In vitro deletion analysis of ARS elements spanning the replication origin in the 5' nontranscribed spacer of Tetrahymena thermophila ribosomal DNA

Anthony A.Amin<sup>1</sup> and Ronald E.Pearlman\*

Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

Received 26 November 1985; Accepted 24 February 1986

#### ABSTRACT

Two adjacent but non-overlapping restriction fragments that encompass the replication origin of the macronuclear copy of rDNA from <u>Tetrahymena</u> <u>thermophila</u> allow autonomous replication of plasmids in the yeast <u>Saccharomyces</u> <u>cerevisiae</u>; i.e. they function as autonomously replicating segments (<u>ARS</u>). Deletions generated <u>in vitro</u> into these fragments yield an 82 bp segment from each as the smallest sequence specifying <u>ARS</u> function. These 82 bp segments are at the 5' end of a 220 bp region of homology between the two original <u>ARS</u> restriction fragments. A 39 bp region of almost complete sequence identity between the two 82 bp fragments is suggested to be a core sequence element necessary for <u>ARS</u> function. This 39 bp sequence contains a region identical or nearly identical to the 11 bp yeast <u>ARS</u> consensus sequence (T/ATTTATPuTTA/T) which is suggested to be essential for <u>ARS</u> function. Detailed comparisons of the 82 bp segments and of the 39 bp core with other <u>ARS</u> sequences reveal no extensive homologies aside from the consensus.

#### INTRODUCTION

Cloned genomic DNA fragments that act in cis to allow autonomous replication of a circular plasmid in the bakers yeast <u>Saccharomyces cerevisiae</u> contain sequence elements referred to as autonomously replicating segments (<u>ARS</u>) (1,2,3). An <u>ARS</u> element when present on a plasmid containing a selectable genetic marker confers on that plasmid the ability to transform yeast mutant for the marker at a high frequency. Extrachromosomal plasmid DNA can be isolated from transformed cells grown under selective conditions and transformants are unstable for the selectable marker when propagated in complete medium. In the context of this transformation assay, <u>ARS</u> elements derived from the yeast genome (1-8) function as origins of replication and are thus good candidates to be <u>bona fide</u> replicators on yeast chromosomes. A growing body of evidence from <u>in vitro</u> (9,10,11) and <u>in vivo</u> experiments (12,13) supports the hypothesis that the <u>ARS</u>1 sequence derived from chromosome IV of yeast is a chromosomal replicator.

The many yeast  $\underline{ARS}$  elements sequenced to date share no extensive sequence homology except for a small 11 bp sequence referred to as the yeast  $\underline{ARS}$  con-

sensus sequence (4-8). This sequence is also present on many <u>ARS</u> elements isolated from non-yeast DNA (14-17). Kearsey has shown that for the yeast <u>HO-ARS</u> fragment, a divergent copy of the consensus plus an additional flanking 3 bp is crucial for <u>ARS</u> function (5). Substitutions introduced into the divergent consensus by <u>in vitro</u> manipulation inhibit the ability of the element to generate  $Ars^+$  phenotype in the assay. Another study showed that deletions extending into the consensus sequence of <u>ARS</u>1 abolished <u>ARS</u> function (18). More recent studies suggest that the consensus sequence plus 4 bp on either side is the minimum requirement for high frequency transformation with <u>ARS</u>1 (19). These results suggest that the consensus sequence may be essential for replicator activity of <u>ARS</u> elements but an additional domain may be required for efficient replication and its regulation through the cell cycle (20). The presence of a consensus sequence on a segment of DNA is, however, not necessarily predictive of ARS function (4,14, this study).

The yeast transformation assay has been used as an initial screen of non-yeast DNA fragments for the possible presence of replication origins (1,21-29). This is the case for the ciliated protozoan <u>Tetrahymena</u> thermophila for which a DNA-mediated transformation system does not exist.

In this communication we report results of <u>in vitro</u> deletion analysis of two 5' NTS <u>ARS</u> fragments of <u>T</u>. <u>thermophila</u> rDNA. We have identified a 39 bp sequence element which appears to be necessary for <u>ARS</u> function, and which contains the 11 bp yeast <u>ARS</u> consensus sequence. The 39 bp sequence is present at the 5' end of each copy of a 420 base pair tandem repeat that is thought to include the <u>in vivo</u> origin of rDNA replication (30,31).

## MATERIALS AND METHODS

# Plasmid Vectors, Strains, Transformation and DNA Isolation

Most plasmids and strains of both <u>Escherichia coli</u> and <u>S. cerevisiae</u> used in this study have been described previously (14,26). The yeast integrating vector YIP5 contains a dG:dC tailed 1.1 kbp <u>Hind</u>III fragment carrying the yeast <u>URA3</u> gene inserted in the <u>AvaI</u> site of pBR322. Transformation of both <u>E. coli</u> and <u>S. cerevisiae</u> and isolation of DNA from these organisms were done as previously described (14).

## DNA Manipulations

Restriction endonucleases, T4 DNA ligase and other DNA modifying enzymes were purchased from New England Biolabs, Bethesda Research Laboratories, Boehringer Mannheim Canada Ltd. and PL Biochemicals and were used according to the supplier's specifications. Deletions generated <u>in vitro</u> using <u>Bal</u>31 nuclease were done essentially as described by Maniatis et al. (32) with modifications as described under Results. Electrophoresis of DNA fragments through horizontal agarose slab gels containing 5  $\mu$ g/ml ethidium bromide or through polyacrylamide vertical slab gels was performed as described previously (14).

Nucleotide sequence analysis of DNA fragments from CsCl purified plasmid DNA was done according to the procedure of Maxam and Gilbert (33). DNA restriction fragments were isolated from horizontal agarose gels by electrophoresis onto ion exchange paper (NA 45 Schleicher and Schuell Inc.). Fragments were eluted from the paper in 1 M NaCl, 0.1 mM EDTA, 20 mM Tris-HCl pH 8 at 55-60<sup>0</sup>C for 45 min. followed by precipitation with 2.5 volumes 95% ethanol. Samples were reprecipitated with ethanol from 0.3 M sodium acetate and washed in 70% ethanol. Endpoints of in vitro deletions were determined by sequencing plasmid DNA prepared from 1.5 ml cultures by the dideoxy chain termination procedure of Sanger et al. (34) as modified by Wallace et al. (35). The 16 nucleotide 'Eco R1' primer (5' GTATCACGAGGCCCTT, PL Biochemicals) complementary to bases 4434-4450 in plasmid pBR322 (36) was used in these experiments.  $\alpha$ -<sup>32</sup>P dNTP's (3000 Ci/mM) were purchased from New England Nuclear. Computer assisted analysis of DNA sequence data was performed as previously described (37). The Nucaln sequence alignment program of Wilbur and Lipman (38) was also used in these studies.

### RESULTS

# Construction of rDNA Recombinant Plasmids

We have recently shown that two adjacent but non-overlapping restriction fragments from the 5' NTS of the extrachromosomal palindromic rDNA of <u>T</u>. <u>thermophila</u> function as <u>ARS</u> in yeast (14) (see Fig. 1). These fragments are a <u>TaqI</u> - <u>Xba</u>I fragment (bp 63 - 720) and an <u>Xba</u>I - <u>Xba</u>I fragment (bp 720 -1147), each in the vector pACYC184 and containing the yeast <u>HIS</u>3 gene as the selectable marker (14). Because restriction sites in these plasmids are not well suited for the construction <u>in vitro</u> of deletions into rDNA sequences, rDNA containing fragments were subcloned into the yeast integrating plasmid YIP5. The <u>EcoRl</u> - <u>Hind</u>III fragment containing rDNA sequences from each of plasmids pRP174 and pRP141 (14) were ligated to the large fragment from <u>EcoRl</u> - <u>Hind</u>III digested YIP5. Plasmids pRP266 and pRP285 were obtained (Fig. 1). pRP266 contains the 657 bp <u>TaqI</u> - <u>XbaI</u> rDNA fragment whereas pRP285 contains the 427 bp <u>XbaI</u> - <u>XbaI</u> fragment. These plasmids all transform <u>S</u>. <u>cerevisiae</u> S277 at a high frequency, transformants are mitotically unstable when grown



(A) A section of the 5' NTS of T. thermophila rDNA showing the Fig. 1. location of the in vivo origin of replication (30,31).  $\mathbf{V}$ : center of the molecule. 🔳 29 bp non-palindromic sequence at the center of the Numbering of the rDNA sequence is as described previously, molecule. and begins at the non-palindrome/palindrome junction (37). ->: 420 bp The 657 bp TagI sequence duplicated at the replication origin. - Xbal and 427 bp <u>Xba</u>I - <u>Xba</u>I fragments which we have shown previously to function as <u>ARS</u> in yeast are contained in plasmids pRP174 and pRP141 respectively (14). (B) Circular restriction map of plasmids pRP266 and pRP285. pRP266 contains the 657 bp TagI - XbaI ARS fragment and pRP285 contains the 427 bp XbaI - XbaI ARS fragment. Restriction sites: X = Xbal; E = EcoR1; H = <u>Hind</u>III; P = <u>Pst</u>I; N = <u>Nru</u>I. [5333666] : rDNA sequences; pACYC184 sequences; ----- : pBR322 sequences; (\*): restriction site at which Bal 31 deletions were initiated.

in the absence of selection and unrearranged plasmid DNA can be isolated from transformants. Transformants remain mitotically unstable and exhibit very rapid 1:0 segregation even when a yeast <u>CEN</u> sequence is present on the plasmid. This behaviour is similar to that for strains transformed with plasmids containing a yeast <u>ARS4</u> and <u>CEN</u> sequence (39). Quantitative data (not shown) from these transformation experiments are identical to those obtained previously for plasmids pRP174 and pRP141 (14).

Construction and Analysis of Deletions in rDNA Sequences

Deletions were generated into rDNA sequences in each plasmid using nuclease <u>Bal</u>31 acting from a unique restriction site chosen so that the deletion required to reach rDNA sequences in one direction would not extend into either the  $\beta$ -lactamase or <u>URA</u>3 genes in the opposite direction. Deletions were initiated from the <u>Xba</u>I site in pRP266 and from the <u>Hind</u>III site in pRP285. 0.5 units of <u>Bal</u>31 nuclease was used to digest 15  $\mu$ g of linear DNA at a rate of approximately 50 bp per min. To ensure that all deletions had one common endpoint in vector sequences, DNA from deletions initiated at the <u>Xba</u>I site was cleaved with <u>Eco</u>R1 and the 5' overhang of this site repaired using the Klenow fragment of DNA polymerase I from <u>E. coli</u> prior to ligation. Those deletions initiated at the <u>Hind</u>III site were digested with <u>Nru</u>I prior to ligation. The ligation mixes were used to transform <u>E. coli</u> R80 selecting for Ap<sup>r</sup> Ura<sup>+</sup> transformants. The approximate extent of the deletions was analyzed by electrophoresis of <u>Hind</u>III plus <u>PstI</u> or <u>Xba</u>I plus <u>PstI</u> digested DNA obtained from 1.5 ml cultures of transformants grown to saturation in LB broth containing 50  $\mu$ g ampicillin/ml. Endpoints of deletions were determined by DNA sequence analysis as described under Materials and Methods. Sequences at the rDNA/vector junction were determined by comparison with the known rDNA 5' NTS sequence (37).

### ARS-Activity of Plasmids

Plasmid DNA containing deletions as well as DNA from RP266 and RP285 were isolated from 1.5 ml cultures, treated with RNase (50  $\mu$ g/ml final concentration) for 15 min at 37°C and then with protease K (250  $\mu$ g/ml final concentration) for 30 min at 37°C. All contained the same amount of predominantly supercoiled DNA as determined from the ethidium bromide staining intensity of samples following electrophoresis through an agarose gel. One half of each DNA sample was used to transform <u>S</u>. <u>cerevisiae</u> S277 spheroplasts selecting for Ura<sup>+</sup> transformants. Ars<sup>+</sup> and Ars<sup>-</sup> phenotypes were scored based on high frequency of transformation or low frequency of transformation respectively (14,26). This assay defines sequences essential for autonomous replication of plasmids although not necessarily efficient and regulated replication (20,39).

Two plasmids which contained the smallest rDNA sequences conferring an Ars<sup>+</sup> phenotype were chosen for further analysis. One plasmid, designated pTA55, was obtained from deletion of <u>Xba</u>I-linearized pRP266 and carried rDNA sequences from bp 63 - bp 615. Another plasmid, designated pTA37, was obtained from deletion of <u>Hind</u>III-linearized pRP285 and carried sequences from bp 919 - bp 1147 (Fig. 2).

To further delimit <u>ARS</u> sequences, <u>Bal</u>31 deletions were generated from the unique <u>Hind</u>III site in pTA55 and from the now unique <u>Xba</u>I site in pTA37. These deletions were initiated into rDNA sequences from the end opposite to that used in obtaining the original deletions in pRP266 and pRP285 respective-



Fig. 2. Ars phenotype of some plasmids obtained by <u>Bal</u> 31-generated deletions from the <u>Hin</u>dIII site of pTA55 (A) and from the <u>Xba</u>I site of pTA37 (B). The rDNA sequences contained in all of these plasmids are indicated on the left to illustrate their relative positions on the 657 bp <u>TagI</u> - <u>Xba</u>I and 427 bp <u>Xba</u>I - <u>Xba</u>I fragments.

ly. These experiments were done as described above generating deletions with a common filled in <u>Eco</u>Rl site endpoint from pTA55 and with an <u>Nru</u>I endpoint from pTA37. Transformation of <u>E</u>. <u>coli</u>, sizing and sequence determination of endpoints and transformation of yeast were carried out for these deleted plasmids as described above for the original deletions.

The exact rDNA sequences carried on plasmids as well as the Ars phenotype conferred by these plasmids are presented in Fig. 2. rDNA segments from bp 534 - bp 615 and from bp 919 - bp 1000 were the smallest sequences that allowed autonomous replication, and were contained in plasmids pTA161 and pTA165 respectively. As expected, these sequences are included in the 220 bp sequence common to the <u>TaqI</u> - <u>Xba</u>I and <u>Xba</u>I - <u>Xba</u>I rDNA restriction fragments. Plasmids pTA156 and pTA141 which do not replicate autonomously in yeast carry rDNA sequences from bp 543 - bp 615 and from bp 919 - bp 987 respectively. The rDNA sequences in pTA156 is 10 bp shorter than that of pTA161 whereas the rDNA sequence in pTA141 is 13 bp shorter than that of pTA165. Thus these 10 and 13 bp sequences are required for expression of an Ars<sup>+</sup> phenotype in pTA161 and pTA165 respectively.

Cloned rDNA sequences from the 5' NTS region of two other tetrahymenid species were also tested for <u>ARS</u> function. One plasmid, pRP233 contains the yeast <u>URA</u>3 gene and a 1.4 kbp <u>KpnI</u> - <u>HindIII</u> fragment spanning 90% of the 5' NTS of <u>Tetrahymena pyriformis</u> rDNA (40,41). Another plasmid, pRP411 contains the same <u>URA</u> gene fragment and a 6.5 kbp fragment carrying the entire 5' NTS

Fig. 3. A computer generated sequence alignment for maximum homology between the rDNA <u>ARS</u> elements contained in plasmids pTA161 (bp 919 to bp 1000) and pTA165 (bp 534 to bp 615) (see Fig. 2.). The 39 bp sequence common to both elements is from bp 534 to bp 572 in one case and bp 961 to bp 1000 in the other.  $\Box$ : the 11 bp A+T rich yeast <u>ARS</u> consensus sequence.

of <u>Glaucoma chattoni</u> rDNA (42). This 6.5 kbp fragment contains sequences from the 5' telomere to an internal <u>Bam</u>Hl site in rDNA. Both plasmids transformed S277 at a high frequency but transformants grew poorly, were extremely small and were mitotically unstable for the Ura<sup>+</sup> phenotype even when grown under selective conditions (data not shown). This is characteristic of a weak Ars<sup>+</sup> phenotype as described for a 260 bp fragment in the 3' NTS of <u>T</u>. <u>thermophila</u> rDNA (14) and domain B of <u>ARS</u>1 from yeast (6).

### DNA Sequence Comparisons

Computer generated sequence alignment of the 82 bp <u>ARS</u> sequences from pTA161 and pTA165 reveals the presence of a 39 bp region, almost identical in the two plasmids (Fig. 3). These sequences, from rDNA bp 533 - 571 and bp 962 - 1000 define a core element for the rDNA 5' NTS <u>ARS</u> elements. Deletion of 10 or 13 bp from this core sequence as described above results in loss of <u>ARS</u> function. The core sequence contains in one case, a perfect copy of the yeast <u>ARS</u> consensus sequence (4) and in the other case, a slightly divergent copy of this consensus (Fig. 3).

We have also analyzed the homology shared between the 420 bp duplicated sequence element in the 5' NTS of <u>T</u>. thermophila rDNA and sequences spanning an analogous region of <u>T</u>. pyriformis rDNA. This region in <u>T</u>. pyriformis rDNA is not duplicated (30). An alignment generated by computer to give maximum homology between the sequences is presented in Fig. 4a. A similar alignment between the 420 bp <u>T</u>. thermophila sequence and the entire 5' NTS sequence of <u>G</u>. chattoni rDNA is presented in Fig. 4b. In both comparisons, extensive conservation of the 3' region of the 420 bp <u>T</u>. thermophila sequence is observed but the sequences diverge extensively in the 5' 222 bp of the 420 bp element. It is within this non-conserved 222 bp of <u>T</u>. thermophila rDNA that the 82 bp <u>ARS</u> elements are found. Neither the 82 bp <u>ARS</u> sequence nor the 39 bp <u>ARS</u> core sequence, as defined in <u>T</u>. thermophila rDNA, are conserved among these three quite closely related ciliates. The only conserved features in

| <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       | 500<br>GAAGTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 510<br>TCCTTTTTTTATA                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | : ::::::<br>GGAGTATT<br>320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : ::::<br>TATCAAATTTAAG                                                                                                       |
| -04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       | SLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |
| CATTTAAATGCTAGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATTTAAGT                                                                                                                                                                                                              | AAAACATTTATAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATAAAABTAAAAT                                                                                                                 |
| : ::::<br>TAGTTAAACATACATAA<br>340 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CACAGAGAGATATTTGAGT<br>360 370                                                                                                                                                                                        | ACAABCTAGATAG<br>380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ::::<br>GAAAT                                                                                                                 |
| 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>590 600</b>                                                                                                                                                                                                        | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 620                                                                                                                           |
| ABTTTTABBAATATGAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TANATAGTTTTTTTTTT                                                                                                                                                                                                     | GTAAAAAACATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TATCAATTICATT                                                                                                                 |
| AATTTTAGAAGCAAGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CATOTOCATTTTATAAC                                                                                                                                                                                                     | ATGAAAATGATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAAGTATTTAATT                                                                                                                 |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 410 420                                                                                                                                                                                                               | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 440                                                                                                                           |
| 640<br>TATTCATTTTARTTAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       | 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |
| :: : :::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                                                                                                                                                                                                     | :::::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : ::: : :                                                                                                                     |
| 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 470                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 490                                                                                                                           |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 710 7                                                                                                                                                                                                                 | 20 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 740                                                                                                                           |
| TATAAAGATAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>ГТАА АЗАААА АЗТ ТТ</b> АТ<br>::::::::::::::::::::::::::::::::::                                                                                                                                                    | CTAGATTAAAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATTBATTTTGAAA                                                                                                                 |
| BATAACTATATTCCTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTAAGATAAAAACTATC                                                                                                                                                                                                     | TAAAATBAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CTTGATTTTGAAA                                                                                                                 |
| 500 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 520 5<br>la                                                                                                                                                                                                           | 30 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 590                                                                                                                           |
| 750 760<br>ATTICCTCATTAGATATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 770 7                                                                                                                                                                                                                 | 00 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 1: :::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : ::::                                                                                                                        |
| AATACTCATATGTTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11CT TOBCAAAAAAAAA<br>500 5                                                                                                                                                                                           | <u>AAAAAAAATAGTA</u><br>90 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 610                                                                                                                           |
| P10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                                    | Illa no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 840                                                                                                                           |
| TTTGAGAGTTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       | AAAGACTTAGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANATITTAAAABT                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |
| 620 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 640 6                                                                                                                                                                                                                 | 50 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 010 0                                                                                                                                                                                                                 | 50 <b>6</b> 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/0                                                                                                                           |
| ///b<br>850 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 870 89                                                                                                                                                                                                                | 0 880<br>IIIC<br>0 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900                                                                                                                           |
| ///b<br>850 860<br>GTAAAAAAGACTTAGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 870 88<br>3444 A A T C A A A A G A G                                                                                                                                                                                  | 0 870<br>ATAAAAGACTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900<br>3AGAAAATTTATA                                                                                                          |
| IIIb         850         960           GTAAAAAAAGACTTAGAC         ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 870 89<br>34444447047044446666                                                                                                                                                                                        | 50 680<br>    C<br>0 990<br>ATAAAAABACTTA<br>::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900<br>3AGAAAATTTATA<br>::::::::::::::::::::::::::::                                                                          |
| BSO         IIIb           BSO         960           GTAAAAAAGACTTAGAC         111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 870 89<br>3444464704444668<br>3311111111<br>34444604447776-<br>700                                                                                                                                                    | 50 680<br>///С<br>0 970<br>АТАЛАЛАВАСТТА<br>АААААВАСТТА<br>710 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900<br>3AGAAAATTTATA<br>11111111<br>3AGAAAATTTTGG<br>20 730                                                                   |
| B50         IIIb           B50         960           GTAAAAAAGACTTAGAA         111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970 89<br>3444 44 ATCA AAA 48<br>341 34 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                         | 30 Вес<br>0 970<br>АТАЛАЛАДАСТТАІ<br>АЛАЛАДАСТТАІ<br>710 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900<br>GAGAAAAITTATA<br>IIIIIIII<br>GAGAAAAITTTGG<br>20 730                                                                   |
| BIO         IIIb           BIO         960           GTAAAAAAGACTTAGAA         111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970 89<br>3444 4 A TCA AAA AGAG<br>11111111111111<br>3444 4 A AAACA AAAT TTG-<br>700                                                                                                                                  | 0 990<br>0 990<br>ATAAAAAGACTTA<br>::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900<br>3AGAAAATTTATA<br>33GAAAATTTTGG<br>3AGAAAA<br>7117166<br>20 730                                                         |
| BIO         IIIb           BIO         960           GTAAAAAAAGCTTAGAC         960           IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90 89<br>3444 44 ATCA AAAAAGAG<br>1111111111111<br>34444 44 AAAACAAATTTG-<br>700                                                                                                                                      | UIC<br>UIC<br>0 970<br>ATAAAAAAQACTTAI<br>:::::::::::::::<br>AAAAAQACTTAI<br>710 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900<br>3484444/117474<br>11111/1111<br>34844444/111768<br>20 730                                                              |
| <u>В50</u><br><u>940</u><br><u>940</u><br><u>940</u><br><u>910</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>920</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u>910</u><br><u></u> | 970 99<br>3444 49 47 CA 44 A 46 4<br>555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                            | 50 660<br>IIIC<br>0 970<br>ATAAAAAAGACTTAI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900<br>3AGAAAATTTATA<br>11111111<br>3AGAAAATTTTGG<br>20 730                                                                   |
| BO         IIIb           BO         960           GTAAAAAAGACTTAGAA         ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970 99<br>3AAAAAAATCAAAAAGAG<br>::::::::::::::::::::::::::::::                                                                                                                                                        | 50 660<br>IIIC<br>0 970<br>ATAAAAAAACTTAI<br>AAAAAGACTTAI<br>710 7<br>500 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900<br>34GAAAATTTATA<br>1111111<br>34GAAAATTTTGG<br>20 730                                                                    |
| BO     960       GTAAAAAAGACTTAGAA       ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 970 99<br>3444 Maa TCA AAA AGAG<br>1111111111111<br>3444 AAAACAAATTTG-<br>700                                                                                                                                         | 50 660<br>IIIC<br>0 970<br>ATAAAAAAGACTTAI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900<br>34GAAAATTTATA<br>111111<br>34GAAAATTTTGG<br>20 730<br>730                                                              |
| BO ////<br>BO 960<br>GTAAAAAAGACTTAGAA<br>: :::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 970 99<br>3444 Maa TCA AAA AGAG<br>11111111111111<br>3444 AAAACAAATTTG-<br>700                                                                                                                                        | 500 510<br>GATAAAAAAGACTTAI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900<br>34GanaAtttata<br>33GanaAtttata<br>33GanaAttta<br>33GanaAttta<br>33GanaAttta<br>33GanaAttta<br>33G<br>730<br>730<br>730 |
| BO ////<br>BO 960<br>GTAAAAAAGACTTAGAA<br>: ::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970 89<br>3444 40 ATCA AAAAAAA<br>1111111111111<br>34444 40 AAAACAAATTTG-<br>700                                                                                                                                      | 500 500<br>500 510<br>500 510<br>GAAGTATTACTTAI<br>500 510<br>GAAGTATTTCCTTI<br>1: 1:1:1<br>TAATGATTTCG01<br>820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900<br>900<br>33GAAAAATTTATA<br>33GAAAAATTTTGG<br>20 730<br>730<br>730<br>730<br>730<br>730<br>730                            |
| BO ////b<br>BO 960<br>GTAAAAAAGACTTAGAC<br>: :::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970 99<br>3444 4940 99<br>3444 4940 400 89<br>3444 4940 400 89<br>3444 400 89<br>3444 400 89<br>700<br>700<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                      | 500 510<br>GAAAAAAAGACTTAI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900<br>900<br>33GAAAAATTTTTATA<br>:::::::::::::::::::::::::                                                                   |
| ВО<br>()))<br>ВО<br>())<br>ВО<br>())<br>())<br>())<br>())<br>())<br>())<br>())<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 970 99<br>34474 AATCA AAAAAAG<br>11111111111111<br>34444 AACAAATTTG-<br>700<br>0<br>0<br>0<br>150<br>150<br>150<br>150<br>150<br>15                                                                                   | 500 510<br>GAAAAAAAGACTTAI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900<br>900<br>34GAAAAATTTTATA<br>::::::::::::::::::::::::::                                                                   |
| BO     960       GTAAAAAAAGACTTAGAA       ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 550<br>34474AATCAAAAAGAG<br>34444AATCAAAATTTG-<br>700<br>0 550<br>0 550<br>0 550<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                           | 500         500           0         970           ATAAAAAAQACTTAI         970          AAAAAQACTTAI         710           710         7           500         510           GAAGTATTTCCTT         1:           ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 900<br>900<br>36GAAAATTITATA<br>1111111<br>36GAAAATTITGG<br>20 730<br>730<br>730<br>730<br>730<br>730<br>730<br>730           |
| BO       960         GTAAAAAAAGACTTAGAA         CTCCAAAAAGACTTAGAA         680       690         910       920         AATTAAAATGTAG         1:       ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 970 99<br>34474 AATCA AAAAGAG<br>1111111111111<br>34444 AACAAATTTG-<br>700<br>0 550<br>10 550<br>10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                             | 500 510<br>GAAGTATTA<br>710 7<br>500 510<br>GAAGTATTTCTT<br>: ::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900<br>900<br>36GAAAAATTITATA<br>336GAAAAATTITGG<br>20 730<br>730<br>730<br>730<br>730<br>730<br>730<br>730                   |
| BO         IIIb           BO         960           GTAAAAAAAGACTTAGAA           ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 970 99<br>34474 AATCA AAAADAG<br>34474 AATCA AAAADAG<br>34474 AATCA AAAADAG<br>34474 AATCA AAAATTTG-<br>700<br>0 550<br>44574 AAAACATTTATAA<br>11 11 11 11 11 11 11 11 11 11 11 11 11                                 | 500 510<br>GAAGAAAGACTTAI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900<br>900<br>336304047111474<br>3363040404111166<br>20 730<br>730<br>730<br>730<br>730<br>730<br>730<br>730                  |
| BO         960           GTAAAAAAAGACTTAGAA         960           GTAAAAAAAGACTTAGAA         111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970 99<br>3444 AATCA AAAADAG<br>3344 AAATCA AAAADAG<br>3344 AAAAAAACAAATTTG-<br>700<br>0 550<br>440 TAAAAACATTTATAA<br>700<br>0 550<br>440 TAAAAAACATTTATAA<br>1 770<br>0 600 610<br>111 111 111 1111<br>111 111 1111 | 500         500           0         970           ATAMAAAAGACTTAI           710         7           710         7           500         510           GAAGTATTTCOT         7           500         510           GAAGTATTTCOT         7           500         510           GAAGTATTTCOT         7           500         510           500         510           GAAGTATTTCOT         7           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         510           500         500           500         500           620         620           620         620           620         620           620         620           <                                    | 900<br>900<br>36GAAAAGTTIATA<br>11111111111111111111111111111111111                                                           |
| BO         IIIb           BO         960           GTAAAAAAAGACTTAGAA           ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 970 99<br>3AAAAAATCAAAAAAAA<br>3AAAAAAACAAATTTG-<br>700<br>200<br>550<br>700<br>200<br>550<br>700<br>200<br>550<br>600<br>600<br>600<br>600<br>600<br>600<br>6                                                        | 500         500           0         970           ATAMAAADACTTAI           710         7           710         7           500         510           GAAGTATTCOTTAI         7           710         7           710         7           710         7           500         510           GAAGTATTCOTTAI         7           500         510           500         510           70         7           710         7           710         7           710         7           710         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70         7           70                                                                                  | 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900                                                                          |
| BO         960           GTAAAAAAAGACTTAGAA         960           GTAAAAAAAGACTTAGAA         111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970 99<br>3AAAAAATCAAAAAAA<br>3AAAAAAACAAATTTG<br>3AAAAAAAACAAATTTG<br>700<br>0                                                                                                                                       | 500         500           0         970           ATAAAAAGACTTAI           710         7           500         510           GAAGTATTCTTAI           710         7           500         510           GAAGTATTCCTT           1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900<br>900<br>30GAAAAGTTITATA<br>::::::::::::::::::::::::::::::::::                                                           |
| BO         IIIb           BO         960           GTAAAAAAAGACTTAGAA           CTCCAAAAAGACTTAGAA           CTCCAAAAAGACTTAGAA           CTCCAAAAAGACTTAGAA           CTCCAAAAAGACTAGAAC           910         920           AATTAAAATGTAG           11         1111           AAAAAAAAGTCTAGA           740           B           TTAAAATGCTAGAAAAGTCTA           TTAAAATGCTAGAAAAAGTCA           740           B           580           590           GGAATATGGTAAATAGT           1111           1111           1111           1111           1111           1111           1111           1111           1111           1111           1111           1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 970 99<br>3AAAAAATCAAAAAAA<br>3AAAAAAACAAATTTG-<br>700<br>0                                                                                                                                                           | 500         500           0         970           ATAAAAAGACTTAI           710         7           500         510           GAAGTATTCOTTAI           710         7           500         510           GAAGTATTCOTTAI           710         7           500         510           GAAGTATTCOTTAI           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           1:         1:1:1:1           3:1:1:1:1:1         1:1           1:         1:1           3:1:1:1:1:1         1:1           3:1:1:1:1:1         1:1      < | 900<br>900<br>34GAAAAJTIIATA<br>1111131111<br>34GAAAAJTIIGG<br>20 730<br>730<br>730<br>730<br>730<br>730<br>730<br>730        |

Fig. 4. (A) A computer generated nucleotide sequence alignment for maximum homology between sequences from bp 500 to bp 920 of <u>T</u>. <u>thermophila</u> rDNA and sequences from bp 1 to bp 800 of <u>T</u>. <u>pyriformis</u> rDNA. (B) A similar alignment but between sequences from bp 500 to bp 920 of <u>T</u>. <u>thermophila</u> rDNA and from bp 1 to bp 1545 of <u>Glaucoma</u> <u>chattoni</u> rDNA. In both comparisons, only the sequences which align with the 420 bp <u>T</u>. <u>thermophila</u> sequences are presented. \_\_\_\_: type I and type III sequences which we have described previously (37). \_\_\_\_: 39 bp sequence common to the <u>T</u>. <u>thermophila</u> rDNA <u>ARS</u> elements (see Fig. 3.).

this region of rDNA are the Type I and Type III repeated sequences we have described previously (37). These are found in the 3' portion of the 420 bp T. thermophila element and are boxed in Fig. 4a and 4b.

#### DISCUSSION

#### Deletion Analysis in vitro; ARS Function

We have used deletion analysis <u>in vitro</u> to identify an 82 bp sequence on each of two adjacent restriction fragments spanning the origin of replication of <u>T</u>. <u>thermophila</u> rDNA, which allow autonomous replication of plasmids in yeast. This analysis has allowed us to address questions regarding nucleotide sequence requirements for <u>ARS</u> function in <u>S</u>. <u>cerevisiae</u> as well as whether these <u>ARS</u> fragments are the <u>in vivo</u> origins of rDNA replication in <u>Tetrahymena</u>. Common to both 82 bp <u>ARS</u> elements is a 39 bp sequence which we refer to as the rDNA <u>ARS</u> core. The two 39 bp sequences differ by only 7 bp. Four of those seven changes do not alter the base pairs in the element. Removal of 10 and 13 bp from each of the core elements results in loss of <u>ARS</u> function. The core sequence, or at least most of it, is therefore necessary although likely not sufficient to specify <u>ARS</u> function in yeast.

# ARS Function and the Origin of Replication in vivo in Ciliate rDNA

The 39 bp sequence elementdescribed above is present at the 5' end of a 420 bp sequence duplicated at the origin of replication of T. thermophila rDNA (14,30,37). In T. pyriformis, the origin of replication of the extrachromosomal rDNA is closer by approximately 200 bp to the center of the molecule than in <u>T. thermophila</u> (30,31). The origins in these two species do, however, occur in regions with some sequence homology, and it would be expected that in such closely related species a high degree of conservation would exist for sequences specifying an essential function such as the initiation of DNA replication. Neither the 82 bp ARS nor the 39 bp sequences of T. thermophila, however show more than minimal homology when compared with sequences encompassing the origin of replication of T. pyriformis rDNA (Fig. 4). Similarly, no homology is seen when these T. thermophila sequences are compared with the sequence of the entire 5' NTS of the extrachromosomal rDNA of the related ciliate G. chattoni (Fig. 4). The sequence homologies which do exist between these three species in the rDNA replication origin region are confined to the repetitive Type I and Type III elements (37).

An analysis of macronuclear rDNA chromatin from <u>T</u>. thermophila showed that the 5' 170 bp of the 420 bp duplicated sequence encompassing the origin of replication, is bound in a nucleosome whereas the remainder of the region is hypersensitive to treatment with a variety of nucleases (30). It was postulated that the hypersensitive region presents an open chromatin structure which would facilitate the entry of trans-acting factors required for the initiation of DNA replication at the origin. The same nucleosome pattern is also seen at the replication origin region in the rDNA of <u>T</u>. <u>pyriformis</u> (30). No data on the structure of the rDNA chromatin of <u>G</u>. <u>chattoni</u> are available but a region does exist in <u>G</u>. <u>chattoni</u> rDNA with extensive sequence homology to the nuclease hypersensitive region of the two <u>Tetrahymena</u> species (37). A DNA fragment spanning the nuclease hypersensitive region of <u>T</u>. <u>thermophila</u> rDNA is not an <u>ARS</u> and neither are a fragment from <u>T</u>. <u>pyriformis</u> rDNA which includes the <u>in vivo</u> origin of replication nor a fragment which includes the entire 5' NTS of <u>G</u>. <u>chattoni</u> rDNA. We conclude from these data that sequences in <u>T</u>. <u>thermophila</u> rDNA which allow autonomous replication of plasmids in yeast are unlikely to be the sequences required for the initiation of DNA replication <u>in vivo</u>. Experiments in progress with replciation of <u>Tetrahymena</u> rDNA <u>in vitro</u> should allow us to address questions to determine the DNA sequence at the rDNA replication origin.

## Common Features of ARS Elements

An 11 bp A/T rich sequence has been identified as a consensus sequence present on yeast (4-8) and on non-yeast (14-17) <u>ARS</u> elements. The 39 bp core sequences we have identified in <u>T</u>. <u>thermophila</u> rDNA contain this consensus sequence. This sequence now appears common to and an important component of sequences which allow the autonomous replication of plasmids in yeast. Srienc et al. have recently shown that a sequence of 19 bp from <u>ARS</u>1, of which 11 bp is the consensus, enables a plasmid containing <u>CENIV</u> of yeast to transform yeast at a high frequency (19). The transformants are, however, extremely unstable mitotically when compared to yeast transformed with a plasmid carrying the 838 bp <u>EcoRl - HindIII ARS</u>1 fragment and <u>CENIV</u>. Kearsey has demonstrated the presence of a slightly variant copy of the consensus sequence on a 46 bp <u>HO</u> - <u>ARS</u> fragment (5). The consensus sequence is crucial for <u>ARS</u> function.

Despite the importance of the 11 bp consensus sequence, this sequence alone is not sufficient for <u>ARS</u> function in yeast (4). Specific auxillary sequences or domains are required along with the consensus to effect an efficient  $Ars^+$  phenotype of <u>ARS</u>1 (19,20) and <u>HO</u> - <u>ARS</u> (5). Whatever the role of flanking domains is, it is not sequence specific because there is no homology between sequences flanking the consensus in the <u>ARS</u> elements described above. Data from three other experiments presented above support the idea that the 11 bp sequence is necessary, but not sufficient for <u>ARS</u> function in yeast. Plasmid pTA141 (Fig. 2) contains the 11 bp consensus sequence but does not allow high frequency transformation of yeast. 5' NTS sequences from the rDNA of T. pyriformis and G. chattoni both contain the 11 bp consensus sequence (37,41) but plasmids containing these regions give a very weak  $Ars^+$  phenotype on transformation of yeast. Broach et al. have also presented evidence that the presence of the 11 bp consensus sequence in a cloned DNA fragment is not necessarily diagnostic of <u>ARS</u> function (4). Other Heterologous ARS Sequences

Sequences from a number of organisms other than S. cerevisiae and the ciliate rDNAs described in this paper allow autonomous replication of plasmids in yeast (15-17,21-25,27-29). For most of these, the nucleotide sequence of the element is not known. In cases where sequences have been determined, experiments have not been done to determine the smallest fragment retaining ARS function and so data from sequence comparisons with the minimal yeast and Tetrahymena sequences are difficult to interpret. We have, however, performed computer assisted sequence comparison and alignment between the 82 bp T. thermophila ARS and the 39 bp core sequence and other published ARS sequences (4-8,15-17,43) (data not shown). The only common feature among these sequences is the 11 bp consensus sequence generally present in an A + T rich environment. Some short inverted repeats are present but there is no consistent organization of these relative to the 11 bp sequence. Even the ARS fragments from the 3' NTS rDNA telomere regions of T. thermophila, two strains of T. pigmentosa and G. chattoni (26, Amin and Pearlman, unpublished observations) show no strong sequence conservation among themselves and, except for the 11 bp consensus sequence, none to the 5' NTS ARS of T. thermophila.

A number of other experiments also raise questions about the suitability of the yeast transformation assay as a tool to isolate non-yeast replication origins. Maundrell et al. (27). have shown that a majority of genomic DNA fragments from the fission yeast <u>Schizosaccharomyces pombe</u> which function as "self-identifiable" <u>ARS</u> when transformed into <u>S</u>. <u>pombe</u> do not function as <u>ARS</u> in <u>S</u>. <u>cerevisiae</u>. Furthermore, genomic fragments from <u>S</u>. <u>pombe</u> that are <u>ARS</u> in <u>S</u>. <u>cerevisiae</u> are not <u>ARS</u> in <u>S</u>. <u>pombe</u>. Roth et al. (28) have previously shown that mouse <u>ARS</u> elements fail to enhance the transformation efficiency of a plasmid in mouse cells. Also Vallet et al. (29) have reported that there is no correlation between the location of an <u>ARS</u> sequence and the site of one of the origins of replication (ori A) of <u>Chlamydomonas</u> reinhardii chloroplast DNA.

We suggest that the DNA sequences in the 5' NTS of <u>T</u>. thermophila rDNA which allows autonomous replication of plasmids in yeast are close to but are not the <u>in vivo</u> origin of rDNA replication. The sequences function in yeast because they contain the 11 bp <u>ARS</u> consensus sequence as well as additional

sequence which supplies some feature required to function in the yeast transformation assay. This requirement cannot be specified by nucleotide sequence alone but could involve some structural feature such as nucleosome organization or possibly DNA secondary and/or tertiary structure (44,45) in these generally A + T rich regions. In this regard, it is of interest that the replication origin region of <u>I</u>. <u>thermophila</u> rDNA shows extremely anomalous electrophoretic mobility on polyacrylamide gel electrophoresis (Levene, Amin and Pearlman, unpublished observations) which might indicate sequence directed DNA curvature in this region.

#### ACKNOWLEDGEMENTS

This work was supported by grants to R.E. Pearlman from the Natural Science and Engineering Research Council of Canada and the National Cancer Institute of Canada. We thank Anita Samarzdic for technical assistance and Colleen Kelly for secretarial assistance.

### \*To whom correspondence should be addressed

<sup>1</sup>Current address: Department of Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1A1, Canada

#### REFERENCES

1067.

- Stinchcomb, D.T., Thomas, M., Kelly, J., Selker, E. and Davis, R.W. (1980) Proc. Natl. Acad. Sci. USA <u>77</u>, 45563.
- 2. Stinchcomb, D.T., Struhl, K. and Davis, R.W. (1979) Nature <u>282</u>, 39-43.
- Chan, C.S.M. and Tye, B.-K. (1980) Proc. Natl. Acad. Sci. USA <u>77</u>, 6329-6333.
- Broach, J.R., Li, Y.Y., Feldman, J., Jayaram, H., Abraham, J. and Hicks, J.B. (1983) Cold Spring Harbor Symp. Quant. Biol. <u>47</u>, 1165-1173.
- 5. Kearsey, S. (1984) Cell 37, 299-307.
- Stinchomb, D.T., Mann, C., Selker, E. and Davis, R.W. (1981) ICN-UCLA Symp. Mol. Cell Biol. <u>22</u>, 473-488.
- 7. Tschumper, G. and Carbon, J. (1982) J. Mol. Biol. <u>156</u>, 293-307.
- Skryabin, K.G., Eldarov, M.A., Larionov, V.L., Bayev, A.A., Klootwijk, J., de Regt, V.C.H.F., Veldman, G.M., Planta, R.J., Georgeiv, O.I. and Hadjiolov, A.A. (1984) Nucl. Acids Res. <u>12</u>, 2955-2968.
- Jazwinski, S.M., Niedzwiecka, A. and Edelman, G.M. (1983) J. Biol. Chem. <u>258</u>, 2754-2757.
- 10 Celniker, S.E. and Campbell, J.L. (1982) Cell <u>31</u>, 201-213.
- 11. Jazwinski, S.M. and Edelman, G.M. (1980) J. Biol. Chem. <u>259</u>, 6852-6857.
- 12. Zakian, V.A. and Scott, J.F. (1982) Mol. Cell Biol. 2, 221-232.
- Fangman, W.L., Hice, R.M. and Chlebowicz-Sledziewska, E. (1983) Cell <u>32</u>, 831-838.
- Amin, A.A. and Pearlman, R.E. (1985) Nucl. Acids Res. <u>13</u>, 2647-2659.
   Monteil, J.T., Norbury, C.J., Tuite, M.F., Dobson, M.J., Mills, J.J., Kingsman, A.J. and Kingsman, S.M. (1984) Nucl. Acids Res. <u>12</u>, 1049-

| 10.                                                                                                                                                                                 | Vallet, J.M., Rahire, M. and Rochaix, JD. (1984) EMBO J. <u>3</u> , 415-421.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17.                                                                                                                                                                                 | Mechall, M. and Kearsey, S. (1984) Cell <u>38</u> , 55-64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18.                                                                                                                                                                                 | Celniker, S.E., Sweder, K., Srienc, F., Bailey, J.E. and Campbell,<br>J.L. (1984) Mol. Cell Biol. <u>4</u> , 2455–2466.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19.                                                                                                                                                                                 | Srienc, F., Bailey, J.E. and Campbell, J.L. (1985) Mol. Cell Biol. 5, 1676-1684.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20                                                                                                                                                                                  | Koshland D Kent J C and Hartwell L H (1985) Cell 40, 393-403.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21                                                                                                                                                                                  | Ranke G R (1983) Curr Genet 7 79-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22                                                                                                                                                                                  | $\begin{array}{c} Gammes, Gamme, for (1000) Gammes, Gammes, for (1001) Mol Gammes, for (1000) We and Warner N (1001) Mol Gammes, for (1001) Mol Ga$ |
| <i>22</i> .                                                                                                                                                                         | 306-313.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23.                                                                                                                                                                                 | Uchimiya, H., Ohtani, T., Ohgawara, T., Harada, H., Sugita, M. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                     | Siguira, H. (1984) Mol. Gen. Genet. 192, 1-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24.                                                                                                                                                                                 | Loppes, R. and Denis, C., (1983) Curr. Genet. 7, 473-480.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25.                                                                                                                                                                                 | Tudzvnski, P. and Esser, K. (1982) Curr, Genet, 6, 153-158.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 26.                                                                                                                                                                                 | Kiss, G.B., Amin, A.A. and Pearlman, R.E. (1981) Mol. Cell Biol. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                     | 535-543.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27.                                                                                                                                                                                 | Maundrell, K., Wright, A.P.M., Piper, M. and Shall, S. (1985) Nucl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                     | Acids Res. <u>13</u> , 3711-3722.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28.                                                                                                                                                                                 | Roth, G.E., Blanton, H.M., Hager, L.J. and Zakian, V.A. (1983) Mol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                     | Cell Biol. <u>3</u> , 1898-1908.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29.                                                                                                                                                                                 | Vallet, JM. and Rochaix, JD. (1985) Curr. Genet. 9, 321-324.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30.                                                                                                                                                                                 | Palen, T.E. and Cech, T.R. (1984) Cell 36, 933-942.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 31.                                                                                                                                                                                 | Cech, T.R. and Brehm, S.L. (1981) Nucl. Acids Res. 9, 3531-3543.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32.                                                                                                                                                                                 | Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) In Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                     | Cloning, Cold Spring Harbor Laboratory, Box 100, Cold Spring Harbor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                     | New York.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 33.                                                                                                                                                                                 | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33.<br>34.                                                                                                                                                                          | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33.<br>34.                                                                                                                                                                          | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33.<br>34.                                                                                                                                                                          | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br>265, 687-695.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33.<br>34.<br>35.                                                                                                                                                                   | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33.<br>34.<br>35.                                                                                                                                                                   | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and<br>Itakura, K. (1981) Gene 16, 21-26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33.<br>34.<br>35.                                                                                                                                                                   | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. 5, 2721-2728.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33.<br>34.<br>35.<br>36.                                                                                                                                                            | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Peerlman, P.F. and Blackburn, F.L. (1985).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33.<br>34.<br>35.<br>36.<br>37.                                                                                                                                                     | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33.<br>34.<br>35.<br>36.<br>37.<br>38.                                                                                                                                              | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33.<br>34.<br>35.<br>36.<br>37.<br>38.                                                                                                                                              | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> </ul>                                                                               | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell 40, 381-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33.<br>34.<br>35.<br>36.<br>37.<br>38.<br>39.                                                                                                                                       | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> </ul>                                                                  | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and<br>Itakura, K. (1981) Gene <u>16</u> , 21-26.<br>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u> , 2721-2728.<br>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985)<br>Nucl. Acids Res. <u>13</u> , 2661-2680.<br>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u> ,<br>726-730.<br>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u> , 381-<br>392.<br>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> </ol>                                                                  | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. 9, 5905-5916.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> </ul>                                                     | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. 256.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> </ol>                                                     | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u>, 12857-12860.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> </ul>                                        | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and<br>Itakura, K. (1981) Gene <u>16</u> , 21-26.<br>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u> , 2721-2728.<br>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985)<br>Nucl. Acids Res. <u>13</u> , 2661-2680.<br>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u> ,<br>726-730.<br>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u> , 381-<br>392.<br>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and<br>Mita, M. (1981) Nucl. Acids Res. <u>9</u> , 5905-5916.<br>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u> ,<br>12857-12860.<br>Challoner, P.B. (1984) Ph.D. thesis, University of California.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> </ol>                                        | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u>, 12857-12860.</li> <li>Challoner, P.B. (1984) Ph.D. thesis, University of California, Berkeley.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> </ol>                           | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u>, 12857-12860.</li> <li>Challoner, P.B. (1984) Ph.D. thesis, University of California, Berkeley.</li> <li>Hartley, J.L. and Donelson, J.E. (1980) Nature 286, 860-864.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> <li>44.</li> </ul>              | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and<br>Itakura, K. (1981) Gene <u>16</u> , 21-26.<br>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u> , 2721-2728.<br>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985)<br>Nucl. Acids Res. <u>13</u> , 2661-2680.<br>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u> ,<br>726-730.<br>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u> , 381-<br>392.<br>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and<br>Mita, M. (1981) Nucl. Acids Res. <u>9</u> , 5905-5916.<br>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u> ,<br>12857-12860.<br>Challoner, P.B. (1984) Ph.D. thesis, University of California,<br>Berkeley.<br>Hartley, J.L. and Donelson, J.E. (1980) Nature <u>286</u> , 860-864.<br>Marini, J.C., Levene, S.D., Crothers. D.M. and Englund, P.T. (1982)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> <li>44.</li> </ol>              | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u>, 12857-12860.</li> <li>Challoner, P.B. (1984) Ph.D. thesis, University of California, Berkeley.</li> <li>Hartley, J.L. and Donelson, J.E. (1980) Nature <u>286</u>, 860-864.</li> <li>Marini, J.C., Levene, S.D., Crothers, D.M. and Englund, P.T. (1982) Proc. Natl. Acad. Sci. USA 79. 7664-7668.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> <li>44.</li> <li>45.</li> </ol> | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u>, 12857-12860.</li> <li>Challoner, P.B. (1984) Ph.D. thesis, University of California, Berkeley.</li> <li>Hartley, J.L. and Donelson, J.E. (1980) Nature <u>286</u>, 860-864.</li> <li>Marini, J.C., Levene, S.D., Crothers, D.M. and Englund, P.T. (1982) Proc. Natl. Acad. Sci. USA <u>79</u>, 7664-7668.</li> <li>Zahn, K. and Blattner, F.R. (1985) Nature 317, 451-453.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> <li>44.</li> <li>45.</li> </ol> | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and<br>Itakura, K. (1981) Gene <u>16</u> , 21-26.<br>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u> , 2721-2728.<br>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985)<br>Nucl. Acids Res. <u>13</u> , 2661-2680.<br>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u> ,<br>726-730.<br>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u> , 381-<br>392.<br>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and<br>Mita, M. (1981) Nucl. Acids Res. <u>9</u> , 5905-5916.<br>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u> ,<br>12857-12860.<br>Challoner, P.B. (1984) Ph.D. thesis, University of California,<br>Berkeley.<br>Hartley, J.L. and Donelson, J.E. (1980) Nature <u>286</u> , 860-864.<br>Marini, J.C., Levene, S.D., Crothers, D.M. and Englund, P.T. (1982)<br>Proc. Natl. Acad. Sci. USA <u>79</u> , 7664-7668.<br>Zahn, K. and Blattner, F.R. (1985) Nature <u>317</u> , 451-453.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> <li>44.</li> <li>45.</li> </ol> | <ul> <li>Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u>, 449-560.</li> <li>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature <u>265</u>, 687-695.</li> <li>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and Itakura, K. (1981) Gene <u>16</u>, 21-26.</li> <li>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u>, 2721-2728.</li> <li>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985) Nucl. Acids Res. <u>13</u>, 2661-2680.</li> <li>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u>, 726-730.</li> <li>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u>, 381-392.</li> <li>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and Mita, M. (1981) Nucl. Acids Res. <u>9</u>, 5905-5916.</li> <li>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u>, 12857-12860.</li> <li>Challoner, P.B. (1984) Ph.D. thesis, University of California, Berkeley.</li> <li>Hartley, J.L. and Donelson, J.E. (1980) Nature <u>286</u>, 860-864.</li> <li>Marini, J.C., Levene, S.D., Crothers, D.M. and Englund, P.T. (1982) Proc. Natl. Acad. Sci. USA <u>79</u>, 7664-7668.</li> <li>Zahn, K. and Blattner, F.R. (1985) Nature <u>317</u>, 451-453.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> <li>44.</li> <li>45.</li> </ol> | Maxam, A.M. and Gilbert, W. (1980) Meth. in Enzy. <u>65</u> , 449-560.<br>Sanger, F., Air, G., Barrel, B.G., Brown, N.L., Coulson, A.R., Fiddes,<br>J.C., Hutchinson, C.A., Sloocombe, P.M. and Smith, M. (1977) Nature<br><u>265</u> , 687-695.<br>Wallace, R.B., Johnston, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R. and<br>Itakura, K. (1981) Gene <u>16</u> , 21-26.<br>Sutcliffe, J.G. (1978) Nucl. Acids Res. <u>5</u> , 2721-2728.<br>Challoner, P.B., Amin, A.A., Pearlman, R.E. and Blackburn, E.L. (1985)<br>Nucl. Acids Res. <u>13</u> , 2661-2680.<br>Wilbur, W.L. and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. USA <u>80</u> ,<br>726-730.<br>Hieter, P., Mann, C., Snyder, M. and Davis, R.W. (1985) Cell <u>40</u> , 381-<br>392.<br>Higashinakagawa, T., Saiga, H., Shintani, N., Narushima-Lio, M. and<br>Mita, M. (1981) Nucl. Acids Res. <u>9</u> , 5905-5916.<br>Niles, E.G., Cunningham, K. and Jain, R. (1981) J. Biol. Chem. <u>256</u> ,<br>12857-12860.<br>Challoner, P.B. (1984) Ph.D. thesis, University of California,<br>Berkeley.<br>Hartley, J.L. and Donelson, J.E. (1980) Nature <u>286</u> , 860-864.<br>Marini, J.C., Levene, S.D., Crothers, D.M. and Englund, P.T. (1982)<br>Proc. Natl. Acad. Sci. USA <u>79</u> , 7664-7668.<br>Zahn, K. and Blattner, F.R. (1985) Nature <u>317</u> , 451-453.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |