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Abstract
Infantile spasms are an age-dependent epilepsy that are highly associated with cognitive
impairment, autism, and movement disorders. Previous classification systems have focused on a
distinction between symptomatic and cryptogenic etiologies, and have not kept pace with the
recent discoveries of mutations in genes in key pathways of central nervous system development
in patients with infantile spasms. Children with certain genetic syndromes are much more likely to
have infantile spasms, and we review the literature to propose a genetic classification of these
disorders. Children with these genetic associations with infantile spasms also have phenotypes
beyond epilepsy that may be explained by recent advances in the understanding of underlying
biological mechanisms. We therefore also propose a biologic classification of the genes highly
associated with infantile spasms, and articulate models for infantile spasms pathogenesis based on
that data. The two best described pathways of pathogenesis are abnormalities in the gene
regulatory network of GABAergic forebrain development, and abnormalities in molecules
expressed at the synapse. We intend for these genetic and biologic classifications to be flexible,
and hope that they will encourage much needed progress in syndrome recognition, clinical genetic
testing, and ultimately the development of new therapies that target specific pathways of
pathogenesis.
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Introduction
Infantile spasms (ISS) are characterized by clusters of epileptic spasms with ictal
electrodecrement, usually occurring before the age of 1 year [1]. The incidence of ISS is
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0.25–0.4 per 1,000 live births [2], and they are important because of their frequent
association with severe developmental outcome, including autism [3].

There have been many variations in terminology describing ISS over the years, with the
eponym “West syndrome” generally referring to the triad of spasms, hypsarrhythmia, and
mental retardation or regression – despite the difficulty of detecting the latter in a young
infant presenting with ISS. Hypsarrhythmia is regarded by some as a key feature in the
diagnosis of ISS, but can be so variable that it remains surprisingly troublesome to define,
and evolves over time [4]. As a consequence, the literature contains references to “atypical”
and “modified” hypsarrhythmia [5, 6], and there is little consensus on the meaning of these
terms, or on how much of the electroencephalographic record should be abnormal [4, 7, 8].
In fact, the international West Delphi Group consensus statement did not regard the presence
of hypsarrhythmia as essential for the diagnosis of ISS [1], and correctly refocused the core
of the electroclinical disorder on the ictal event associated with an electrodecrement on EEG
in an appropriately aged child. ISS without hysparrhythmia are well documented [9]. We
will continue to refer to the disorder as infantile spasms, while recognizing that in some
children they may not occur during infancy, and may not manifest as classic flexor or
extensor spasms, and hypsarrhythmia may only be an associated feature of the interictal
EEG.

Infantile spasms and the genetics of brain development
In the past, the terms symptomatic, cryptogenic, and idiopathic were introduced to
categorize ISS, and epilepsy in general [10]. The limitations of this approach to
classification are well noted within the epilepsy community [11, 12], and these terms
become even more untenable with growing evidence that ISS result from disturbances in key
genetic pathways of brain development. Recent studies show that patients with ISS may
have mutations in several genes including ARX, CDKL5, FOXG1, GRIN1, GRIN2A,
MAGI2, MEF2C, SLC25A22, SPTAN1, and STXBP1 [13–24]. While not all patients with
mutations in these genes have ISS, the phenotype is consistent enough to speak of them as
ISS-associated genes, modified by incomplete penetrance and variable expressivity. Taken
together, these single genes, as well as other candidate genes identified from pathogenic
copy number variants, suggest that abnormalities in ventral forebrain development and
synaptic functional pathways play critical roles in ISS pathogenesis [25]. We caution that
the pathogenesis of ISS may mirror autism in its genetic complexity, where each genetic
abnormality probably accounts for about 1% of the disorder [26, 27]. Therefore, many more
ISS-associated genes are likely to be discovered, and the evolving genetic data demand a
reassessment of this disorder.

New molecular insights from the recent genetic data imply that all forms of ISS may be
“symptomatic”, and that a diagnosis of “cryptogenic” ISS should no longer be accepted. For
this reason, the International League Against Epilepsy (ILAE) recently recommended
replacing the symptomatic, cryptogenic, and idiopathic classification system of epilepsy
syndromes [12]. We strongly agree with their recommendation, but argue that it is also
possible to take the first steps toward genetic and biologic classifications of ISS.

The biologic link between infantile spasms and autism
Many clinical studies of ISS have focused on the subsequent intractable epilepsy that
develops in 40–60% of affected children [28, 29]. Although important, this approach has
underemphasized the broader phenotypes to which ISS may belong. In contrast,
classification systems based on the emerging genetic and biologic data would incorporate
the historical connections between ISS and phenotypes other than intractable epilepsy.
These observations are not new, and the spectrum of neurologic associations with ISS has
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always been much broader than intractable epilepsy, as it was for William James West’s
son.

West syndrome is an unusual eponym because it is named after the father of the proband.
The English physician, William James West, is credited with writing the first description of
ISS in English by reporting the history of his son, James [30]. Most authors since have
focused only on West’s descriptions of the seizures. However, one report highlighted James’
later history, which included lack of speech and “frequent fits of idiotic laughter, and
rollings of the head... delighted by music and gay colours”. This description leads “to the
suspicion that James had features of autism” [31]. Langdon-Down, who cared for him in
later life, reported that James and other children he observed with ISS had “a great tendency
to automatism and rhythmical actions” including “salaams, horizontal swayings, and
rotations of the head and body” [32]. These observations may be compatible with the
stereotypies often seen with autism.

Later reports continued to show that autism could follow ISS [33–36]. This includes reports
of tuberous sclerosis complex (TSC), ISS, and autism [37], with a similar correlation noted
in patients with Down syndrome as well [38, 39]. Some argue that the subsequent autistic
spectrum disorder is a consequence of severe epileptic encephalopathy [40, 41]. While this
remains a compelling hypothesis, the most recent data suggest a primary biologic link
between ISS and autism [25].

Infantile spasms and movement disorders
Several early reports of children with ISS described hyperkinesis, but the nature and
significance of the finding remained unclear [36, 42]. The use of the term “cerebral palsy” as
a putative “predisposing cause” may obscure recognition of a movement disorder as a
specific feature associated with ISS [43, 44]. The discovery of ARX as the first gene clearly
associated with (previously “cryptogenic”) ISS led to a wider appreciation that involuntary
movements may be a key clinical feature of certain syndromes that include ISS [45]. The
description of MEF2C deletions and mutations in patients with ISS and dyskinesia
strengthens this association [20, 21, 46]. The identification of MEF2C as another ISS-
associated gene is interesting as MEF2C may be a transcriptional target of ARX during
ventral forebrain development when GABAergic interneurons proliferate and migrate [47].
It is perhaps not surprising that children with mutations in ARX and MEF2C have similar
phenotypes. Additionally, dyskinetic movements have been reported in children with
CDKL5 deletions [48] and STXBP1 mutations as well [49].

A genetic classification of ISS
We agree with the spirit of the recent ILAE recommendation that epilepsies should be
divided into genetic, structural/metabolic, and unknown categories [12]. However, the
distinction between genetic and structural/metabolic is artificial and should be modified, as
most epilepsies associated with structural brain malformations or inborn errors of
metabolism are also genetic. Those that are not primarily genetic, such as epilepsy due to
brain injury and infection, are distinct and deserve a place of their own.

A genetic classification has practical benefits. When ISS are recognized as a symptom found
in many developmental disorders, rather than seen in isolation, the many disorders
associated with ISS can be divided into two main groups: those with the predisposing
genotype known and those with the predisposing genotype unknown. Of course, we
recognize several important subdivisions, as listed in Table 1. We think that this approach
will facilitate future progress in several areas including genetics, pathogenesis, and
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treatment. Figure 1 illustrates the evaluation of ISS using the classification system presented
in Table 1.

1. ISS with predisposing genotype known
1a. Prototypic developmental epilepsies

This group provides the core data supporting our emerging understanding of ISS
pathogenesis, and from this group the later biologic classification of ISS can also be built.
These are the newly described genes in which mutations, intragenic expansions, deletions
and/or duplications frequently are associated with spasms. Some children with ARX and
STXBP1 mutations initially presented with early infantile epileptic encephalopathy (EIEE,
Ohtahara syndrome) [17, 50–52] and illustrate a spectrum of infancy-onset epileptic
encephalopathies. EIEE, early myoclonic encephalopathy (EME), and ISS remain enigmatic
in their relationship to one another, and patient series of these infantile epilepsies overlap in
genotype [49, 53–55], suggesting factors of incomplete penetrance and variable expressivity.
The type of early-onset epilepsy may be related to severity of mutation, although more data
are needed to show this relationship. Therefore, the term prototypic developmental
epilepsies acknowledges the variability but likely biologic kinship of these phenotypes.

1b. Specific brain malformations
The two genes most commonly associated with classical lissencephaly, PAFAH1B1/LIS1
and DCX, as well as the less common TUBA1A are strongly associated with ISS [56] with a
prevalence as high as 80% in children with PAFAH1B1/LIS1 deletions or mutations [57].
Severe mutations of ARX associated with X-linked lissencephaly with abnormal genitalia
(XLAG) result in severe early-onset epilepsy that overlaps with EIEE. This pattern can
evolve into ISS, but more commonly progresses to severe intractable epilepsy [58, 59].
ARX, DCX, and PAFAH1B1/LIS1 are all expressed in GABAergic interneurons [60–62],
and we hypothesize that spasms are linked to deficits in this neuronal cell type, rather than
the obvious cortical malformation.

This category also includes TSC, as mutations in TSC1 and TSC2 are associated with
cortical tubers, subependymal nodules and other TSC-related brain malformations. Around
40% of patients with TSC may have ISS [63], although the prevalence varies and precise
phenotype-genotype data are not available. Recent molecular and pathology evidence
suggests tuber formation may be the result of a combination of germline and somatic
TSC1/2 mutations [64]. The presence, location, and type of tubers correlate with ISS in
some studies [65, 66]. A strong correlation has been established between TSC, ISS, and the
subsequent development of autism [67–69], although the mechanism of this relationship
remains unclear. Dysregulation of the mammalian target of rapamycin (mTOR) pathway in
TSC is a key event leading to abnormal brain morphogenesis [70]. Given the phenotypic
heterogeneity of TSC, ISS may occur when the mTOR pathway is perturbed in a specific
neuronal population at a key neurodevelopmental stage.

1c. Inborn errors of metabolism
An association between ISS and certain inborn errors of metabolism has long been
recognized. The best known examples include the aminoacidopathies phenylketonuria
(PKU) and nonketotic hyperglycinemia (NKH); the organic acidemias methylmalonic
acidemia (MMA), proprionic acidemia (PA) and maple-syrup urine disease (MSUD); and a
disorder of copper metabolism, Menkes disease [71–77]. Mutations of KCNJ11 cause
DEND syndrome (developmental delay, epilepsy, neonatal diabetes), which commonly
features ISS and is a rare example of an ion channel gene associated with spasms [78–80].
The genetically-characterized mitochondrial disorders appear to be infrequently associated
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with ISS, with very few clinical reports available [81]. Mutations in SUCLA2 produce a
specific mitochondrial encephalopathy, but only one reported patient had ISS [82].

Metabolic diseases presumably cause epilepsy by disturbing neuronal energetics or by
toxicity from the offending metabolite [83]. However, PKU may have secondary effects on
synapse function [84], while NKH and a few other metabolic disorders are associated with
agenesis of the corpus callosum and cortical malformations [85]. It is possible that
abnormalities in neuronal energetics, synapse function, and brain morphogenesis may all be
interrelated in metabolic patients with ISS, and their symptoms reflect the susceptibility of
specific neuronal populations to the offending metabolite at a key point in
neurodevelopment. Not surprisingly, ISS are usually not the only epilepsy type associated
with these metabolic disorders, and overlap exists with other early infant-onset epilepsies,
such as EME.

1d. Syndromes of genomic imbalance
At least five well-known syndromes of chromosomal copy number variation are
predisposing genotypes for ISS. These are deletion 1p36.3, Pallister-Killian syndrome
(tetrasomy 12p), duplication of maternal 15q11q13, Miller-Dieker syndrome (deletion
17p13.3), and Down syndrome (trisomy 21) [25, 86–95]. The biological mechanism(s) of
ISS in these syndromes are not known, except for Miller-Dieker syndrome in which the
deletion of PAFAH1B1/LIS1 causes both abnormal primary glutamatergic and GABAergic
interneuron migration [89, 96, 97]. Similarly, deletion of MAGI2 at 7q11.2 may be
associated with ISS in Williams syndrome [16], although there are also reports of ISS in
Williams syndrome patients with deletions that do not include MAGI2 [25, 98, 99]. Overall
this suggests that copy number changes in key genes, in the right developmental context,
influence the occurrence of ISS in these disorders. Further, “multiple hit” genomic events
may account for some of the phenotypic variability seen in diseases mediated by copy
number variants [100–102].

1e. Syndromes with putative association with ISS
ISS have occasionally been reported with several other well-characterized predisposing
genotypes, often in reports predating molecular characterization of the disorder. For
example, we found several reports of ISS in patients with Freeman-Sheldon, Schinzel-
Giedieon, Smith-Lemli-Opitz, and Sotos syndrome [103–109]. There are also reports of ISS
in patients with mutations in FLNA and ARFGEF2, genetic causes of periventricular
nodular heterotopia [110, 111]. However, other seizure types are more common than ISS in
most of these disorders, especially patients with heterotopia due to FLNA mutations, making
it difficult to argue that these genes are reliably causative.

Several reports suggest an association between ISS and rasopathies (neurofibromatosis type
I and cardio-facio-cutaneous syndrome), but not commonly enough to suggest a consistent
link [112–114]. A single report each of ISS with Smith-Magenis and Pallister-Hall
syndromes (the latter with hypothalamic hamartoma) suggest a rare association [115, 116].

2. ISS with predisposing genotype unknown
2a. Prototypic developmental epilepsies

This is a novel category introduced to refer to patients who present with ISS, but who lack
features specific for any unifying diagnosis and accordingly have an unknown predisposing
genotype. When reviewed at later ages, these children have features suggesting a global
developmental disorder such as autistic features and dyskinesias that may not have been
manifest at the time of presentation with ISS. Brain imaging studies may be normal, or may
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have findings that do not define a specific syndrome – such as cortical gray or white matter
volume loss, asymmetric ventricles, simplified gyral pattern, hypogenesis of the corpus
callosum, polymicrogyria, and/or cerebellar malformations. The subsequent epilepsy course
after ISS is variable, with some children developing intractable epilepsy and others few
seizures. Due to the spectrum of imaging and neurobehavioral findings in this group, this is
not a replacement for the previous “cryptogenic” designation. Rather, we think that all or
most of these patients will ultimately be found to have predisposing genotypes, particularly
in early CNS developmental genes.

2b. Recognizable unifying phenotype and clear association with ISS
This group contains well-described developmental disorders with unknown genotype but
unifying phenotypes that have ISS as a core finding. The two best examples are Aicardi and
progressive encephalopathy with edema, hypsarrhythmia and optic atrophy (PEHO)
syndromes. Aicardi syndrome consists of agenesis of the corpus callosum, polymicrogyria,
chorioretinal lacunes, other more variable anomalies, with ISS being a prominent feature
[117]. It affects only females, suggesting a gene located on the X chromosome. PEHO
syndrome is less common, appears to overlap with a PEHO-like phenotype, and most
resembles a neurodegenerative disorder with marked brain and optic nerve atrophy [118–
120].

Several more heterogeneous conditions have also been associated with a high incidence of
ISS. Around 7% of patients with focal cortical dysplasia (FCD) may develop ISS [121], and
the cortical abnormalities may be below the resolution of MRI [122]. Interestingly,
persistence of immature GABAergic networks appear to play a role in focal cortical
dysplasia [123], and dysfunction in the mTOR signaling pathway is a shared feature
between FCD and tuberous sclerosis complex [124]. Finally, isolated hemimegalencephaly
(HMEG) is included in this category because without cutaneous or systemic findings it is a
clinical entity distinct from the many syndromes that also feature this malformation [125,
126].

2c. Biochemical/metabolic abnormalities putatively associated with ISS
As a clear relationship between ISS and inborn errors of metabolism has been established,
we also recognize a category of diseases where a biochemical defect is demonstrable, but the
genetic etiology remains unclear. Patients with pyridoxine-responsive ISS have been
reported [127], but none with mutations in the one known pyridoxine-dependent epilepsy
gene ALDHA7 [128, 129]. Several reports link mitochondrial respiratory chain dysfunction
and ISS, but without a clear genetic mutation identified, making it unclear if the
mitochondrial dysfunction is primary or secondary [130–133]. Finally, neonatal
hypoglycemia has long been offered as a cause of ISS [44, 134], sometimes in the setting of
hyperinsulinism [135]. The evaluations reported in these patients are often unclear or
incomplete, so it is difficult to make a clear causal connection between the two.

2d. Extrinsic injury patterns
Extrinsic brain injuries such as hypoxic-ischemic encephalopathy (HIE), near-miss sudden
infant death syndrome, stroke, and infection are commonly accepted as causes of ISS. These
infants rarely undergo further evaluation. A closer survey of the patients reported, however,
leads to some interesting observations. One is that brain imaging patterns such as atrophy,
calcifications, and white matter hyperintensities previously interpreted as due to ischemic
injury or infection can overlap with predisposing genotypes such as CDKL5 and SPTAN1
mutations [15, 22, 136, 137]. Clinicians should therefore be aware of the conditions that
may present “HIE or infection look-alikes” on imaging.
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Reports remain in which ischemic events were well documented with no other predisposing
condition identified, and it would appear that 5–10% of infants with ISS in these series have
a presumed ischemic or infectious etiology [138–142]. Our concern is that this literature is
retrospective, and may not accurately reflect the prevalence of ISS among children with
acquired brain injuries. About 25% of children with perinatal hypoxia will have subsequent
cerebral palsy, cognitive impairment, and epilepsy [143], but ISS do not appear to be a
significant seizure type described in this population [144]. Despite the increased survival of
very-low birth weight infants at risk for HIE, the rate of ISS has not increased [145],
suggesting that other factors contribute to the development of spasms in this population.
Perhaps hypoxia represents a “second hit” in a population made vulnerable to spasms by
yet-undiscovered predisposing genotypes. While some may comment that there is no
scientific data for such an assertion, we argue that the data are insufficient in either case.
The study that prospectively follows a large cohort of patients with perinatal hypoxia and
documents the prevalence of ISS has not yet been done.

Similar observations may be made about the many case series documenting infection as the
cause of ISS [146–148]. While epilepsy can certainly be a long-term complication of CNS
bacterial or viral infection during infancy, ISS as a specific consequence are not captured in
outcome data [149–153]. If ISS are rare sequelae of CNS infection, predisposing
genotype(s) may exist that lead to the expression of spasms in infants who have experienced
CNS infection. It is also possible that ischemic or infectious events at a critical period in
perinatal development may selectively damage specific neuronal populations – for example
emerging GABAergic interneuron synaptic networks – and result in the later emergence of
ISS. Therefore, children with extrinsic injury patterns are prime candidates for further study.

2e. Recognizable unifying phenotype and putative association with infantile spasms
This group of disorders contains syndromic phenotypes with unknown causative genotypes,
in which ISS have been mentioned only in occasional clinical reports. In this category are
frontal-perisylvian periventricular nodular heterotopia-polymicrogyria (PNH-PMG),
hypomelanosis of Ito, macrocephaly polymicrogyria polydactyly hydrocephalus syndrome
(MPPH) with the overlapping disorder macrocephaly capillary malformation syndrome
(MCAP), and sebaceus nevus syndrome [154–157]. Also noted here are various
nonsyndromic CNS neoplasms that have been reported with ISS, including choroid plexus
papilloma, hypothalamic hamartoma (also described in Pallister-Killian syndrome), and
ganglioglioma [158–160]. The association of these conditions and syndromes with ISS
comes from a few patient reports, and requires further study to understand the exact
relationship.

Interesting exceptions
Several developmental disorders with epilepsy are not associated with ISS, or a surprisingly
small number of patients have been reported, suggesting some biological phenomena that
may protect against the development of spasms. These disorders include Rett syndrome due
to MECP2 mutations [161], and given that CDKL5 probably interacts with MECP2 [162], it
is not clear why the epilepsy phenotypes in these two developmental disorders are so
different.

The 15q11q13 locus is also intriguing in this regard, as duplications of maternal 15q11q13
are a common cause of both epilepsy – including ISS – and autism, while deletion of
maternal 15q11q13 causes Angelman syndrome and paternal deletion causes Prader-Willi
syndrome. Very few examples of ISS have been reported in Angelman syndrome patients
[163]. ISS has not been reported in Prader-Willi syndrome, though epilepsy is 16 times more
prevalent than in the general population [164].
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Dravet syndrome due to SCN1A mutations poses another interesting situation. Infants with
Dravet syndrome typically present with fever-induced status epilepticus followed by
intractable multifocal epilepsy [165]. Dravet syndrome has a severe behavioral phenotype,
as well as an ataxia/movement disorder [166]. Despite the fact that GABAergic interneurons
express SCN1A at high levels, and the mouse model of severe myoclonic epilepsy of
infancy demonstrates abnormal interneuron excitability, there is only a single patient report
of ISS in this population [167–169]. Further inquiry into these exceptions may yield
important insights into the biology of ISS.

Single genes associated with ISS allow biologic classification
A biologic classification system for ISS begins with the recognition that this phenotype in
many, if not most, disorders results from specific disturbances of gene regulation of brain
development and function. The known ISS associated genes can be classified in a biologic
model drawing from Gene Ontology (GO) [170], as well as gene expression data combined
with CNS developmental stages. This biologic model can help formulate hypotheses to
explain the varied phenotypes seen with ISS, and hopefully identify new treatment targets.

Single genes highly associated with ISS can be classified biologically if data exist regarding
the gene expression pattern in specific cell types across the spectrum of CNS development.
As these data are incomplete in humans, they must sometimes be extrapolated from animal
models, usually the mouse. When these data are combined with the GO molecular function
of the gene product, a role for the gene product in neurodevelopment can be described. This
allows for classification systems built on biological relationships between genes and gene
products.

A biologic classification of ISS
One of the benefits of a biologic classification system is that hypotheses to explain
phenotype differences among patients with mutations in ISS associated genes can be made.
It is hoped that grouping by biologic mechanism will also aid identification of future
disease-specific therapies. Table 2 summarizes the ISS phenotype subgroups after this
biologic classification. The molecular function of each gene highly associated with ISS was
determined from the GO database (www.geneontology.org), and the primary literature is
referenced for evidence of role(s) in or effect(s) on specific stages of brain development.
Information from the mouse gene expression databases at BGEM (www.stjudebgem.org),
GENSAT (www.gensat.org), and MGI (www.informatics.jax.org) was accessed as well.

The groups are organized so that Group A comprises transcription factors, Group B
comprises genes important in proliferation and cell migration, and later groups reflect the
terminal differentiation stages of synapse development. The two best characterized groups
are the gene regulatory network of ventral forebrain development and the pre- and post-
synaptic protein networks, illustrated in Figure 2.

Group A comprises patients who have abnormalities in transcription factors that are
essential for ventral CNS development. These include duplications of FOXG1, mutations of
ARX, and deletions of MEF2C. Abnormalities in FOXG1 affect development of major
telencephalic structures, including the neocortex, hippocampus, and the lateral and medial
ganglionic eminences [171]. Patients have mental retardation with an autistic phenotype and
stereotypic movements [18, 172]. ARX is an important regulator of GABAergic interneuron
differentiation and migration [173]. More severe mutations in ARX lead to lissencephaly,
intractable epilepsy, and a phenotype overlap with Group B1. While MEF2C expression is
altered in the absence of ARX [47], its exact position in the gene regulatory network of
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forebrain development remains unclear. Both ARX and MEF2C patients can have ISS
associated with prominent movement disorders.

Group B1 comprises patients with mutations in DCX, PAFAH1B1/LIS1, and TUBA1A,
which encode binding proteins that are expressed throughout much of forebrain
development, in both glutamatergic and GABAergic cell types. Synaptogenesis appears to
be disrupted by a secondary effect of abnormal neuronogenesis and migration. These genes
also play direct roles in axonogenesis and synapse formation. Group B1 patients have severe
brain malformations that include lissencephaly and variable cerebellar hypoplasia. Group B2
is related conceptually to Group B1 because genes in both groups are involved in neuronal
proliferation and migration. Similar to Group B1 patients, TSC patients also have
characteristic brain malformations, and can have severe cognitive impairment, and
intractable epilepsy, but the neurobehavioral phenotype in TSC often distinctly involves
autism.

Group C1 patients have mutations in genes such as GLDC and PAH that play roles in
neuronal and non-neuronal cell metabolism but not directly in brain morphogenesis.
Mutations in these genes appear to have secondary effects on synapse function, best
documented in PKU. These patients have metabolic diseases that, if controlled, as a general
rule (but not always) have less severe cognitive impairment and less epilepsy. Group C2
comprises patients with metabolic disorders such as DEND and Menkes disease where the
causative gene also has a role in neurodevelopment and the phenotype is characterized by a
severe encephalopathy. The genes that cause these disorders have ion transport and/or
catalytic activity and play primary roles in synapse development.

Group D comprises patients with abnormalities of MAGI2, SPTAN1, and STXBP1, which
encode proteins with direct roles in synaptic development and function. Group D patients
tend to have intractable epilepsy, with the MAGI2 deletion patients so far reported also
having Williams syndrome. The recent description of patients with mutations of GRIN1 [19]
and GRIN2A [24] associated with ISS illustrates that further discoveries in synapse
development and function likely lay ahead.

Future directions
ISS have long posed classification difficulties, and may be most accurately conceptualized
as a phenotype “at the tip of the iceberg” of a broader group of developmental disorders that
overlap with autism, intractable epilepsy, and movement disorders. This review does not
claim to resolve all of these issues, but seeks to open a discussion in new directions.
Knowledge is accumulating rapidly about the genetic associations of ISS, and ISS appear to
be a genetically heterogeneous condition that can result from abnormalities in key brain
development pathways. Like autism, each associated gene may account for only 1% of the
condition. Taken together, however, these are not “rare causes”, as is currently commonly
perceived. Instead, animal models of the genetic syndromes highly associated with ISS will
likely prove helpful in improving our understanding of pathogenesis of ISS, and hopefully
will lead to new therapies.

We propose the first genetic and biologic classifications of ISS. These classifications are
designed to be flexible, and will allow the incorporation of new causes as they are
discovered. They will help the clinician better direct diagnostic testing, and provide more
accurate prognostic information and genetic counseling. Of equal importance, a biologic
classification system for ISS is essential for the development of new disease-specific
therapies, and helps to explain the phenotypes of various ISS syndromes.
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Figure 1.
Evaluation of infantile spasms (ISS) using the classification system in Table 1. Diagnosis of
ISS centers upon epileptic spasms associated with ictal electrodecrement. Evaluations may
be carried out concurrently, depending upon the clinical scenario. Physical exam findings
may lead to recognition of syndromes of genomic imbalance (Group 1d) such as Down
syndrome, Williams syndrome, or Miller-Dieker syndrome; or may suggest other syndromes
putatively associated with ISS (Group 1e); or recognizable genotype-unknown syndromes
(Group 2e). Gene testing for the prototypic developmental epilepsies (DEVE) may find
mutations in known associated genes (Group 1a); or if negative may suggest a genotype-
unknown prototypic DEVE (Group 2a). Brain MRI may find specific structural brain
malformations (Group 1b) and lead to specific follow-up genetic testing; or may reveal non-
specific abnormalities associated with genotype-unknown prototypic DEVE (Group 2a),
findings associated with genotype-unknown syndromes (Group 2b), extrinsic injury patterns
(Group 2d), or recognizable abnormalities putatively associated with ISS (Group 2e).
Metabolic evaluation may lead to identification of specific inborn errors of metabolism
associated with ISS, leading to genetic testing for those disorders (Group 1c); or may reveal
metabolic abnormalities associated with genotype-unknown conditions (Group 2c).
Chromosomal microarray (CMA) may identify prototypic DEVE such as duplication of
FOXG1 or deletion of CDKL5 or MEF2C (Group 1a); diagnose known syndromes of
genomic imbalance associated with ISS (Group 1d); or may be negative suggesting a
genotype-unknown prototypic DEVE (Group 2a).
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Figure 2.
The two best characterized subgroups of ISS-associated genes illustrated with the stages of
central nervous system (CNS) development. Group A includes transcription factors essential
to CNS dorsal-ventral differentiation (FOXG1), affecting neuroprogenitor cells broadly,
with downstream effects on synapse function, as well as ARX, which is involved in ventral
GABAergic interneuron differentiation, migration, and synaptogenesis. MEF2C is probably
involved in this process as well. Group D genes (GRIN1, GRIN2A, MAGI2, SPTAN1,
STXBP1) encode binding proteins or receptors with direct roles in presynaptic and/or
postsynaptic development and function. 1 = Dorsal-ventral differentiation; 2 = Dorsal
neuroprogenitor cell proliferation; 3 = Ventral neuroprogenitor cell proliferation; 4 =
GABAergic interneuron migration; 5 = Intermediate progenitor cell proliferation; 6 =
Glutaminergic neuron migration; 7 = Axonogenesis; 8 = Synaptogenesis; Red = primary role
in developmental stage; Pink = Secondary effect on developmental stage; L = lateral
ganglionic eminence; M/MGE = medial ganglionic eminence; MZ = marginal zone; CP =
cortical plate; IZ = intermediate zone; SVZ = subventricular zone; VZ = ventricular zone
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