,

reliance on the molecular clock, and simplistic and over-confident interpretations of the fossil record.

More recent studies have used Bayesian dating methods that circumvent those issues, but the use of lim-

ited data has led to large estimation uncertainties, precluding a decisive conclusion on the timing of

mammalian diversifications. Here we use a powerful Bayesian method to analyse 36 nuclear genomes

and 274 mitochondrial genomes (20.6 million base pairs), combined with robust but flexible fossil cali-

brations. Our posterior time estimates suggest that marsupials diverged from eutherians 168–178 Ma,

and crown Marsupialia diverged 64–84 Ma. Placentalia diverged 88–90 Ma, and present-day placental

orders (except Primates and Xenarthra) originated in a �20 Myr window (45–65 Ma) after the K–Pg

extinction. Therefore we reject a pre K–Pg model of placental ordinal diversification. We suggest other

infamous instances of mismatch between molecular and palaeontological divergence time estimates will

be resolved with this same approach.
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1. INTRODUCTION
Controversy over the timing of placental mammal diversi-

fication relative to the Cretaceous–Paleogene, (K–Pg)

mass extinction event ignited debate over the veracity of

palaeontological versus molecular approaches to diver-

gence time estimation [1]. Fossil representatives of

crown placental orders appear in the 16 Myr (million

years) interval following the K–Pg extinction [2], indicat-

ing a diversification peak between 65 and 60 Ma (millions

of years ago) [3], and consistent with a Paleogene radi-

ation of placentals after the sudden disappearance of

non-avian dinosaurs and other species during the mass

extinction event [4]. Early molecular studies (most nota-

bly [5], see also [6]) found ancient dates of origination of

placental mammals, pre-dating the K–Pg extinction.

Although it is expected that the earliest fossil evidence

for a divergence will postdate the event itself, the time

lag between these molecular time estimates and the pla-

cental mammal fossil record has been considered

unacceptably large [7,8].

Archibald & Deutschman [2] proposed three models

of placental mammal diversification with respect to the
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K–Pg event and their relationship to the fossil record.

In the explosive model, the last common ancestor of Pla-

centalia originated and diversified in the Paleogene. In the

long-fuse model, the ancestor of Placentalia originated in

the Cretaceous but intraordinal diversification (the evol-

ution of new families and genera within orders)

occurred in the Paleogene, agreeing with fossil finds of

modern orders postdating the K–Pg event, but acknowl-

edging an ancient origin for Placentalia. Finally, in the

short fuse model, several placental orders diversified in

the Cretaceous shortly after the origination of Placentalia,

with the others diversifying in the Paleogene. This last

model implies that Middle- and even Early Cretaceous

crown placental mammals existed, but have not yet

been recovered from an otherwise diverse mammalian

fossil record. Palaeontological interpretations of crown

placental lineages deep within the Cretaceous [9,10]

have been contested on phylogenetic and anatomical

grounds [11–13].

Nevertheless, the fossil record provides only a mini-

mum estimate for the antiquity of a given clade, and

molecular clock studies contradict the explosive model of

a Paleogene origin for Placentalia. Some of these studies

date the origin of Placentalia at more than 100 Ma, deep

within the Cretaceous [5,14–17]. Others indicate a

younger (ca 80–90 Ma) Cretaceous last common ancestor

for Placentalia [18,19]. Although molecular studies have
This journal is q 2012 The Royal Society
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agreed on a Cretaceous origin for Placentalia, they disagree

on the extent of ordinal level diversification relative to the

K–Pg event. For example, a supertree-based molecular

study of over 4000 mammal taxa by Bininda-Emonds

et al. [16] found that half of the placental orders originated

deep in the Cretaceous, much earlier than any known fossil

record of those groups. However, this study employed a

heuristic time estimation method that does not account

appropriately for lineage rate variation, used a point fossil

calibration for the mammalian root, and did not account

for uncertainty in branch length estimation. More recently,

Meredith et al. [17] used a supermatrix of 164 taxa and 26

genes, and found younger dates of intraordinal diversifica-

tion, with five placental orders presenting large credibility

intervals extending from the Early Cretaceous to the Late

Paleocene. However, the limited statistical power afforded

by the small sequence dataset resulted in error margins on

divergence time estimates that are too broad to determine

whether placental diversification occurred mainly in the

Cretaceous or in the Paleocene (i.e. short versus long

fuse models).

Here we take advantage of the whole genome sequence

data now available for tens of mammal species [20],

together with multiple, fossil-based temporal constraints

encompassing the breadth of mammalian phylogeny [21],

to establish a refined timescale for the placental mammal

evolution. We use a Bayesian approach that integrates

over the uncertainty in rate variation along the phylogeny

and facilitates analysis of very large alignments [22–24].

In a Bayesian analysis, fossil constraints impose a theoretical

limit on the precision of posterior time estimates [22,25].

We set out to determine whether current genome scale

data are enough to approach this theoretical limit, and

whether the precision achievable in divergence time esti-

mation is sufficient to confidently reject the hypothesis of

post K–Pg diversification of placental mammal orders.
2. METHODS
Our analysis was performed in two stages. First, we per-

formed Bayesian estimation of divergence times on a set of

14 632 nuclear gene alignments (20.6 � 106 base pairs) for

36 mammalian species (33 placentals, two marsupials and

one monotreme). In the second stage, the posterior prob-

ability of divergence times obtained in the first stage was

used to construct the time prior for an analysis of the 12

protein genes encoded on the heavy strand of the mitochon-

drial genome of 274 mammal species, and Bayesian

estimation of divergence times proceeded on this dataset.

The result is effectively a combined analysis of nuclear and

mitochondrial genomes.

(a) Taxon sampling, molecular data and tree topology

Confirmed and predicted copy DNA (cDNA) sequences for

the 36 mammalian genomes were downloaded from ENSEMBL

v. 56. The ENSEMBL database provides detailed information

about orthology and paralogy for the mammalian genome

[20]. A rooted tree was constructed based on the litera-

ture [26,27]. The tree and species list are presented in figure

1. Only gene sequences identified as one-to-one orthologues

between human and the remaining 35 species were analysed,

and only the longest splicing variant for each cDNA sequence

was considered. The mitochondrial genome sequences from

274 mammal species were downloaded from GenBank. The
Proc. R. Soc. B (2012)
list of 274 mammal species and their tree topology are given

in the electronic supplementary material, figure S1.

Amino acid sequences for the nuclear genomes were

aligned using PRANK [28] according to the rooted guide

tree. The following gene alignments were discarded: genes

that did not have a mouse orthologue, genes for which

sequences could be found for fewer than 10 of the 36

species and genes shorter than 100 codons. Furthermore,

for each gene alignment, a phylogentic tree was estimated

by maximum likelihood (ML) using RAXML v. 7.2.1 [29].

Alignments where at least one sequence was associated

with an unusually long external branch (that accounted for

more than 60% of total tree length) were also removed.

This left a dataset of 14 632 nuclear gene alignments. The

amino acid sequences were reverse translated to generate

DNA alignments. For the mitochondrial genomes, only

the 12 protein genes encoded on the heavy strand were ana-

lysed. Amino acid and DNA alignments were generated as

for the nuclear gene dataset. The tree topology for the

274 species was estimated with RAXML using the 36 species

tree as a guide tree. Well-supported marsupial, bovid, carni-

voran, pholidote, euarchontan and chiropteran clades

identified from the literature were fixed into the guide tree

[26,30–34].

The 14 632 nuclear gene alignments were divided into 20

partitions based on the relative substitution rate, with about

the same number of genes in each partition. Because the

number of species within each alignment varies from 10 to

36, we measured the relative rate by the p-distance between

amino acid sequences of human and mouse. The 12 protein

genes in the mitochondrial alignment of 278 species were

treated as a single partition. Third codon positions in both

the nuclear and mitochondrial alignments were excluded

from all dating analyses.

(b) Bayesian divergence time estimation

The analysis of divergence times was conducted using the

program MCMCTREE v. 4.4e [35]. Exact calculation of the like-

lihood function during Markov chain Monte Carlo (MCMC)

iteration is computationally expensive, and so we used the

approximate method [24,36]. First we calculated the maxi-

mum-likelihood estimates of the branch lengths, the gradient

vector and Hessian matrix, using the BASEML and CODEML

programs [35]. We used branch-by-branch optimization, as it

provided quick convergence for the large datasets. We used the

HKY þ G4 model [37,38] for the DNA datasets, the WAG þ
F þ G4 model [39] for the nuclear encoded proteins and

the MTMAM þ F þ G4 model [40] for the mitochondrial pro-

teins. The second step uses an MCMC algorithm to estimate

divergence times on the tree topology. The gradient vector and

Hessian matrix are used to generate the Taylor expansion

of the log-likelihood. This approximation saves much

computation time during the MCMC on large alignments.

The auto-correlated rates model [22,36] was used to

specify the prior of rates. The time unit was 100 Myr. We

used a diffuse gamma prior G(1, 1) for the overall substi-

tution rate, with mean 1, meaning 1028 changes per site

per year. The rate drift parameter s2 was assigned G(1, 1).

Parameter s2 reflects the amount of rate variation across

lineages or how seriously the molecular clock is violated.

The parameters of the birth–death process with species

sampling were fixed at l ¼ m ¼ 1 and r ¼ 0. We tested a

series of informative priors on the overall rate based on

rough rate estimates obtained by fitting a molecular clock
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Figure 1. The tree of 36 mammal species showing fossil calibrations. Calibration bounds are soft; that is, the probability that the

true divergence time is outside the bounds is small but non-zero. Internal nodes are numbered from 37 to 71. The tree topology
follows the literature [26,27]. The ‘dagger’ symbol shows a species which is extinct.

Timescale of mammalian phylogeny M. dos Reis et al. 3493
to the sequence data using point calibrations. However, these

priors did not affect estimated posterior times noticeably,

possibly because the fossil calibrations, which occur through-

out the phylogeny, constrain the time prior. The number of
Proc. R. Soc. B (2012)
iterations, the burn-in and the sampling frequency were

determined in test runs of the program. Every analysis

was conducted at least twice to ensure convergence of

the MCMC.
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(c) Fossil calibrations and time prior

We used 26 fossil calibrations on the 36 species tree: 12 joint

(maximum and minimum), two maximum and 12 minimum

bounds (figure 1 and electronic supplementary material,

table S1). Both minimum and maximum bounds were

‘soft’, that is we set the probability that the true divergence

time is outside the bounds to be small, but non-zero, allow-

ing molecular data to correct for conflicting fossil

information [25]. Minimum bounds are represented using

truncated Cauchy distributions [41] with a left tail prob-

ability of 0.1 per cent. For maximum and joint bounds, the

default 2.5 per cent tail probability was used. MCMC runs

were carried out without using the sequences to esti-

mate the time prior and to check for consistency with the

fossil calibrations.

The marginal posterior of divergence times obtained from

the 14 632 nuclear gene dataset was used to construct the

time prior for the 274 species mitochondrial gene dataset.

A Skew-t distribution was fitted by ML to each posterior

node age in the 35 species tree (sm package, R), and used

as calibrations for the appropriate nodes in the 274 species

tree. The Skew-t distribution is very flexible, and can

approximate a range of unimodal distributions with arbitrary

skewness and kurtosis. This effectively results in a combined

analysis of nuclear and mitochondrial genes to estimate

divergence times. A simultaneous multi-partition analysis,

with the mitochondrial proteins in one partition, and the

14 632 nuclear genes arranged in several partitions, would

have been the ideal way to estimate divergence times for all

274 species. However, such an analysis would have been

computationally expensive (many months) with the current

MCMCTREE implementation.

(d) Data partitioning

A total of 857 of the nuclear genes are present in all 36 mam-

malian genomes. We used this data subset for several

exploratory analyses and so we analysed these genes in a

single partition as an amino acid alignment and as a nucleo-

tide alignment. We then explored two partitioning strategies.

In the first, we divided the 857 genes into 10 or 20 partitions

with approximately the same number of genes according to

their relative substitution rate, measured by the tree length

(sum of branch lengths) on the tree of figure 1. Branch

lengths for each gene were estimated with RAXML using

the GTR þ G model.

In the second strategy, we used principal component

analysis (PCA) on the branch lengths, and k-means cluster-

ing on the PCA components to generate the partitions. For

each nucleotide alignment of first and second codon pos-

itions, the branch lengths were estimated by ML with

RAXML using the GTR þ G substitution model on the

fixed tree. We constructed a matrix of absolute branch

lengths, B ¼ (bij), with 857 rows and 2 � 36 2 3 ¼ 69 col-

umns (trees are unrooted), and a matrix of relative branch

lengths, R ¼ (rij) where rij ¼ bij=
P

j bij . Four transformed

matrices were constructed L ¼ (log bij), S ¼ ð
ffiffiffiffiffi
bij

p
Þ,

Lr ¼ ðlog rijÞ and Sr ¼ ð
ffiffiffiffi
rij
p Þ. On each one of the four trans-

formed matrices, a PCA was performed to try to identify

patterns in branch length variation across orthologues. The

first principal component in the analyses using absolute

branch lengths was highly correlated with total tree length.

A robust version of the k-means clustering algorithm

(PAM [42]) was used to group the 857 alignments into 10

partitions using the first two axes of the PCA.
Proc. R. Soc. B (2012)
3. RESULTS AND DISCUSSION
Our results are summarized in figure 2a and table 1.

Detailed time estimates for the divergences in the 274-

species tree are given in the electronic supplementary

material, figure S1. We estimated the origin of placentals

at 88–90 Ma, substantially younger than some previous

estimates [5,14–16], but congruent with others [17–19].

With the exception of Xenarthra and Primates, placental

orders diversified in the 20 Myr interval following the

K–Pg extinction event. For example, within Laura-

siatheria, the ancestral lineages of cats, dogs, bears,

bats, horses, rhinoceros, whales, ruminants, pigs,

camels, hedgehogs, moles and shrews are estimated to

have originated by 45 Ma. However, the divergences of

each of their crown parent clades (Cetartiodactyla, Carni-

vora, Chiroptera and Eulipotyphla) did not occur until

after 62 Ma (figure 2a and the electronic supplementary

material, figure S1). Similarly, diversification of the

crown clades within Afrotheria, Euarchontoglires

(except Primates) and even Marsupialia are estimated to

have occurred soon after the K–Pg extinction event,

with the establishment of morphologically diverse

lineages within approximately 20 Myr (figure 2a and the

electronic supplementary material, figure S1). Crown

Primates and crown Xenarthra are estimated to have

diverged just before the K–Pg event, at 69–67 Ma and

72–67 Ma, respectively, with the fundamental splits

within these groups occurring well within the Paleogene

(electronic supplementary material, figure S1).

Bininda-Emonds et al. [16] dated the age of 9 of 18

crown placental orders to be before the K–Pg event.

They proposed a delayed rise model of placental diversi-

fication to explain the large time gap between the

origination of crown orders in the Cretaceous and their

lineage diversification in the Paleogene. For example,

they dated crown Chiroptera at 74.9 Ma, Primates at

87.7 Ma, Lagomorpha at 66.8 Ma and Rodentia at

85.3 Ma, while there are no Cretaceous fossil representa-

tives for these groups [7]. Our estimates suggest a post

K–Pg origination for ordinal level crown groups, consist-

ent with the fossil record. For comparison, we date

Chiroptera at 59.1 Ma, Primates at 68.2 Ma, Lagomor-

pha at 47.9 Ma and Rodentia at 64.4 Ma. We conclude

that there is no evidence to support a delayed rise model.

Our large genome scale alignment is very informative,

contributing to a concentrated posterior time distribution

for almost all ordinal placental divergences (table 1 and

figure 3). Our credibility intervals are much narrower

than those reported in other studies ([17], electronic sup-

plementary material, figure S2), even though the time

prior is rather diffuse, encompassing both pre and post-

K–Pg divergences for many ordinal level crown groups

(table 1). Construction of the time prior is a complex

process as it accounts for the fossil age constraints, the

birth–death process and the age constraints required by

the hierarchical ordering of nodes in the tree (electronic

supplementary material, text). In particular, the marginal

prior of a node may differ from its fossil calibration [43].

We note the importance of estimating the time prior expli-

citly so that it can be compared with the time posterior

and the fossil calibrations (figure 3).

The use of soft calibration densities allows the data to

correct for conflicting fossil-based time constraints. For

example, the estimated age of crown Theria (node 38),
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Figure 2. The timetree of mammals. (a) Blue horizontal bars represent the posterior 95% CI for the node ages. Red horizontal
bars represent fossil calibrations: U for upper (maximum), L for lower (minimum) and B for both. The number of species ana-
lysed is presented within brackets: red for nuclear and black for mitochondrial genomes. The two mammal orders that
diversified before the K–Pg event are shown in orange. All orders within Afrotheria and Marsupialia diversified after the
K–Pg event. The tree topology follows [26,27]. (b) The three possible topologies concerning the divergence of

early Placentalia.

Timescale of mammalian phylogeny M. dos Reis et al. 3495
178–168 Ma, violates our fossil-based soft maximum age

constraint for this node (figure 3 and table 1). However,

our posterior estimate is in accord with a recently

described eutherian fossil dated approximately 153 Ma

[44] (electronic supplementary material, figure S3).

This highlights the robustness of soft fossil-based age con-

straints and large informative sequence datasets to

palaeontological uncertainty. The posterior ages of

nodes 58 (lagomorphs) and 60 (guinea pig/rat) also vio-

lated their corresponding fossil calibrations (figure 3).

To assess the robustness of our estimated times to the

presence of these problematic calibrations [45], we per-

formed an additional analysis on the 36 species tree

where we removed the maximum age constraints on

nodes 38 (crown Theria) and 60 (guinea pig/rat), and

the joint constraints on lagomorphs (node 58). We

found that the estimated age of crown Theria became

older (the posterior mean and credibility interval (CI)

changed from 175, 170–182 Ma to 186, 181–191 Ma),

while the guinea pig/rat clade (node 60) became younger

(the posterior mean and CI changed from 47.8, 45.8–

49.3 Ma to 45.6, 42.9–48.2 Ma). The ages of all other

nodes (including guinea pig/rat; node 60) were only mar-

ginally affected (electronic supplementary material, figure

S4). Thus our estimated times are robust to the presence

of this conflicting fossil evidence for calibrations.

We tested whether current genomic data are sufficient

to reduce uncertainty in time estimates towards its
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theoretical limit. With a relaxed clock, as the number of

sites and loci approach infinity, a scatter plot of posterior

mean times (divergence) versus their corresponding CI

widths (uncertainty) approaches a straight line [22].

Figure 4a shows the scatter plot for the time prior, show-

ing the high level of uncertainty owing to the soft fossil

constraints: for every 100 Myr of divergence, 47 Myr of

uncertainty is added to the prior CI width. For the time

posterior calculated using 36 species and 14 632 genes,

the scatter plot is close to a straight line (figure 4b).

The addition of molecular data reduces uncertainty sub-

stantially, and for every 100 Myr of divergence, only 6.4

Myr of uncertainty is added to the posterior CI width

(figure 4b). Marsupialia (node 39) is a clear outlier, exhi-

biting much greater uncertainty than expected, given the

age of the clade. Increased taxon sampling through

the inclusion of the mitochondrial data reduced sub-

stantially the uncertainty on the age of Marsupialia

(figure 4c). Our analysis indicates that current genome

scale sequence data yield results close to the theoretical

limit of uncertainty for the ages of mammalian ordinal

and supraordinal clades. However, the uncertainty associ-

ated with divergences at family and genus levels is high

(grey points in figure 4c), and increased density of

taxon-sampling at genome scale will probably improve

their age estimates substantially.

Extensive tests indicate that our divergence time esti-

mates are robust to the substitution model (protein
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Figure 3. Calibrations, prior and posterior densities. The marginal posterior density of divergence times estimated from the
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scale is in million years ago. Clade ages are the ages of the corresponding crown groups.
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versus nucleotide), to variations in the number of genes

and gene partitions, and to various partitioning strategies

based on multivariate analysis and clustering of branch
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lengths (electronic supplementary material, figure S5).

In particular, sophisticated partitioning strategies based

on PCA did not perform better than the simpler rate-
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based partition strategy. Our results are also robust to tree

topology. The three main groups of placental mammals

(Boreotheria, Xenarthra and Afrotheria) diverged almost

simultaneously [27] and there is uncertainty regarding the

position of the placental root [27,46]. Our principal analyses

assumed the Atlantogenata hypothesis of placental diver-

gence (figure 2b). Estimated divergence times using the

two alternative Placentalia trees (figure 2b) yield very similar

clade ages (table 1), indicating that our divergence time

estimates are robust to these topological differences. The

three superorders are thought to reflect the radiation of

early placentals among the three principal continental

land masses resulting from the break-up of Pangaea:

Boreotheria in North America, Asia and Europe; Xenarthra

in South America; and Afrotheria in Africa [26,27,47].

However, our age estimate for crown Placentalia postdates

the critical episode of continental fragmentation, 148–110

Ma [27,48], questioning this hypothesis of vicariance driving

placental mammal diversification.

A comprehensive divergence time study should

account for three sources of uncertainty: the degree to

which fossil calibrations approximate or encompass the

time of divergence [25], the randomness in the molecular

rate [22,36] and the variance of branch length esti-

mates [49]. The variance in branch length estimates can

be substantial for small sequence datasets leading to

exceedingly large CIs for divergence times as has been

observed in some studies [17]. These sources of uncer-

tainty were not adequately addressed in molecular clock

studies that supported particularly ancient dates of

placental diversification [5,16]. Our Bayesian approach

integrates genome-scale data with a conservative interpret-

ation and realistic implementation of fossil-based time

constraints [21], overcoming the limitations of previous

analyses, and ameliorating this notorious instance of dis-

cord between molecular and palaeontological estimates

of evolutionary time.
4. CONCLUSIONS
Palaeontologists have long understood that the first

record of crown placentals in the early Paleogene is an

underestimate of the age of Placentalia. Along with
Proc. R. Soc. B (2012)
other studies, we confirm that the explosive model, in

which the last common ancestor of placentals postdates

the K–Pg event, is incorrect. However, our results allow

us to decisively reject a pre-extinction diversification,

indicating instead the diversification of placental orders

in a 20 Myr post-extinction interval. These results

accord with the long fuse model [2] and are therefore

consistent with the current interpretation of the mamma-

lian fossil record. Our study is oriented around the

genomic diversity of extant mammals. An important

direction for future research concerns the extent to

which the lack of genomic data from extinct groups,

some of which were diverse shortly after the K–Pg bound-

ary, may influence our ability to understand mammalian

divergences generally. Nevertheless, we hypothesize that

other instances of mismatch between molecular clocks

and the fossil record, such as the origins of animal phyla,

flowering plants, and modern birds, may be similarly

reconciled without assuming extensive cryptic episodes

of evolutionary history preceding their fossil records.

Access to genome scale datasets through next generation

sequencing makes realistic the prospect of an accurate

and precise timescale for the Tree of Life.
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