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Abstract In this article, we categorize presently available

experimental and theoretical knowledge of various physi-

cochemical and biochemical features of amino acids, as

collected in the AAindex database of known 544 amino

acid (AA) indices. Previously reported 402 indices were

categorized into six groups using hierarchical clustering

technique and 142 were left unclustered. However, due to

the increasing diversity of the database these indices are

overlapping, therefore crisp clustering method may not

provide optimal results. Moreover, in various large-scale

bioinformatics analyses of whole proteomes, the proper

selection of amino acid indices representing their biologi-

cal significance is crucial for efficient and error-prone

encoding of the short functional sequence motifs. In most

cases, researchers perform exhaustive manual selection of

the most informative indices. These two facts motivated us

to analyse the widely used AA indices. The main goal of

this article is twofold. First, we present a novel method of

partitioning the bioinformatics data using consensus fuzzy

clustering, where the recently proposed fuzzy clustering

techniques are exploited. Second, we prepare three high

quality subsets of all available indices. Superiority of the

consensus fuzzy clustering method is demonstrated quan-

titatively, visually and statistically by comparing it with the

previously proposed hierarchical clustered results. The

processed AAindex1 database, supplementary material and

the software are available at http://sysbio.icm.edu.pl/

aaindex/.

Keywords Amino acids � AAindex database � Consensus

fuzzy clustering � High-quality indices � Validity measures �
Physico-chemical features

Introduction

Amino acids are chemical entities containing an amine

group and a carboxylic acid group and a side chain that

varies between different amino acids. They form proteins,

which are critical to life, and have many important func-

tions in living cells. Twenty naturally occurring amino

acids with different physicochemical and biochemical

properties are the structural building blocks of proteins.

A wide diversity of properties of amino acids have been

investigated through a large number of experiments and

theoretical studies. Each of these amino acid properties can

be represented by a vector of 20 numerical values, and we

refer to it as an amino acid index. Nakai et al. (1988) came

up with 222 amino acid indices from published literature

and investigated the relationships among them using hier-

archical clustering analysis. Subsequently, Tomii and

Kanehisa (1996) enriched the AAindex database with 42

amino acid mutation matrices and released as the
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AAindex2. Recently, 47 amino acid contact potential

matrices have been reported as AAindex3.1 The database is

continuously updated by Kawashima et al. (1999, 2008)

and Kawashima and Kanehisa (2000). Currently, 544

amino acid indices are released in AAindex1 database (see

footnote 1). Selection of the minimal/optimal set of amino

acid indices for different bioinformatics applications is a

difficult task and often involves adhoc/sub-optimal choices.

It is, therefore, necessary to group similar indices in clus-

ters and label representative cluster-indices. Moreover,

apart from AAindex database, Chou’s pseudo amino acid

composition (PseAA) (Chou 2001) and its several variants,

described in Nanni et al. (2010), have been used as an

alternative tool to deal with sequence-related systems and

protein-related problems (Chou 2009; Nanni et al. 2010;

Georgiou et al. 2009, 2010; Pape et al. 2010; Wang et al.

2010). Clustering (Hartigan 1975; Jain and Dubes 1988;

Oliveira and Pedrycz 2007) is a widely used technique in

data mining application for discovering patterns in under-

lying data, which partitions the input space into K regions

depending on some similarity/dissimilarity metric, where

the value of K may or may not be known a priori. Clus-

tering can be performed in two different modes: (1) crisp

and (2) fuzzy. In crisp clustering, the clusters are disjoint

and nonoverlapping in nature. Any pattern may belong to

one and only one class in this case. In fuzzy clustering, a

pattern may belong to all the classes with a certain fuzzy

membership grade. Due to the overlapping nature of the

AAindex1 database, we decided to work on the field of

evolutionary partitional fuzzy clustering methods. More-

over, it has been observed by our recent experimental study

that no single method outperforms all others over a wide

array of different applications (Plewczynski et al. 2010b).

Thus, the consensus of all methods is typically applied to

provide the best solution. Therefore, we propose a con-

sensus fuzzy clustering (CFC) technique, which analyzes

the AAindex1 database for known and unknown number of

clusters by exploiting the capability of recently developed

fuzzy clustering techniques. It has also been observed that

the index encoding scheme of cluster medoids, used in the

fuzzy c-medoids (FCMdd) (Krishnapuram et al. 1999)

algorithm, provides better results over real valued encoding

scheme of cluster centres as used in fuzzy c-means (FCM)

(Bezdek 1981). Thus, the different advanced hybridization

forms of FCMdd, like differential evolution-based fuzzy

c-medoids (DEFCMdd) (Maulik et al. 2010; Maulik and

Saha 2009) clustering, and genetic algorithm-based fuzzy

c-medoids (GAFCMdd) (Maulik et al. 2010; Maulik and

Saha 2009; Maulik and Bandyopadhyay 2000) clustering

algorithms are tested. In the case of finding the optimal

number of clusters, automatic differential evolution-based

fuzzy clustering (ADEFC) (Maulik and Saha 2010) and

variable length genetic algorithm (Bandyopadhyay and Pal

2001)-based fuzzy clustering (VGAFC) (Maulik and Ban-

dyopadhyay 2003) are used, which measure the Xie–Beni

(XB) (Xie and Beni 1991) index in fitness computation.

Thereafter, the consensus result of all methods is taken by a

majority voting procedure. Effectiveness of the proposed

method is demonstrated quantitatively and visually. Also

Wilcoxon rank sum test (Hollander and Wolfe 1999) is

conducted to judge the statistical significance and statbility

of clusters found by the proposed method. In bioinfor-

matics research on protein sequences, the AAindex1

database has been used in wide range applications, e.g.,

prediction of post-translational modification (PTM) sites of

proteins (Plewczynski et al. 2008; Basu and Plewczynski

2010), protein subcellular localization (Huanga et al. 2007;

Tantoso and Li 2008; Liao et al. 2010; Laurila and Vihinen

2010), immunogenicity of MHC class I binding peptides

(Tung and Ho 2007; Tian et al. 2009), protein SUMO

modification site (Liu et al. 2007; Lu et al. 2010), coordi-

nated substitutions in multiple alignments of protein

sequences (Afonnikov and Kolchanov 2004), HIV protease

cleavage site prediction (Ogul 2009; Nanni and Lumini

2009), and many more (Jiang et al. 2009; Liang et al. 2009;

Soga et al. 2010; Chen et al. 2010; Pugalenthi et al. 2010).

In all these cases, selection of proper amino acid indices is

crucial, where this paper also attempts to make a humble

contribution. The notable work, available in the literature

so far, on clustering of amino acid indices is by Tomii and

Kanehisa (1996) and Kawashima et al. (2008). They cat-

egorized 402 indices into six groups using hierarchical

clustering technique. Those clusters/groups represent alpha

and turn propensities, beta propensity, composition,

hydrophobicity, physicochemical properties and other

properties. However, there is no work available on clus-

tering of the latest AAindex database, consisting of 544

amino acid indices. To address this issue, three standard-

ized sets of high-quality indices (HQIs) are generated in

our current work by analyzing the AAindex1 database

using a CFC technique.

Description of fuzzy clustering algorithms and validity

measures

Algorithms for known number of clusters

Fuzzy c-means clustering

The FCM algorithm (Bezdek 1981) is a widely used

technique that uses the principles of fuzzy sets to evolve a

partition matrix U(X) while minimizing the measure1 http://www.genome.jp/aaindex/.
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Jm ¼
Xn

j¼1

XK

k¼1

um
k;jD

2ðzk; xjÞ; 1�m�1 ð1Þ

where n is the number of data objects, K represents number

of clusters, uk,j is cluster membership of jth point in the kth

cluster and m denotes the fuzzy exponent. D(zk, xj) denotes

the distance of point xj from the kth cluster centre zk. FCM

algorithm starts with random initial K cluster centres, and

then at every iteration, it finds the fuzzy membership of

each data points using the following equation:

uk;i ¼
1

Dðzk ;xiÞ

� � 1
m�1

PK
j¼1

1
Dðzj;xiÞ

� � 1
m�1

; for 1� k�K; 1� i� n

ð2Þ

The cluster centres are recomputed using the following

equation:

zk ¼
Pn

i¼1 um
k;ixiPn

i¼1 um
k;i

1� k�K ð3Þ

The algorithm terminates when there is no further change

in the cluster centres. Finally, each data point is assigned to

the cluster to which it has maximum membership.

Fuzzy c-medoids clustering

The FCMdd (Krishnapuram et al. 1999) algorithm is the

extension of FCM (Bezdek 1981) algorithm replacing

cluster means with cluster medoids. A medoid is defined as

follows: Let V ¼ v1; v2; . . .; vif g be a set of z objects. The

medoid of V is an object O 2 V such that the sum of dis-

tances from O to other objects in V is minimum. The aim of

FCMdd algorithm is to cluster the dataset X ¼
x1; x2; . . .; xnf g into K partitions so that the Jm (Eq. 1) is

minimized. The FCMdd algorithm also iteratively esti-

mates the partition matrix U(X) followed by computation

of new cluster medoids. It starts with random initial C

medoids, and then at every iteration it finds the fuzzy

membership of each object to every cluster using the Eq. 2.

Based on the membership values, the cluster medoids are

recomputed as follows:

pk ¼ argmin1� j� n

Xn

i¼1

um
k;iDðxj; xiÞ; 1� k�K ð4Þ

and

zk ¼ xpk; 1� k�K ð5Þ

The algorithm terminates when there is no significant

improvement in Jm value. Finally, assignment of each

data point is performed in a manner identical to that of

FCM.

Differential evolution-based fuzzy c-medoids clustering

In DEFCMdd (Maulik et al. 2010; Maulik and Saha 2009)

clustering, the medoids of the clusters are encoded in the

vector. For initializing a vector, C medoids are randomly

selected from n data points. The fitness of a vector indicates

the degree of goodness of the solution, which is defined by

Jm. The objective is, therefore, to minimize the Jm index for

achieving proper clustering. Subsequently, the medoids

encoded in a vector are updated using Eqs. 3 and 5. The

process of mutation and crossover follows Eqs. 6 and 9.

#kðt þ 1Þ ¼ #mðtÞ þ Fð#rðtÞ � #jðtÞÞ ð6Þ

Here 0m(t), 0r(t) and 0j(t) are randomly taken vectors

from the current population (indicated by t time stamp)

with the d dimensions for the mutant vector 0k(t ? 1). F is

the scaling factor usually 2 [0,1]. If the index value of

0k(t ? 1) lies beyond the permissible range of 1; . . .; nf g
then it is scaled using one of the following two operations:

#kðt þ 1Þ � n ð7Þ

and

#kðt þ 1Þ þ n ð8Þ

To increase the diversity of the perturbed parameter

vectors, crossover is introduced.

Ujkðt þ 1Þ ¼

#jkðt þ 1Þ
if randjð0; 1Þ�CR or j ¼ randðkÞ

#jkðtÞ
if randjð0; 1Þ[ CR and j 6¼ randðkÞ

8
>><

>>:

ð9Þ

In Eq. (9), randj (0,1) is the jth evaluation of a uniform

random number generator with outcome 2 [0, 1]. CR is the

crossover rate 2 [0, 1], which has to be determined by the

user. rand(k) is a randomly chosen index 2 1; 2; . . .; df g;
which ensures that Uk(t ? 1) gets at least one parameter

from 0k(t ? 1). To make the population for the next

generation, the trial vector Uk(t ? 1) is compared with the

target vector 0k(t) using the greedy criterion. If vector

Uk(t ? 1) yields a better fitness value than 0k(t), then

Uk(t ? 1) is set to 0k(t); otherwise, the old value 0k(t) is

retained. The algorithm is terminated after a fixed number

of generations. The algorithm is outlined in Fig. 1.

Fig. 1 DEFCMdd algorithm
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Genetic algorithm-based fuzzy c-medoids clustering

GA-based fuzzy c-medoids (GAFCMdd) (Maulik et al.

2010; Maulik and Saha 2009; Maulik and Bandyopadhyay

2000) clustering algorithm also uses the same encoding

policy as DEFCMdd to represent the vectors. The fitness of

each chromosome is computed using Eq. 1. Subsequently,

the medoids encoded in a chromosome are also updated

using Eqs. 3 and 5. Conventional proportional selection has

been implemented on the population. The standard single

point crossover is applied stochastically with probabil-

ity lc. Each chromosome also undergoes mutation with a

fixed probability lm. Termination condition is the same as

the other algorithm. The elitism model of GAs has been

used, where the best chromosome seen till the current

generation is stored in a location within the population. The

best chromosome of the last generation provides the solu-

tion to the clustering problem. Figure 2 demonstrates the

GAFCMdd algorithm.

Algorithms for unknown number of clusters

Automatic differential evolution-based fuzzy clustering

Automatic differential evolution-based fuzzy clustering

(Maulik and Saha 2010) has been developed on the

framework of differential evolution (DE). The technique

uses a masker along with the initial population of DE,

which contains 0’s and 1’s. The value 1 in the masker cell

indicates that the encoded medoids in the same position of

the vector is valid, otherwise not. Fitness of the each vector

is computed by XB index (Xie and Beni 1991). Let

z1; z2; . . .; zKf g be the set of K cluster medoids encoded in a

vector. The XB index is defined as a function of the ratio of

the total variation r to the minimum separation sep of the

clusters. Here r and sep can be written as

rðU; Z; XÞ ¼
XK

k¼1

Xn

i¼1

u2
k;i D2ðzk; xiÞ; ð10Þ

and

sepðZÞ ¼ mini 6¼jk zi � zj k2; ð11Þ

where k.k is the Euclidean norm, and D(zk, xi), as

mentioned earlier, is the distance between the pattern xi

and the cluster medoid zk. The XB index is then define as

XBðU; Z; XÞ ¼ rðU; Z; XÞ
n� sepðZÞ ð12Þ

Note that when the partitioning is compact and good, value

of r should be low while sep should be high, thereby

yielding lower values of the XB index. The objective is,

therefore, to minimize the XB index for achieving proper

clustering. Moreover, the process of mutation, crossover

and selection are the same as in DE, and it terminates after

a fixed number of generations.

Variable length genetic algorithm-based fuzzy clustering

A variable string length GA (VGA)-based clustering

technique has been developed by Maulik and Bandyopad-

hyay (2003) on the framework of genetic algorithm (GA),

where real valued encoding of cluster centres is used.

However, index-encoding of cluster medoids is imple-

mented due to context of this article. The algorithm auto-

matically evolves the number of clusters as well as the

partitioning and minimizes the XB cluster validity index.

Since the number of clusters is considered to be variable,

the string lengths of different chromosomes in the same

population are allowed to vary. The selection, crossover

and mutation operations are also performed in each gen-

eration. Elitism is also incorporated to keep track of the

best chromosome obtained so far.

Cluster validity indices

Minkowski Score (Jardine and Sibson 1971), Kappa Index

(Cohen 1960) (these indices are applied when true cluster

is known), and Silhouette Index (S(C)) (Rousseeuw 1987)

are used for evaluating the performance of the clustering

algorithms.

Minkowski Score

The performances of the clustering algorithms are evalu-

ated in terms of the Minkowski Score (MS) (Jardine and

Sibson 1971). This is a measure of the quality of a solution

given the true clustering. Let T be the ‘‘true’’ solution and S

the solution we wish to measure. Denote by n11 the number

of pairs of elements that are in the same cluster in both S

and T. Denote by n01 the number of pairs that are in the

same cluster only in S, and by n10 the number of pairs that

are in the same cluster in T. Minkowski Score (MS) is then

defined as:

Fig. 2 GAFCMdd algorithm
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MS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n01 þ n10

n11 þ n10

r
ð13Þ

For MS, the optimum score is 0, with lower scores being

‘‘better’’.

Kappa index

The kappa index was developed by Cohen (1960) and used

by the medical community as a useful measure of classi-

fication accuracy. The score of the method is derived from

the contingency table called confusion matrix, where each

element Cij is the number of records pertaining to cluster i

that have been automatically classified in cluster j. So the

diagonal elements correspond to the records that have been

correctly classified. Overall accuracy (% correct) and

kappa index are computed by Eqs. 14 and 15, respectively.

% correct ¼
P

k Ckk

n
� 100 ð14Þ

kappa ¼ n
P

k Ckk �
P

k CkþCþk

n2 �
P

k CkþCþk
ð15Þ

where Ck? =
P

j Ckj, C?k =
P

i Cik and n is the

number of data points. Kappa values range from 0 to 1.

Higher value of kappa (close to 1) indicates better

accuracy.

Silhouette index

Silhouette index (Rousseeuw 1987) reflects the compact-

ness and separation of the clusters. Given a set of n samples

S ¼ s1; s2; . . .; snf g and a clustering of the samples C ¼
C1;C2; . . .;CKf g; the silhouette width S(si) for each sample

si belonging to cluster Cj denotes a confidence measure of

belongingness, and it is defined as follows:

SðsiÞ ¼
bðsiÞ � aðsiÞ

max aðsiÞ; bðsiÞf g ð16Þ

Here a(si) denotes the average distance of the sample si

from the other samples of the cluster to which sample si is

assigned, and b(si) represents the minimum of the average

distances of sample si from the samples of the clusters

Cl; l ¼ 1; 2; . . .;K; and l = j. The value of S(si) lies

between -1 and 1. Large value of S(si) (approaching 1)

indicates that the sample si is well clustered. Overall

silhouette index S(C) of a clustering C is defined as

SðCÞ ¼ 1

n

Xn

i¼1

SðsiÞ ð17Þ

Greater value of S(C) (approaching 1) indicates that

most of the samples are correctly clustered and this, in turn,

reflects better clustering solution.

Proposed consensus fuzzy clustering algorithm

We have analyzed the AAindex1 database in two different

phases. Phase I explores the capability of fuzzy clustering

methods for known number of clusters. Thereafter, a con-

sensus result is obtained through majority vote over all

fuzzy clustering methods implemented. These phases are

described in greater detail below.

Phase I

In this phase, the results of hierarchical clustering for 402 AA

indices have been verified by fuzzy clustering algorithms.

For this purpose, different fuzzy clustering techniques, like

DEFCMdd clustering, GAFCMdd clustering, FCMdd and

FCM have been used. Each of these algorithms is executed

separately for producing the fuzzy partitions and then dif-

ferent cluster validity measures have been used for the

evaluation of the algorithms. Different steps of this phase are

described below as well as highlighted in Fig. 3 by red color.

Step 1: Input the AAindex1 database of 402 indices with

the known number of clusters.

Step 2: Execute N number of fuzzy clustering algorithms.

Step 3: Evaluate the performance of N number of fuzzy

clustering algorithms using different validity

measure to ensure that the number of clusters used

in Step1 are stable.

Phase II

This phase is more advanced than the earlier phase. The

enhanced AAindex1 database of 544 indices has been used.

The database is tested by ADEFC and variable length

genetic algorithm-based fuzzy clustering (VGAFC) tech-

niques for finding optimal number of clusters automati-

cally. After that, the earlier fuzzy clustering techniques are

used to fix the optimal number of clusters as stable clusters.

Finally, the results of all six fuzzy clustering methods are

used to create a consensus using majority voting procedure.

The phase II of the proposed method is described below

and its block diagram is shown in Fig. 3.

Step 1: Use enhanced database of AAindex1 for predict-

ing the number of clusters.

Step 2: Execute M number of automatic fuzzy clustering

methods to determine the number of clusters.

Step 3: Evaluate the performance of M number of fuzzy

clustering algorithms using different validity

measures.

Step 4: Execute N number of fuzzy clustering methods

with the predicted number of clusters found in

Fuzzy clustering of physicochemical and biochemical properties 587
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Step 2 to ensure that the number of clusters are

stable.

Step 5: Repeat the Step 3 of Phase I to evaluate the

performance of N number of fuzzy clustering

algorithms.

Step 6: It is divided into two sub-steps. One is for

creating equivalence among all different solu-

tions, and the other for a consensus result among

those solutions.

(a) Before creating the consensus clustering

result among M ? N number of methods,

reorganization of data points is required to

make them consistent with each other. Thus,

the cluster j in the first solution should be

equivalent to cluster j in all the other

solutions. For example, the solution string

aabbcccf g is equivalent to bbccaaaf g: The

reorganization is done in such a way that each

di, where i ¼ 2; 3; . . .;M þ N and di is a

solution string, becomes consistent with d1.

(b) Apply consensus method on the label vec-

tors di, i ¼ 1; 2; . . .;M þ N to obtain the

final clustering label vector d. The majority

voting is used to create the consensus

clustering result, and it is performed as

follows: assign each point k ¼ 1; . . .; n to

the cluster j where the label j appears the

maximum number of times among all the

labels for the point k in all the di.

Experimental results

Description of AAindex1 database

The AAIndex1 currently contains 544 amino acid indices.

Each entry consists of an accession number, a short

description of the index, the reference information and the

numerical values for the properties of 20 amino acids.

Distance measures

The Pearson correlation-based distance measure has been used

as this is the commonly used distance metric for clustering

AAindex1 database (Tomii and Kanehisa 1996; Kawashima

et al. 2008). Given two sample vectors, si and sj, Pearson cor-

relation coefficient Cor(si, sj) between them is computed as:

Corðsi; sjÞ ¼
Pp

l¼1ðsil � lsi
Þðsjl � lsj

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

l¼1ðsil � lsiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

l¼1ðsjl � lsjÞ2
q : ð18Þ

Here ls_i and ls_j represent the arithmetic means of the

components of the sample vectors si and sj, respectively.

Pearson correlation coefficient defined in Eq. 18 is a

measure of similarity between two samples in the feature

space. The distance between two samples si and sj is

computed as 1 - mod(Cor(si, sj)), which represents the

dissimilarity between those two samples.

Visualization

In this article, for visualization of the datasets, well-known

visual assessment of clustering tendency (VAT) represen-

tation (Bezdek and Hathaway 2002) is used. To visualize a

clustering solution, first the points are reordered according

to the class labels given by the solution. Thereafter, the

distance matrix is computed on this reordered data matrix.

In the graphical plot of the distance matrix, the boxes lying

on the main diagonal represent the clustering structure.

Input parameters

The population size and number of generation used for

DEFCMdd, GAFCMdd, ADEFC and VGAFC algorithms

Possible Partitions
          and

Enhanced Database

Phase I
Phase II

Step 1

Step 2

Step 3

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 4

Fig. 3 Block diagram of the

proposed method
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are 20 and 100, respectively. The crossover probability (CR)

and mutation factors (F) for DEFCMdd and ADEFC are set

to 0.8 and 1, respectively. For GAFCMdd and VGAFC, the

crossover and mutation probabilities are taken to be 0.8 and

0.3, respectively. The FCMdd and FCM algorithms are

executed till it converges to the final solution. Also for the

probabilistic/stochastic nature, each algorithm has run for 50

times to show consistency in producing the better results.

Note that the input parameters used here are fixed either

following the literature or experimentally (Maulik and

Bandyopadhyay 2000, 2003; Maulik and Saha 2009; Maulik

et al. 2010). The performance of the clustering methods is

evaluated by measuring Minkowski Score (MS) (Jardine and

Sibson 1971), Kappa index (Cohen 1960), and Silhouette

Index (Rousseeuw 1987).

Results and discussion

To analyze the AAindex1 database, different fuzzy clus-

tering algorithms are used in two phases and the average

results of 50 consecutive runs of those algorithms are

reported in Tables 1, 2, and 3. Here, phase 1 is conducted

for the known number of clusters of 402 AA indices. The

results are reported in Table 1, which shows the quality of

different fuzzy clustering algorithms in terms of cluster

validity measures. It is also observed from Table 1 that the

DEFCMdd provides better results. However, in phase II,

CFC outperforms the others. Hence, Tables 2 and 3 have

been designed to show the effectiveness of different fuzzy

clustering algorithms. At the beginning of phase II, the

enhanced AAindex1 database of 544 indices is examined

by ADEFC and VGAFC techniques. The number of clus-

ters found by these two methods is mentioned in Table 2.

Table 2 also shows that ADEFC provides better results

over VGAFC in terms of validity measures. However, the

number of clusters found by both of these algorithms is

similar. Thereafter, different fuzzy clustering algorithms

(for known number of clusters) are then evaluated by

comparing the clustering results of ADEFC and reported in

Table 3. Effectiveness of the results is demonstrated by

confusion matrix and boxplot in Figs. 4 and 5, respectively.

Moreover, for the enhanced database of AAindex1, it has

also been observed that the optimal number of clusters is

‘8’ whereas, earlier it was ‘6’ for reduced database of

AAindex1. The true clusters plot are shown in Fig. 6 for

ADEFC and hierarchical clustered result. It also very clear

from Fig. 6 that the ADEFC performs better for producing

the optimal number of clusters.

Tables 4, 5 and 6 represent the in-depth analysis of each

cluster produced by ADEFC and CFC algorithms, respec-

tively. Table 4 shows that the earlier clustering results have

been fragmented into different clusters for ADEFC algo-

rithm, and this observation is also supported by other

algorithms in Table 5. For example, in Table 5, the number

of AAindex1 indices belonging to cluster 4 are 96, 91, 93,

96, 92, 98 based on seven different algorithms. Moreover,

the mapping of the clusters found by CFC is given in

Table 6. The name of the clusters is provided based on the

mapping of known clusters and predicted clusters, which

gives us three new clusters, named as electric properties,

residue propensity and intrinsic propensities. These names

are given by in-depth study of each AA index. For electric

Table 1 Average values of

cluster validity indices for

AAindex1 database of 402

indices in Phase I

Algorithms No. of clusters

known

MS Kappa % Correct S(C)

DEFCMdd 0.5251 0.8102 78.0362 0.3602

GAFCMdd 0.5604 0.7725 74.3663 0.3371

FCMdd 6 0.6507 0.6807 66.7386 0.2462

FCM 0.7263 0.6326 61.2208 0.1883

Table 2 Number of clusters predicted and average values of cluster

validity indices for AAindex1 database of 544 indices in Phase II

Algorithms Predicted

no. of clusters

XB S(C)

ADEFC 8 0.2033 0.5295

VGAFC 8 0.2104 0.5201

Table 3 Average values of

cluster validity indices for

AAindex1 database of 544

indices in Phase II

Algorithms No. of clusters known

(taken from Table 2)

MS Kappa % Correct S(C)

CFC 0.3026 0.9502 94.2551 0.5707

DEFCMdd 0.3307 0.9373 91.4462 0.5386

GAFCMdd 8 0.3844 0.9142 89.0473 0.5011

FCMdd 0.4682 0.8461 81.5506 0.3204

FCM 0.5448 0.7582 73.2731 0.2517
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properties and residue propensity, most of the indices

came from original clusters called alpha and turn pro-

pensities and hydrophobicity, respectively. The electric

properties describe isoelectric point and polarity of amino

acid indices, whereas molecular weight, average accessi-

ble surface area and mutability are described by residue

propensity. However, intrinsic propensities are formed

mostly by the unclustered AA indices, and it describes

hydration potential, refractivity, optical activity and

flexibility. It is also observed that original clusters are

fragmented into other clusters to some extent. The cluster

called other properties has now been resolved by assign-

ing them in alpha and turn propensities and physico-

chemical properties. Moreover, names of the current eight

clusters are electric properties, hydrophobicity, alpha and

turn propensities, physicochemical properties, residue

propensity, composition, beta propensity, and intrinsic

propensities.

 Actual
Clusters

Predicted
Clusters

4 5 6

1

2

3

4

5

6

94

28

20

126

33

18

24

10

0

8

13

8

10 0 0 0

0010 0

0

0

0

0

0

00

0

0

0

00

0

0

0 0

 Actual
Clusters

Predicted
Clusters1 2 3

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

51

92

86

87

37

24

82

43

0

0

2

0

0 3

6

6 0 0 0 0 0 0

000040

0 0 0 0 0 0

0030 0

2 0 0

0

2

6000000

0

0 0

0 0

0 0

0 0 0 8

0 0

(b)(a)

Fig. 4 The best Confusion

matrix produced by

a DEFCMdd for 402 indices,

b consensus fuzzy clustering for

544 indices, out of 50 runs

DEFCMdd GAFCMdd FCMdd FCM

0.5

0.55

0.6

0.65

0.7

0.75

0.8

M
in

ko
w

sk
i S

co
re

CFC DEFCMdd GAFCMdd FCMdd FCM

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
in

ko
w

sk
i S

co
re

(b)(a)Fig. 5 Boxplot of different

clustering algorithms. a ‘6’

clusters for 402 indices, b ‘8’

clusters for 544 indices, out of

50 runs

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

(b)(a)Fig. 6 True clusters plot of

AAindex1 database using VAT

representation. a ‘6’ clusters for

402 indices, b ‘8’ clusters for

544 indices found by ADEFC

590 I. Saha et al.

123



High-quality indices

To provide different subsets of HQIs from the consensus

clusters, three different approaches are used. For comput-

ing the HQIs 8 (HQI8), medoids (centres) of each cluster

are considered and these become AA indices called

BLAM930101, BIOV880101, MAXF760101, TSAJ990101,

NAKH920108, CEDJ970104, LIFS790101, MIYS990104.

Similarly for HQI24 and HQI40, three and five AA indices

are considered from each cluster, respectively. For com-

puting HQI24, including the cluster medoids, two other

indices farthest from the medoids are taken from each

cluster. These two farthest indices are less significant for

that cluster, which gives more diversable properties of

amino acid to that subset. Similarly for HQI40, including

the indices computed in HQI24 for each cluster, other two

nearest indices of the medoids are considered, that gives

strength to the property of medoids indices. All of these

HQIs, HQI8, HQI24 and HQI40 are separately given in the

supplementary with their amino acid values. Computa-

tional process of HQIs is illustrated by Fig. 7.

Statistical significance test

A non-parametric statistical significance test called Wil-

coxon’s rank sum test (Hollander and Wolfe 1999) for

independent samples has been conducted at the 5%

significance level to show that the statistical significance

and clusters found by CFC did not arise by chance. For this

purpose, results are obtained by comparing pairs of algo-

rithms, in particular, CFC is compared to each four meth-

ods (for phase II). For phase I, there are actually only three

pairs of comparisons (one less than in phase II), since

DEFCMdd is compared to three other methods. Each group

consists of the Minkowski Score (MS) produced by 50

consecutive runs of the corresponding algorithm.

To establish that this goodness is statistically significant,

Table 7 reports the p values produced by Wilcoxons rank

sum test for comparison of two groups (one group corre-

sponding to DEFCMdd and another group corresponding to

some other algorithm in phase I and in phase II, one group

corresponding to CFC and another group corresponding to

some other algorithm) at a time. As a null hypothesis, it is

assumed that there is no significant difference between the

median values of two groups. Whereas, according to the

alternative hypothesis there is a significant difference in

the median values of the two groups. The test reflects the

stability and reliability of the algorithm. All the p values

reported in the table are less than 0.05 (5% significance

level). For example, the rank sum test between the algo-

rithms CFC and DEFCMdd in phase II produced a p value

of 0.0012, which is very small. This is strong evidence

against the null hypothesis, indicating that the better

median values of the performance metrics produced by

Table 4 Name of the clusters of AAindex1 database

For Fig. 6a For Fig. 6b

Clusters No. of indices Name of the cluster Clusters No. of indices Name of the cluster

Cluster 1 118 Alpha and turn propensities Cluster 1 55 Electric properties

Cluster 2 37 Beta propensity Cluster 2 95 Hydrophobicity

Cluster 3 24 Composition Cluster 3 92 Alpha and turn propensities

Cluster 4 149 Hydrophobicity Cluster 4 91 Physicochemical properties

Cluster 5 46 Physicochemical properties Cluster 5 41 Residue propensity

Cluster 6 28 Other properties Cluster 6 33 Composition

Cluster 7 92 Beta propensity

Cluster 8 45 Intrinsic propensities

Table 5 Number of AAindex1

indices in each cluster for

different algorithms

Algorithms Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

CFC 57 96 88 96 47 27 84 49

ADEFC 55 95 92 91 41 33 92 45

VGAFC 52 104 88 93 45 29 88 45

DEFCMdd 57 96 88 96 43 31 84 49

GAFCMdd 56 96 89 92 49 29 82 51

FCMdd 56 105 82 98 43 30 81 49

FCM 54 109 82 82 49 35 79 54
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CFC are statistically significant and have not occurred by

chance. Similar result is obtained for other case and for all

other algorithms compared to CFC, establishing the signifi-

cant superiority of the proposed method, which also gives

that the clusters formed were not the result of random chance.

Conclusion

Summarizing, this article poses two different issues. First,

we propose a novel classification method based on fuzzy

clustering and second, to provide three subsets of HQIs to the

research community from large AAindex1 database. For the

first purpose, several recently developed fuzzy clustering

techniques are used to analyze the currently released

AAindex1 database. We found novel clusters that divide the

AAindex1 database on more clear and biologically mean-

ingful way. The novel clusters describe some of the pro-

perties of amino acids like isoelectric point, polarity,

molecular weight, average accessible surface area, muta-

bility, hydration potential, refractivity, optical activity and

flexibility. We also resolved the problem of unknown amino

acid indices by assigning them to clusters that have defined

biological meaning. Thereafter, majority voting among the

all fuzzy clustering methods are taken to create a consensus

clusters. After applying the above procedure, we prepared

three datasets of HQIs. The first dataset of HQI8 contains

eight HQIs, which belongs at the medoids (centres) of each

cluster. Similarly, HQI24 and HQI40 contain 24 and 40

indices, respectively. For HQI24, two most less significant

indices are taken from each cluster to provide the versatility

of subset. However, HQI40 gives the more strength to the

medoids indices. These three datasets of HQIs are very

effective for machine learning applications of protein

sequences, where the short fragments of chains of amino

acids can be encoded very easily and effectively. As a scope

of further research, developed code of CFC can be used for

other bioinformatics applications that utilize amino acids

physico-chemical features for machine learning or data

mining classification tasks. Representation of amino acids

using vector of real numbers can be further explored in

physical chemistry, e.g., in computational studies of poly-

mers (Plewczynski et al. 2007; Rodriguez-Soca et al. 2010;

Table 6 Mapping of consensus clusters

Predicted clusters Known clusters Name of the clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

(unclustered

New Indices)

Cluster 1 30 0 0 3 3 1 20 Electric properties

Cluster 2 0 0 0 72 0 0 24 Hydrophobicity

Cluster 3 62 0 0 0 2 11 13 Alpha and turn propensities

Cluster 4 2 5 4 18 36 12 19 Physicochemical properties

Cluster 5 5 2 8 19 2 0 11 Residue propensity

Cluster 6 4 0 10 0 1 2 10 Composition

Cluster 7 15 30 2 33 2 2 0 Beta propensity

Cluster 8 0 0 0 4 0 0 45 Intrinsic propensities

Fig. 7 Illustrated the computational process of HQIs for two clusters,

‘star’ points are considered for HQI2, ‘star ?square’ points are

considered for HQI6, and ‘star ? square ? circle’ points are

considered for HQI10. In our case, number of clusters is 8, hence, we

got HQI8, HQI24 and HQI40

Table 7 p values produced by Wilcoxon’s rank sum test comparing

DEFCMdd and CFC with other algorithms in Phase I and Phase II

Algorithms Phase I Phase II

DEFCMdd – 0.0012

GAFCMdd 0.0019 0.0018

FCMdd 1.4851e-004 1.6083e-004

FCM 1.4851e-005 1.1051e-005
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Lu et al. 2007), of selecting inhibitors for a given protein

target (Plewczynski et al. 2006, 2010a, b), for PTMs pre-

diction (Plewczynski et al. 2008; Basu and Plewczynski

2010) as well as for finding co-expressed genes (Liu et al.

2008; Kim et al. 2006) in large-scale microarray experi-

ments. The authors are currently working in these directions.
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