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Abstract
Diastereoselectivity in control—The combined C—H functionalization/Cope rearrangement
(CHCR) is a highly diastereoselective process that typically proceeds through a chair transition
state. A recent computational study of a model system for the CHCR reaction revealed that a boat
transition state was only slightly less favored than a chair transition state. Guided by these
computational results, this study describes the design of substrates that would react by means of a
boat transition state. The resulting C—H functionalization products are the opposite
diastereomeric series to what had been previously obtained with this chemistry.
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Developing practical methods for C—H functionalization has attracted considerable
attention from the synthetic community.[1] One of the major challenges in this field is to
achieve transformations that are not only site selective, but also stereoselective.[2] One
highly stereoselective intermolecular C—H functionalization method is the combined C—H
functionalization/Cope rearrangement (CHCR) between allylic C—H bonds and
vinylcarbenoids.[3] This transformation can generate two new stereocenters. When chiral
dirhodium catalysts such as Rh2(S-DOSP)4

[4] are used, the products are formed essentially
as single diastereomers and in the majority of cases with >97% ee. This method has been
developed into a powerful protocol for the synthesis of natural products and pharmaceutical
targets.[3] In all of the studies reported to date, the stereochemistry is consistent with a
reaction occurring on the s-cis conformation of the vinylcarbenoid and proceeding through a
chair transition state as illustrated in [Eq. (1)].

(1)
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Recently, we have completed a detailed computational study of the CHCR reaction.[5] The
reaction was shown to be an asynchronous process, involving an initial hydride transfer
event followed by carbon-carbon bond formation. Even though all the previously reported
examples of the CHCR reactions are highly diastereoselective, the calculations showed that
different product outcomes are possible, depending on whether the s-cis or s-trans con of the
vinylcarbenoids[6] are involved and whether the reaction proceeded through a chair or a boat
transition state. Furthermore, the calculations on a model system showed that the transition
states for other products were energetically accessible. In particular the s-cis chair transition
state was only 2 kcal/mole more stable than the s-cis boat transition state. Inspired by the
computational studies, this paper is directed towards switching the diastereoselectivity of the
CHCR reaction by forcing the reaction to proceed through the s-cis boat transition state B
instead of the s-cis chair transition state A (Figure 1).

In order to limit the number of potential transition states available for the CHCR reaction,
the study described herein was conducted with β-siloxyvinyldiazoacetates. The carbenoid
derived from E-vinyldiazoacetates has little preference for the s-trans over the s-cis
configuration,[5] whereas the internal substituent in the vinylcarbenoid derived from the β-
siloxyvinyldiazoacetate strongly prefers the s-cis configuration.[5] In the s-trans
configuration, the siloxy group would be pointing towards the “wall” of the catalyst (Figure
2).

Previous studies have shown that Rh2(S-PTAD)4 (Figure 3) is the optimum chiral catalyst
for asymmetric reactions with siloxyvinyldiazoacetate 1.[7] In order to test a baseline
substrate, the Rh2(S-PTAD)4 catalyzed reaction of diazoacetate 1 with the
siloxycyclohexene 2a was examined [Eq. (2)]. Characterizable material was obtained by
hydrolysis of the silyl enol ether of the crude product followed by conversion of the β-keto
ester to the β-keto-α-diazoacetate 3a in 74% yield for the three-step sequence.[8] The β-
keto-α-diazoacetate 3a was formed as a single diastereomer with 89% ee. The reaction with
the bulky siloxycyclohexene 2b selectively afforded the diazoacetate 3b with even higher
enantioselectivity (97% ee). The relative and absolute configuration of product 3b was
unambiguously determined using X-ray crystallography.[9]

(2)

The observed stereochemistry is consistent with the previously published examples of the
CHCR reaction and would occur in a reaction proceeding through a chair transition state.[3e]

An examination of the two possible transition states reveals that in the boat transition state C
the remainder of the cyclohexyl ring would be pointing towards the “wall” of the catalyst,
and therefore, it would be reasonable to propose that this arrangement would be unfavorable
(Figure 4).

We envisioned that a possible way to limit the steric influence of the ring would be to use a
smaller ring size. Indeed, when the reaction was repeated with the siloxycyclopentene 4, two
diastereomers of the CHCR product 5 were produced in a 4/1 ratio [Eq. (3)]. This is the first
example of a CHCR reaction generating a mixture of diastereomeric products.
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(3)

Further evaluation of the proposed transition states D and E related to the formation of 5,
suggested that the cyclopentyl ring could be incorporated into the boat transition state E
(Figure 5). Furthermore, it became evident that a 2-substituent on the cyclopentenyl ring
would cause the chair transition state D to be destabilized. If this proved to be the case, then
the opposite diastereomeric series of products would become accessible.

The Rh2(S-PTAD)4 catalyzed decomposition of siloxydiazoacetate 1 in the presence of 1,2-
disubstituted cyclopentenyl derivatives afforded the β-keto-α-diazoacetates 6–11 as
summarized in Table 1. In all cases, a single CHCR product was produced with excellent
diastereoselectivity (dr >30 : 1) and enantioselectivity (>97% ee). In the case of the
unsymmetrical cyclopentene substrates, the resulting products, 6, 7 and 9, are derived from
site selective C—H functionalization initiated at the methylene group allylic to the siloxy
group. The relative and absolute configuration of 7 was unambiguously assigned by X-ray
crystallography. The stereochemical configurations of products 9 and 10 were also
unambiguously confirmed by X-ray crystallography of products derived from them (see
supporting information). In each case, the relative configuration was consistent with a
reaction proceeding through a boat transition state, and is opposite to the products 3a and 3b
derived from the cyclohexene derivatives 2a and 2b. The structures of 6, 8 and 11 were
tentatively assigned by assuming they are formed through a similar boat transition state.

Normally, the CHCR reaction is influenced by the presence of other stereogenic centers in
the substrate and high levels of enantiomeric differentiation have been reported.[3a–d]

Consequently, we explored if a desymmetrization would be feasible in a CHCR reaction.
The reaction with cyclopentene 12 successfully generated product 13 as a single
diastereomer with extremely high enantioselectivity [Eq. (4)]. This represents the first
example of desymmetrization in the CHCR reaction. The relative configuration of 13 inside
the ring was assigned by nOe studies and was consistent with the outcome predicted by a
boat transition state model (see SI), while the stereochemistry in the chain was tentatively
assigned assuming a boat transition state.

(4)

In conclusion, the synthetic utility of the CHCR reaction has been greatly expanded by the
design of substrates that will react through a boat transition state instead of a chair transition
state. This has lead to the formation of the reversed diastereomeric series of products in a
highly stereoselective manner. This study demonstrates the value of computational studies,
not only to rationalize a new synthetic process, but also, to identify opportunities to develop
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new chemistry. The results showcase the synthetic potential of using carbenoid chemistry to
achieve highly enantioselective C—H functionalization reactions.

Experimental Section
Typical procedure for the C—H functionalization: To an oven-dried 25 mL flask containing
Rh2(S-PTAD)4 (16.5 mg, 0.01 equiv) and substrate (1.0 mmol, 1.0 equiv) in 6 mL dried
trifluorotoluene under argon atmosphere was added a solution of (Z)-methyl 2-diazo-3-
((trimethylsilyl)oxy)pent-3-enoate (1) (365 mg, 1.6 mmol, 1.6 equiv) in 6 mL dried
trifluorotoluene by syringe pump over 3 h at −20 °C. The solution was warmed up to room
temperature over 2 h. The mixture was concentrated under reduced pressure and then stirred
with 5 g silica gel in 15 mL hexane for 30 mins. The mixture was filtrated and washed with
several portions of Et2O. The organic solution was concentrated under vacuum and the
residue was purified by flash chromatography on silica gel to provide a colorless oil, which
was dissolved in 5 mL dried CH3CN containing p-ABSA (240 mg, 1.0 mmol, 1.0 equiv.),
Et3N (0.30 ml, 2.0 mmol, 2.0 equiv.) The mixture was stirred for additional 3 h and then
concentrated under reduced pressure. The residue was purified by flash chromatography on
silica gel to provide β-keto diazoacetates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The chair and boat transition states for the CHCR reaction.
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Figure 2.
The s-cis and s-trans configurations of the rhodium carbenoid derived from 1.
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Figure 3.
Structures of Rh2(S-DOSP)4 and Rh2(S-PTAD)4.
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Figure 4.
s-Cis/boat transition state model for reaction of 1 with 2.
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Figure 5.
Transition state models for reaction of 1 with cyclopentenes.
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Table 1

The CHCR reactions with cyclopentenyl derivatives
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