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Genome-wide Transcriptome Profiling Reveals
the Functional Impact of Rare De Novo and
Recurrent CNVs in Autism Spectrum Disorders

Rui Luo,1,2 Stephan J. Sanders,3,4,5,6 Yuan Tian,2,7 Irina Voineagu,2,8 Ni Huang,9,13 Su H. Chu,10,13

Lambertus Klei,12,13 Chaochao Cai,1,11 Jing Ou,2,8 Jennifer K. Lowe,2,8 Matthew E. Hurles,9,13

Bernie Devlin,12,13 Matthew W. State,3,4,5,6 and Daniel H. Geschwind1,2,8,*

Copy-number variants (CNVs) are a major contributor to the pathophysiology of autism spectrum disorders (ASDs), but the functional

impact of CNVs remains largely unexplored. Because brain tissue is not available frommost samples, we interrogated gene expression in

lymphoblasts from 244 families with discordant siblings in the Simons Simplex Collection in order to identify potentially pathogenic

variation. Our results reveal that the overall frequency of significantly misexpressed genes (which we refer to here as outliers) identified

in probands and unaffected siblings does not differ. However, in probands, but not their unaffected siblings, the group of outlier genes is

significantly enriched in neural-related pathways, including neuropeptide signaling, synaptogenesis, and cell adhesion.We demonstrate

that outlier genes cluster within the most pathogenic CNVs (rare de novo CNVs) and can be used for the prioritization of rare CNVs of

potentially unknown significance. Several nonrecurrent CNVs with significant gene-expression alterations are identified (these include

deletions in chromosomal regions 3q27, 3p13, and 3p26 and duplications at 2p15), suggesting that these are potential candidate ASD

loci. In addition, we identify distinct expression changes in 16p11.2 microdeletions, 16p11.2 microduplications, and 7q11.23 duplica-

tions, and we show that specific genes within the 16p CNV interval correlate with differences in head circumference, an ASD-relevant

phenotype. This study provides evidence that pathogenic structural variants have a functional impact via transcriptome alterations in

ASDs at a genome-wide level and demonstrates the utility of integrating gene expression with mutation data for the prioritization of

genes disrupted by potentially pathogenic mutations.
Introduction

Autism, also known as autism spectrum disorders (ASDs

[MIM 209850]), is a heterogeneous syndrome defined by

impairments in three core domains: social interaction,

language, and range of interests.1,2 Autism is not viewed

in isolation, but rather as one of several entities collectively

referred to as ASDs.1 Both family3,4 and twin studies5

indicate that ASDs are highly heritable neuropsychiatric

disorders. A growing body of literature reveals that rare

mutations or structural variations dramatically increase

disease risk.6–11 This evidence suggests that rare genetic

variation plays a larger role in ASDs than was previously

suspected.2,12–14

The discovery of rare and recurrent copy-number vari-

ants (CNVs) as important pathogenic mutations in ASDs

was a watershed in ASD genetics.7,8 Recurrent CNVs

such as those at 16p11.2, 22q11.2, 1q21.1, 7q11.23, and

15q11-q13 show statistically significant association with

ASDs.15–19 However, the functional impact of these

CNVs on downstream RNA expression at both a collective
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and individual level remains largely unknown. Because

CNVs alter copy number and must presumably act via

changes in downstream gene expression, an initial study

that explored the transcriptome-wide effects of CNVs

in human lymphoblast cell lines (LCLs) reported that

changes in gene copy number explained roughly 20% of

detected transcriptional alterations.20 Although widely

assumed, it remains unknown whether rare CNVs identi-

fied in autistic individuals have similar effects on transcrip-

tion levels and subsequent pathophysiology. Evidence

certainly exists for the association between rare CNVs as

a group and ASDs, but the paucity of cases prohibits proof

of genetic association for most individual rare CNVs. Alter-

native lines of evidence, such as gene-expression data,

might confirm the presence of functional alterations

related to a particular CNV and would thus be of signifi-

cant utility.

No risk locus has been identified with a frequency

exceeding ~1% in affected samples, which is consistent

with heterogeneity.18,21 Our experimental strategy is

predicated on the assumption that analyzing individuals
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at the resolution of the single gene, rather than as

a single group, would yield valuable insight. First, we

analyzed gene-expression variance in families with discor-

dant siblings (i.e., one affected and one unaffected sibling)

from the Simons Simplex Collection (SSC). Because brain

or neuronal tissue is not available from large numbers

of individuals with ASDs, we used lymphoblasts, and

although they do not express all relevant CNS genes,

they do provide useful data for a significantly overlapping

set of genes expressed in the CNS.22–24 To assess which dys-

regulated genes could direct us to pathogenic mutations,

we investigated expression variance in each subject and

identified genes with significant deviations in expression

in individuals’ lymphoblasts. To explore the functional

impact of CNVs in ASDs at a genome-wide scale, our inter-

rogation utilized the overlap between structural-variation

data in a recently published manuscript18 and transcrip-

tional data in a subset of the same population. Our data

support the notion that the intersection of gene expression

with mutation data, such as CNV calls or single-nucleotide

variants (SNVs) derived from exome sequence data, repre-

sents an efficacious approach to identifying new muta-

tions and prioritizing autism-susceptibility genes associ-

ated with chromosomal structural variation.
Material and Methods

Individuals and LCLs Analyzed in This Study
We analyzed individuals from the SSC in two stages. In the

first stage, we collected 386 individuals from 196 families (190

matched sibling pairs plus 5 siblings and 1 proband). In the second

stage, we prioritized 53 samples: 42 probands and 8 siblings with

de novo CNVs and 3 mothers who carry 16p11.2 events.18 Pheno-

type information can be found at the Simons Foundation Autism

Research Initiative (SFARI) database, and inclusion information is

shown in Table S1, available online. This study was approved by

the institutional review boards at all participating institutions.

The LCLs of the subjects were grown in RPMI 1640 medium

with 2 mM L-glutamine and 25 mM HEPES (Invitrogen, Carlsbad,

CA, USA), 10% fetal bovine serum, and 1X Antibiotic-Antimycotic

solution (Invitrogen) at 37�C in a humidified 5% CO2 chamber.

Cells were grown to a density of 6 3 105/ml. Cell lines were

maintained in the same conditions so that environmental varia-

tion could be kept to a minimum.

Microarray Experiments
A total of 93 106 lymphoblasts were seeded in a T-75 flask in 30ml

of fresh medium. After 24 hr, total RNA was extracted from the

cells with an RNeasy Mini Kit with DNase treatment (QIAGEN,

Valencia, CA, USA) according to the manufacturer’s protocol.

RNA quantity and quality were measured by ND-100 (Nanodrop,

Wilmington, DE, USA) and 2100 Bioanalyzer (Agilent, Santa Clara,

CA, USA), respectively. mRNA was hybridized on the Illumina

Whole HumanGenome Array Human REF-8 version 3.0 according

to the manufacturer’s protocol.

Sample Quality Control
We used GenomeStudio to convert image data to numerical data

as per our typical protocols.25–27 In all, 439 samples (chips) were
The
cross correlated with the use of expression levels for all probe

sets. These interarray correlations (IACs)28 were averaged for

each array and compared to the resulting distribution of IACs

for the dataset.25 Samples with an average IAC < 2 standard devi-

ations (SDs) below the mean IAC for the dataset were removed.

We clustered the remaining samples by using average linkage

and one IAC as a distance metric to identify the 27 samples

(6%) with poor quality. After sample removal, quantile normali-

zation28 was performed in R. To eliminate batch effects, we

performed additional normalization by using the R package

ComBat29 with the default parameters. ComBat successfully elim-

inated batch effects, as evidenced by hierarchical clustering and

significant improvement of the mean IAC (Figure S1). After data

preprocessing, 412 microarrays remained for follow-up analysis;

333 of these had genomic array data and expression data. Three

samples (of the 333) are mothers of probands. We used the re-

maining 330 samples for all of the analyses except the 16p11.2-

event analysis. Among the 412 samples, we have 168 pairs of

individuals (each pair is from the same family). Ninety-eight out

of 168 pairs are matched for sex. To control for potential

confounding factors, we used linear regression to remove sex

and age effects. We checked the average CNV number per indi-

vidual, and with the exception of African Americans (60 CNVs

per individual), there was no effect of ancestry on CNV frequency

(35 CNVs per individual). Because African American samples

only compose 3% of our cohort, we retained them to have more

statistical power and a better overlap between microarray and

genetic data.
Probe Quality Control
Weonly used probes with evidence of robust expression (detection

p value % 0.05 in at least 50% of the samples). By filtering out

unexpressed probes, we were left with 11,150 probes (correspond-

ing to 9,524 genes) for analysis. To study the functional impact

of CNVs on expression, we filtered the 9,524 genes by restriction

to genes that had 30 or more markers (SNPs and monomorphic

probes) covering them. For any of these ‘‘high-quality’’ genes

that had multiple gene-expression reads, we took the average

expression for each gene. This resulted in a set of 8,006 unique

genes with gene-expression values.
Outlier-Gene Analysis
For outlier-gene analysis, we calculated the Z statistic for each gene

by using the ‘‘scale’’ function in R. We calculated the mean and

SD for each expressed gene in cases and controls separately. We

selected a cutoff (2 SDs or 3 SDs) to define whether a gene was

an outlier in probands or siblings. For outlier analysis not per-

formed in conjunction with CNV data, we used a more stringent

cutoff (3 SDs). Subsequently, for the comparison of the overlap

between CNVs and transcriptional alterations, we used 2 SDs

as a cutoff. These different thresholds were used for two major

reasons. When analyzing expression changes in isolation, we

used the more conservative 3 SD cutoff to increase stringency.

When we integrated genotyping and expression data, we relaxed

the statistical threshold to 2 SDs so as to increase power by

increasing the number of potentially dysregulated, outlier genes.

We use the term ‘‘outlier genes’’ unless we have evidence that

the gene is also affected at the genetic level by a CNV. In that

case, we call the gene dysregulated to reflect the concept that it

is contained within a structural variation and shows significant

alteration in gene expression.
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Odds-Ratio Analysis
We calculated an odds ratio (OR) with the epitools library in R by

using the Wald method, an unconditional likelihood-estimation

method. For calculating the OR of dysregulated genes within

CNVs (or near CNVs) versus within the genome background, we

used the genes not within CNVs in a certain individual as the

control group. The two-by-two contingency matrix was made for

the calculation of the OR. The two columns are (1) sum of the

gene number within CNVs for all probands or all siblings and

(2) sum of the gene number not within CNVs for all probands or

all siblings; the two rows are (1) sum of the dysregulated genes

and (2) sumof the normally expressed genes.We used a Bonferroni

correction30 to correct for multiple testing of the OR analysis.
Integrating Expression Data with CNV Data
The CNV list was taken from Table S4 and Table S8 in Sanders et al.

(2011). The criteria for subgrouping CNVs were as described,18 and

de novo CNVs were determined by the CNV-calling algorithm

described therein. Rare CNVs are defined as CNVs with less than

50% overlap with those in the Database of Genomic Variants

(DGV).31
Multivariate Linear-Regression Analysis of Expression

and Copy Number
For analysis of the relationship between gene expression (genes

within CNVs and genes nearby [500 kb]) and copy number, we

applied a generalized estimating equation (GEE)32 model by using

the ‘‘geeglm’’ function in R. We regressed out the effects of age

and sex from the standardized gene-expression data by using

a linear model. We then used the residuals obtained from the

linear model as the continuous, predicted variable for our expres-

sion-value analysis. Next, we (1) obtained a biased sample of 100

gene-expression residuals in which the CNVs were equally repre-

sented (50 were duplications and 50 were deletions); (2) matched

(by gene) each subject with CNVs to a subject with no CNVs; (3) fit

a GEE linear model (which, in all instances that follow, we use to

account for any unknown, within-individual correlation among

gene expressions) between the gene-expression residuals and the

two predictor variables, proband status and copy number; and

(4) repeated steps 1–3 for 500 runs to obtain a distribution of coef-

ficients and p values for each predictor. To measure the effects of

rareness and CNV size on outlier status in gene expression, we

defined as outliers those standardized gene-expression scores

with absolute value R 2, which we then encoded as a binary vari-

able. We then used a GEE model with a binomial link for a logistic

regression to accommodate the binary nature of the outlier-status

variable. Rareness was defined as it was in Sanders et al. (2011). The

contrast is with genes falling within CNVs that do not meet these

criteria. The estimated size of the CNVwas entered as a continuous

variable. To study the cis-regulation of CNVs, we performed

a similar analysis by using genes 500 kb upstream and downstream

of CNVs. The predictors are the same as for genes within CNVs.
Detecting Outlier Genes within CNVs
For 330 individuals, 12,068 CNVs were identified by Sanders et al.

(2011). A total of 2,215 out of 12,068 CNVs contain at least one

gene expressed in LCLs. We used this list of 2,215 CNVs to study

the functional impact of copy number on transcription. For ex-

pressed genes within these CNVs, we identified outliers as genes

that are5 2 SDs from the mean expression in all samples. Accord-
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ing to this method, 10.7% (238 out of 2,215) of CNVs contain at

least one outlier gene.

Enrichment Analysis of Outlier Genes in Rare De Novo

CNVs
To compare the dysregulated genes residing in rare de novo CNVs

with rare transmitted CNVs and common CNVs, we analyzed all

CNVs containing as least one gene expressed in the LCLs; this

led to 38 rare de novo CNVs from 37 probands, 419 rare trans-

mitted CNVs from 170 probands, and 353 common CNVs from

184 probands. We used two methods to control for the gene

number in each type of CNV. (1) We compared the ratio of dysre-

gulated genes (the number of dysregulated genes divided by the

number of genes expressed) between these three groups. The Krus-

kal-Wallis test, a general form of the multigroup nonparametric

test, was used. (2) We matched CNVs for gene-number content:

16 rare de novo CNVs, 18 rare transmitted CNVs, and 31 common

CNVs matched for gene number. We used the Bonferroni correc-

tion to correct for multiple testing.

To compare the dysregulated genes residing in rare de novo

CNVs between probands and siblings, we compared 38 rare de

novo CNVs found in 37 probands and three rare de novo CNVs

found in three siblings. We calculated the ratio of dysregulated

genes within each CNV and compared the rank difference of the

ratio by using the Mann Whitney U test.

Permutation Test of Outlier Genes in the Whole

Genome
To compute the empirical p value of the significance of the

number of dysregulated genes within each rare de novo CNV, we

applied a permutation test. We randomly picked one individual

and one chromosomal region and selected the adjacent genes to

match the number of expressed genes in each rare de novo CNV.

We then calculated the number of dysregulated genes in this

randomly picked region. We performed 100,000 permutations

for each rare de novo CNV.

Multivariate Linear-Regression Analysis of Expression

and Copy Number at 16p11.2 and 7q11.23
We used the ‘‘geeglm’’ function in R to fit a linear-regressionmodel

between the copy number and expressed genes in 16p11.2 and

7q11.23: expression value ~ copy number þ age þ sex. We

used general estimating equations to correct for family structure.

For 16p11.2 events, we fitted the model by treating the copy

number as both a quantitative variable and a factor variable;

bothmethods provided similar results. The p value from the quan-

titative variable approach is reported in Figure 5. For 7q11.23

duplications, we fitted the model by treating the copy number

as a quantitative variable.

Genome-wide Differential-Expression Analysis
The Limma33 package in R was applied for standard differen-

tial expression (DE) analysis in the cases of 16p11.2 deletions,

16p11.2 duplications, and 7q11.23 duplications. Controls were

chosen from the pool of all controls with a matched sex ratio to

specific cases. In total, seven 16p11.2 deletions (six males and

one female) and 120 controls (100 males and 20 females) were

used for DE analysis, whereas six 16p11.2 duplications (five males

and one female) and 117 controls (100males and 17 females) were

used. In total, three 7q11.23 duplications (two females and one

male) and 142 controls (46 males and 96 females) were used.



Multivariate Linear-Regression Analysis of Phenotype
We used the ‘‘lm’’ function in R to fit a linear-regression model

between the expressed genes in 16p11.2 and head circumference,

which was adjusted for age and sex.34 Age, sex, and expression

value were used together as predictors, and the expression value

of each gene was normalized by the ‘‘scale’’ function in R program

before the linear model was fit.

Principle-Component Analysis
We used the ‘‘prcomp’’ function in R to calculate the first two

principle components. Seven 16p11.2 deletions, six 16p11.2

duplications, and three 7q11.23 cases were used. The 20 sporadic

cases and 20 controls were selected randomly in our samples.

Samples were clustered by the differentially expressed genes (p <

0.01) identified in 16p11.2 duplications, 16p11.2 deletions, and

7q11.23 duplications.

Pathway Analysis
We used DAVID (Database for Annotation, Visualization, and Inte-

grated Discovery) gene ontology (GO) and MetaCore by GeneGo

(Thompson Reuters) for pathway analyses. For both analyses,

the background was set to the total list of genes expressed in our

dataset. The statistical-significance threshold level for all GO

enrichment analyses was p < 0.05.

qPCR Validation of CNVs
We used quantitative PCR (qPCR) to confirm the presence or

absence of predicted CNVs in lymphoblast DNA. Two control

primers were designed within ‘‘house-keeping genes’’ RPP21

(MIM 612524) and ZNF80 (MIM 194553), genes in which no

CNVs were reported in the DGV. One microliter of DNA with

the concentration of 0.2 mg/ml was used for the qPCR reaction by

2X MyTaq Red Mix (Bioline). A pooled sample from 96 normal

SSC siblings was used as the control sample. qPCR was performed

on the ABI Prism 7900 (Applied Biosystems, Foster City, CA, USA)

with Platinum SYBR Green qPCR SuperMix UDG with ROX (Invi-

trogen). Thermal cycling consisted of an initial step at 50�C for

2 min, another step of 95�C for 2 min, and 45 cycles each of

95�C for 15 s and 60�C for 30 s. The primers used for qPCR are

listed in Table S6. We used the following formula to estimate

copy number:18

Estimated copy number ¼ 2(-DDCt [cycle threshold]), for which

d DDCt ¼ (Ct Region:Sample – Ct Ref:Sample) – (Ct Region:

Control – Ct Ref:Control)

d Ct Region:Sample¼mean Ct values for the region of interest

and sample of interest (e.g. ExpPrimer1 and ExpSample1)

d Ct Ref:Sample ¼mean Ct values for the reference region and

sample of interest (e.g. RNase P Primer and ExpSample1)

d Ct Region:Control¼meanCt values for the region of interest

and the control sample (e.g. ExpPrimer1 and Ct_pooled_

control)

d Ct Ref:Control ¼ mean Ct values for the reference region

and the control sample (e.g. RNase P Primer and Ct_pooled_

control)

qPCR Validation for Expression Alteration
We used 500 ng of total RNA to make cDNA with SuperScript III

First-Strand Synthesis SuperMix (Invitrogen) and random hexam-

ers (Invitrogen). We performed qPCR on an ABI Prism 7900

(Applied Biosystems, Foster City, CA, USA) by using Platinum
The
SYBRGreen qPCR SuperMixUDGwith ROX (Invitrogen). Thermal

cycling consisted of an initial step at 50�C for 2 min, another step

of 95�C for 2 min, and 45 cycles each of 95�C for 15 s and 60�C for

30 s. Data were normalized by the quantity of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH [MIM 138400]). The gene Ct

value of targeted probands was compared to the average Ct values

from five unaffected siblings matched for sex and age. The

primers used are listed in Table S6.

The DCt, DDCt, and fold change of the tested gene were calcu-

lated by the following formulas:

d DCt for each sample: DCt ¼ Ct (tested gene) – Ct (GAPDH)

d DDCt for each sample: DDCt ¼ DCt of tested gene in the

targeted proband – average DCt of test gene in siblings

d Fold change for upregulated genes: fold change ¼ 2�DDCt

d Fold change for downregulated genes: fold change ¼ �2DDCt
Results

Neural-Related Pathways Are Altered in the LCLs of

Probands, but Not Siblings

We performed gene-expression profiling by using LCLs

from 439 individuals in 244 SSC families consisting of

one proband and their unaffected sibling. Data collection

occurred in two stages: first, we analyzed 386 individuals

from 196 families, and second, we prioritized 53 individ-

uals with de novo CNVs from Sanders et al., 2011 (42

probands, 8 siblings, and 3 mothers who carry 16p11.2

events) (Material and Methods). We cleaned the data to

control for confounding factors, such as batch, race, and

sex effects (Material and Methods, Figure S1). Four

hundred twelve microarrays, accounting for 221 probands,

188 siblings, and 3 mothers and containing a total of

11,150 expressed probes, remained for analysis (360 from

stage 1 and 52 from stage 2) (Figure 1). Because the genetic

contribution to ASDs includes rare mutations of interme-

diate to large effect size, differential gene expression

is more likely to occur as a consequence within the CNV

region in those specific cases relative to other cases

and controls. On the basis of this, we applied a simple

statistical framework to identify ‘‘outlier genes’’ in individ-

uals, defined as those whose expression is either 2 or 3

SDs from the overall mean expression for that gene across

the cohort (Material and Methods).23 We initially took a

strict, conservative approach by defining an outlier gene

as being 5 3 SDs (99.7% confidence interval) from the

mean expression of that gene across all samples (Material

andMethods). Probands and siblings had a similar number

of outlier genes per individual (8.1 and 10.2, respectively,

[p ¼ 0.60] for downregulated genes; 16.6 and 17.6, respec-

tively, [p ¼ 0.76] for upregulated genes; unpaired t test),

similar to what is observed when all CNVs are treated as

a homogeneous class of events.18 Restricting analysis to

brain-expressed genes35 demonstrated that 77% and 73%

of outlier genes were expressed in the human fetal

brain35 in probands and siblings, respectively (Chi-square

p ¼ 1.5 3 10�3). However, no such enrichment was

observed for genes expressed in the adult human brain26
American Journal of Human Genetics 91, 38–55, July 13, 2012 41



Figure 1. Flow Chart of Expression-Data Analysis and Integra-
tion with CNV Data in the SSC
Quality control was done before any data analysis (Figure S1,
Material and Methods). The numbers of individuals and CNVs
used for downstream analysis are shown in the flow chart.
(76% of outlier genes in both probands and siblings were

expressed in the adult cerebral cortex26; p ¼ 0.95). Similar

results were obtained from a comparison with the Allen

Brain Atlas data on the human adult brain (see Web

Resources) (81% of outlier genes in both probands and

siblings were expressed in the human adult brain; p ¼
0.93). This agrees with most ASD-origin models that posit

a fetal or prenatal origin in most cases.1,36–39

We next used MetaCore by GeneGo and DAVID GO to

explore whether the outlier genes had divergent biological

functions or were related to specific pathways (Material and

Methods). To control for effects related to transformation,

we removed differentially expressed (DEX) genes known

to be caused by Epstein-Barr virus (EBV) transforma-

tion.40 Remarkably, in addition to several non-neural path-

ways, a significant enrichment of neural-related pathways

in probands was observed. GeneGo (Figure 2) captured

enrichment of pathways representing signal transduction,

neuropeptide signaling (p ¼ 1.3 3 10�6), development,

neurogenesis, and synaptogenesis (p¼ 3.83 10�3). DAVID

GO (Table S2) also identified enrichment of similar CNS-

related pathways, none of which were enriched in siblings

(Table S2). This is not solely due to CNVs (see the overlap

analysis below) because >90% of the dysregulated genes

in GeneGo neural pathways are outside CNVs. Analyses

of the stage-one samples in isolation revealed the same

enrichment phenomena, a clear indication that sample

selection bias had no impact on the results and a confir-

mation of the robustness of the GO observations. Thus,
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despite profiling a peripheral non-neural tissue, we identi-

fied significant neural pathways, including some identi-

fied in a recent pathway analysis of SCC CNVs,41

previously related to ASDs.26 Our investigation also identi-

fied several previously known ASD-susceptibility genes

as being outliers; these included OXTR (MIM 167055),

PCDH9 (MIM 603581), CNTN4 (MIM 607280), and

UBE3A (MIM 601623) (Table S3).

CNVs Affect Transcript Levels in Both Probands and

Siblings

We next asked whether CNVs result in transcriptional

changes and, conversely, whether dysregulated genes can

aid in characterizing structural chromosomal variation.

We compared CNVs identified in the SSC, which repre-

sents the most extensively validated cohort of CNV calls

in ASDs.18 In this study, we used three independent algo-

rithms to identify a robust set of CNVs. Over 500 qPCRs

were done in randomly selected individuals representing

403 de novo and 120 transmitted events, providing

a high confidence group of CNVs. These CNV data were

integrated with microarray gene-expression data, resulting

in 330 samples characterized by both genotyping data and

expression data (Figure 1).

To analyze the functional impact of CNVs on expression,

we employed linear regression to interpret the relationship

between copy number and the standard expression value

(Z score) by taking a random sample conditional on

copy-number status (Material and Methods). We found a

significant correlation between copy number and extreme

expression (b ¼ 0.524, p value ¼ 1.30 3 10�5); that is,

genes in regions of duplication or deletion were far more

likely to show extreme expression values than were

genes in the genome background. We increased statistical

power with a larger sample of outliers by assessing the

percentage of CNVs bearing dysregulated genes in 330

samples by using a cutoff of 5 2 SDs (95% confidence

interval) (Material and Methods). By calculating the

percentage of CNVs with dysregulated genes, we found

that 238 out of 2,215 (10.7%) CNVs contained at least

one dysregulated gene, and there was a similar ratio

between probands (11.5%) and siblings (9.7%) (Material

and Methods). Next, we calculated an OR by comparing

the average ratio of outlier genes among all expressed genes

in the genome to the average ratio of outlier genes from

expressed genes within CNVs of the 330 cases and siblings

(Material and Methods). We observed that outlier genes

were more likely to be present in CNVs than anywhere

else in the genome (in probands, OR ¼ 4.3 and Bonferroni

p¼ 2.973 10�102; in siblings, OR¼ 2.6 and Bonferroni p¼
2.16 3 10�21). Moreover, in both probands and siblings,

the direction of differential expression strongly correlated

with the direction of copy-number change. This presents

further evidence that outliers are not random. The ex-

pected direction of dysregulation was observed in 92%

of events (downregulation in deletions and upregulation

in duplications) (Table S5).



Figure 2. Neural-Related Pathways Are
Enriched in Probands versus Siblings
GeneGowas used for the ontology analysis
for outlier genes identified in probands
and siblings. The –log10 p value is shown
with the pathways that were significant
(with uncorrected p value< 0.05) in either
probands or siblings.
Previous studies have suggested that CNVs can affect

not only the transcriptional level of genes within them

but also genes in nearby regions up to 500 kb on either

side.20,42 We observed that there were dysregulated genes

within 500 kb upstream or downstream of 18.3% of

CNVs in both probands and siblings; compared to that

in the rest of the genome, this is a significant enrichment

(Bonferroni corrected p ¼ 1.43 10�7 for probands; Bonfer-

roni corrected p ¼ 1.5 3 10�6 for siblings; Fisher’s exact

test) (Material and Methods). Interestingly, these changes

were less likely to show the expected directionality shift

than were those inside the CNVs. Only 43% changed in

the direction of CNV dosage, indicating a more complex

mechanism of regulation (Table S5). Furthermore, our

linear-regression model did not capture a significant rela-

tionship between copy number and the expression value

of these nearby genes (b¼ 0.029, p value¼ 0.234) (Material

and Methods), indicating that the relationship between

cis gene expression and copy number is not linear.

Outlier Genes Are Enriched in Large Rare De Novo

CNVs

Previous studies have shown that rare CNVs, especially

rare de novo CNVs, are associated with autism.7,18,43
The American Journal of Hu
Here, in general, the rarer the CNV,

the higher the chance that it harbors

an expression outlier (p ¼ 4.9 3

10�19; Material and Methods). On

the basis of the degree of CNV patho-

genicity suggested by previous studies

(rare de novo > rare transmitted >

common), we next investigated

whether there was an observable

gradient in transcriptional change.

Because rare de novo CNVs might be

larger or contain more genes than

rare transmitted CNVs and common

CNVs (Sanders et al., 2011; Levy

et al., 2011), we used two methods

to control for the potential confound-

ing effect of CNV size (Material and

Methods). We calculated the propor-

tion of dysregulated genes within

a given CNV by dividing the number

of dysregulated genes by the number

of expressed genes within CNVs.

This yielded a significantly higher
proportion of dysregulated genes in rare de novo

CNVs than in rare transmitted CNVs and common CNVs

in probands (p < 2.0 3 10�16, Kruskal-Wallis test)

(Figure 3A). We then compared an arbitrary cohort of

CNVs matched for gene number in probands (16 rare de

novo CNVs, 18 rare transmitted CNVs, and 31 common

CNVs). This comparison detected significantly more dysre-

gulated genes in probands’ rare de novo CNVs than in the

other two CNV classes (p¼ 1.53 10�5, Kruskal-Wallis test)

(Figure 3B). The results signify that, not only are genic

segments enriched in rare de novo CNVs in probands,

but these rare de novo CNVs are enriched with dysregu-

lated genes even after correction for gene number within

the CNV.

We next performed an independent assessment of

predictions of CNV pathogenicity on the basis of the

gene-expression data by employing a recently developed

bioinformatics method for the assessment of haploinsuffi-

ciency (HI).44 To assess haploinsufficiency on a gene-by-

gene level and correct for the potential confound of CNV

size, we calculated HI probabilities (pHI), which estimate

the likelihood of being haploinsufficient for each dysregu-

lated gene involved in rare deletions in probands versus

siblings.44 We combined rare de novo CNVs with rare
man Genetics 91, 38–55, July 13, 2012 43



Figure 3. Outlier Genes Are Enriched in Rare De Novo CNVs in Probands
(A) The box plot depicts the ratio of dysregulated genes (the number of dysregulated genes within a CNV versus the total number of
genes within that CNV) in each of the three types of CNVs (rare de novo CNVs, rare transmitted CNVs, and common CNVs). The
Krusakal-Wallis test p value is shown.
(B) The box plot shows the number of dysregulated genes in three types of CNVs with matched gene number.
(C) The box plot compares haploinsufficiency (HI) scores of downregulated genes (2 SDs) in rare deletions in probands and siblings with
those of normally expressed genes within CNVs. The HI score of dysregulated genes in rare deletions in probands is significantly higher
than that of the normally expressed genes, whereas the HI score of dysregulated genes in rare deletions in siblings is significantly lower
than that of the normally expressed genes (Mann Whitney U test).
(D) The box plot compares HI scores of downregulated genes (2 SDs) in common deletions in probands and siblings with those of
normally expressed genes within CNVs. The Mann Whitney U test p value is shown for each pairwise comparison.
A star indicates a statistically significant p value after Bonferroni correction (p < 0.017 in A and B; p < 0.0125 in C and D). Error bars for
these four panels are defined as 1.53 the interquartile range.
transmitted CNVs to increase statistical power and focused

our analysis on deletions because deletions, not duplica-

tions, are associated with HI. A significantly higher pHI
44 The American Journal of Human Genetics 91, 38–55, July 13, 2012
probability was observed in probands than in siblings,

consistent with increased pathogenicity of CNVs in

probands (Figure 3C). We also compared dysregulated



genes with nondysregulated genes within the same CNV.

Importantly, the pHI of genes that are downregulated in

probands is significantly greater than in those genes that

do not change expression within rare deletions, showing

a relationship between expression dysregulation and pre-

dicted pathogenicity (Bonferroni p ¼ 4.4 3 10�2, Mann

Whitney U test) (Figure 3C). In contrast, downregulated

genes in siblings actually have a lower HI than non-differ-

entially-expressed genes within rare deletions, as would be

predicted on the basis of the presumed relative nonpatho-

genicity of these expression changes (Bonferroni p ¼ 0.25,

Mann Whitney U test; Figure 3C). We tested the gene pHI

in common deletions in probands versus siblings as

a control. No difference was observed, which is expected

on the basis of the presumed lack of pathogenicity of these

events (Figure 3D).

Transcriptional Data Aids Prioritization of Small and

Nonrecurrent CNVs

We next reasoned that gene expression could help

prioritize the potential pathogenicity of rare nonrecur-

rent CNVs, an important step, given that even large de

novo CNVs occur in 1%–2% of controls. To identify

whether genes within a defined genomic region were

significantly dyregulated, we compared the percentage

of dysregulated genes within each CNV with random

expectations on the genome background (Material and

Methods). Twenty-seven out of 40 rare de novo CNVs

identified in probands had significantly more dysregu-

lated genes than did the genome background (p < 0.05,

permutation test) (Table 1). Our analysis highlights

a number of nonrecurrent CNVs that have not previously

been shown to be associated with ASDs; these include

deletions at 3q27, 3p13, and 3p26 and duplications at

2p15 and 13q14. To verify the altered expression detected

by microarrays, we selected 12 genes in 8 corresponding

nonrecurrent CNVs to validate by qPCR (Material and

Methods). Nine of 12 (75%) genes were confirmed

by qPCR, supporting the robustness of these analyses

(Figures S5A and S5B).

We next examined whether expression data could

inform our analysis of small, potentially pathogenic

CNVs. Figure 4 shows four examples of small rare

CNVs observed in probands with a relatively high

ratio of outlier genes. Both the CNVs and expression

alterations in these four examples were validated by

PCR (Material and Methods). One example involves

a case with both a 16p11.2 deletion (Figure 4D) and

a small rare Xq28 deletion affecting the expression level

of TMLHE (MIM 300777).45 A recent study46 has shown

that a deletion of TMLHE exon 2 was 2.823 more

frequent in probands from male-male multiplex autism

families than in controls,46 suggesting that TMLHE is

a putative autism candidate gene. Because transcription

levels are affected within these CNVs, the data presented

in Figure 4 clearly warrant follow up in additional

cohorts.
The
Transcriptional Alterations in Recurrent CNVs:

16p11.2 Duplications and Deletions and 7q11.23

Duplications

To determine whether gene-expression analysis could help

differentiate 16p11.2 deletions and duplications (MIM

611913) and identify dysregulated candidate genes, we

conducted an examination of the effects of the 16p11.2

CNV on gene expression within the interval (Figure 5).

First, we validated the dysregulation of three genes of

interest, ALDOA (MIM 103850), MAPK3 (MIM 601795),

and CORO1A (MIM 605000), from across the interval in

five cases of 16p11.2 deletion by using qPCR to provide

technical validation of a cross section of the microarray

results (Figure S5C).

This examination generated several notable observa-

tions. Using a multivariate linear-regression model, we

observed a positive correlation between transcription level

and 16p11.2 copy number; this highlighted the group of

genes most correlated with 16p11.2 dosage: MAPK3 (p <

23 10�16), YPEL3 (MIM 609724) (p< 23 10�16), CORO1A

(p ¼ 6 3 10�15), and KCTD13 (MIM 608947) (p ¼ 1 3

10�13) (Figure 5A) (Material and Methods). Second, dele-

tions had a larger effect on transcriptional level and,

compared with duplications, contained more genes with

altered expression (Figure 5), which agrees with a recently

published 16p11.2 mouse model.47 We also studied the

expression pattern in the three mothers carrying 16p11.2

events (two duplications and one mosaic deletion) (Fig-

ure S3). Consistent with their lack of clinical ASD diag-

nosis, carriers looked similar to controls and, relative to

cases, had few changes in gene expression (p ¼ 8.5 3

10�5, Kruskal-Wallis test) (Figure S3). This suggests that

changes in expression levels might at least partially

explain the molecular mechanism of incomplete pene-

trance of 16p11.2 events observed in parents and some

offspring.

To determine trans-regulation of 16p11.2 events and

explore whether 16p11.2 duplications and deletions affect

similar or divergent biological pathways, we performed

genome-wide DEX analysis and focused on changes

outside of the CNV region (Material and Methods). We

observed 70 DEX genes in 16p11.2-deletion cases and

135 DEX genes in 16p11.2-duplication cases (p < 0.01).

Strikingly, no overlap was evident in DEX genes between

the two conditions. GO enrichment analysis revealed

that in deletions, pathways containing DEX genes were

enriched with neural-related ontologies, whereas no such

enrichment was observed in duplications (Figures 7A and

7B) (Material and Methods). This suggests that 16p11.2

deletions and duplications interrupt distinct molecular

pathways, providing a functional basis for the different

phenotypes observed in these two conditions.

Previous studies indicate that 16p11.2-deletion cases

have significant macrocephaly, whereas cases with dupli-

cations have microcephaly.48–54 To explore whether vari-

ance in gene expression in the 16p11.2 region can be

related to variance in head circumference, we applied
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Table 1. Gene Dysregulation in De Novo CNVs

Individual Loci Type Size (kb)
% Outlier
Genes Empirical p Valuea Outlier Genes

12184.p1 12p11.22 deletion 13,000 63% 1.00 3 10�5 >10 genes

11233.p1 15q23 deletion 5,000 53% 1.00 3 10�5 ADPGK,BBS4,KIF23,MYO9A,NPTN,
PARP6,PKM2,RPLP1

11090.p1 16p11.2 deletion 600 47% 1.00 3 10�5 ALDOA,BOLA2,C16ORF53,CORO1A,
HIRIP3,KCTD13,LOC606724,MAPK3,MAZ

11540.p1 16p11.2 deletion 600 58% 1.00 3 10�5 >10 genes

12451.p1 16p11.2 deletion 600 62% 1.00 3 10�5 ALDOA,C16ORF53,CDIPT,CORO1A,HIRIP3,
KCTD13,MAPK3,MAZ,MVP,YPEL3

11435.p1 16p13.3 deletion 1,200 76% 1.00 3 10�5 >10 genes

11080.p1 1p34.3 duplication 5,000 64% 1.00 3 10�5 >10 genes

12239.p1 22q11.21 deletion 1,400 93% 1.00 3 10�5 >10 genes

11129.p1 7q11.23 duplication 1,400 57% 1.00 3 10�5 BAZ1B,BCL7B,EIF4H,LAT2,NSUN5,
STX1A,TBL2,WBSCR22

12420.p1 1q21.1 duplication 1,000 71% 3.00 3 10�5 ACP6,BCL9,CHD1L,GPR89A,PRKAB2

12032.p1 3p13 deletion 5,000 67% 5.00 3 10�5 ARL6IP5,C3ORF64,SUCLG2,TMF1,FOXP1,LMOD3

11154.p1 7q11.23 duplication 1,000 43% 0.00011 BAZ1B,BCL7B,CLIP2,EIF4H,LAT2,WBSCR22

11046.p1 3p26.2 deletion 700 100% 0.00012 ITPR1,SETMAR,SUMF1

12343.p1 13q14.11 duplication 500 75% 0.00039 ELF1,MRPS31,WBP4

11551.p1 16p13.2 duplication 500 75% 0.00039 CARHSP1,PMM2,USP7

12594.p1 7q11.23 duplication 300 75% 0.00039 BCL7B,NSUN5,TBL2

12647.p1 16p11.2 duplication 500 32% 0.00046 BOLA2,CORO1A,KCTD13,MAPK3,MVP,SULT1A3

11353.p1 17q12 deletion 1,600 50% 0.00106 AATF,ACACA,TADA2L

12235.p1 9q34.11 duplication 600 36% 0.00108 ODF2,PTGES2,SET,SLC27A4

12435.p1 16p11.2 duplication 600 25% 0.00365 CORO1A,IMAA,MAZ,SPN

11433.p1 16p11.2 deletion 500 21% 0.006 ALDOA,KCTD13,MVP,SPN

11555.p1 16p11.2 duplication 700 21% 0.006 C16ORF53,LOC606724,MAPK3,QPRT

11435.p1 9p24.2 duplication 3,000 33% 0.01022 DOCK8,KIAA0020

11962.p1 10q11.23 duplication 1,700 100% 0.02 CSTF2T

12339.p1 3q27.2 deletion 100 100% 0.02 SFRS10

12224.p1 22q13.1 deletion 200 50% 0.035 ADSL

11343.p1 2p15 duplication 1,700 50% 0.035 XPO1

12007.p1 15q11.2 duplication 2,200 33% 0.05 UBE3A

11680.p1 16p11.2 deletion 500 12% 0.05 MAPK3,MVP

12100.p1 16p11.2 deletion 600 12% 0.05 C16ORF53,HIRIP3

11532.p1 17p13.1 duplication 800 33% 0.05 FAM64A

12295.s1 19p13.3 duplication 300 50% 0.00038 C19ORF22,POLRMT,PTBP1,RNF126

12117.s1 17q23.1 duplication 2,000 67% 0.0026 APPBP2,PPM1D

aThe p values were calculated by a permutation test (Material and Methods).
a multivariate linear-regression model (Material and

Methods). The most significantly associated genes within

the CNVs are TAOK2 (MIM 613199), CORO1A, KCTD13,

and QPRT (MIM 606248) (Figure S4). This is not a circu-

lar association reflecting the confounding of DE with
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gene dosage and head circumference because several

of the genes, including TAOK2, most associated with

HC are not among the most DEX genes in the region.

Remarkably, the changes in these genes’ expression ac-

counted for more than 50% of the variance in head



Figure 4. Outlier Genes Highlight Small but Likely Functional CNVs
(A) A small duplication with a high ratio of dysregulated genes.
(B, C, and D) Small deletions with high ratios of dysregulated genes. The Z scores of all expressed genes within the CNV interval and
within 500 kb upstream and downstream are shown. Outlier genes (2 SDs; red) within the CNVs are shown. A bar plot shows the
qPCR validation for both copy-number change and the expression alteration. Error bars represent the SD of three replicates of qPCR
experiments.
circumference. Given the sample size, this should be

treated as a preliminary observation that warrants follow

up. However, it suggests that alterations in gene expres-

sion in peripheral blood can be related to disease-relevant

CNS phenotypes.
The
Another recurrent event associated with autism is

the Williams-Beuren syndrome (MIM 194050) 7q11.23

deletion.18,19 We observed that, similar to the 16p11.2

events, this region contains multiple dysregulated genes,

including BCL7B (MIM 605846), EIF4H (MIM 603431),
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Figure 5. Gene Expression in the 16p11.2 Duplication and Deletion Interval
(A) For each of the expressed genes within the 16p11.2 interval, the log2 expression level is shown for deletions (red), duplications (blue),
and controls (gray). The p value was calculatedwith amultivariable linear-regressionmodel with 16p11.2 cases and 398 controls without
a known 16p11.2 event (Material and Methods). Twelve out of 19 expressed genes in deletions have at least a 1.3-fold change measured
bymicroarray, whereas 8 out of 19 genes in duplications show a 1.3-fold or greater change. Group I represents genes that don’t reach 1.3-
fold change in either duplications or deletions; group II represents genes that have greater than 1.3-fold change in deletions only; and
group III represents genes that have greater than 1.3-fold change in both duplications and deletions (dash lines separate the three
groups). Error bars are defined as 1.53 the interquartile range.
(B) The –log10 of the p value (t test) for duplications and deletions is shown on the y axis for each gene within the 16p11.2 region and
within 500 kb upstream and downstream. The dashed vertical lines show the p value threshold after Bonferroni correction (corrected for
24 genes, p value < 2.1 3 10�3).
(C) Genes showing expression deviating by at least 2 SDs from the mean across 13 samples (seven deletions and six duplications) with
16p11.2 CNVs.
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Figure 6. Gene Expression in the 7q11.23 Interval
(A) For each of the expressed genes within the 7q11.23 interval, the log2 expression level is shown for duplications (blue) and controls
(gray). The p valuewas calculatedwith amultivariate linear regressionwith 7q11.23-duplication cases and 411 controls without a known
7q11.23 event (Material and Methods). Error bars are defined as 1.53 the interquartile range.
(B) Genes showing expression deviating by at least 2 SDs from the mean across three samples with 7q11.23 duplications.
and LAT2 (MIM 605719), consistently changing in all

three cases (Figure 6). Outside of the region, we observed

85 DEX genes in individuals with 7q11.23 duplications

(p < 0.01). In this gene list, GO analysis identified several

enriched developmental pathways, including forebrain

development, determination of bilateral symmetry, and

hippocampus development, providing another demon-

stration that CNS-relevant pathways can be recovered

from peripheral blood.

To explore whether genome-wide expression changes

were sufficient to separate the different genotypes from

each other and controls, we performed principle-compo-

nent analysis (PCA) for 16p11.2 and 7q11.23 cases and
The
compared them with 20 controls and 20 sporadic cases

in different families (Material and Methods). This analysis

(Figure 7D) suggests that 16p11.2 deletions and duplica-

tions might be distinct from each other, consistent

with the analysis of gene expression within the CNV and

the GO analysis of trans effects of each mutation on

genome-wide expression. Furthermore, the 7q11.23 cases

appear to cluster more with the 16p11.2-deletion cases

even though the number is small, consistent with the

observation that both disrupt CNS-related GO categories;

however, the 16p11.2-duplication cases do not cluster

with the 16p11.2-deletion cases. Interestingly, the fact

that sporadic-autism cases clustered with the controls
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Figure 7. GO Enrichment Analysis and PCA Highlight Distinct Molecular Pathways in 16p11.2 Duplications and Deletions
(A) GO enrichment analysis of the 307 genes (p< 0.05) showing altered expression in deletions (DAVID). The –log10 of the uncorrected p
value is shown in (A)–(C).
(B) GO enrichment analysis of the 698 genes (p < 0.05) showing altered expression in duplications (DAVID).
(C) GO enrichment of the 439 genes (p < 0.05) showing altered expression in 7q11.23 duplications (DAVID).
(D) Scatter plot of the first two components of 16p11.2 cases, 7q11.23 cases, sporadic-autism cases, and controls. Samples are clustered
on the basis of PCA. Seven 16p11.2-deletion probands (red), six 16p11.2-duplication probands (green), and three 7q11.23-duplication
(purple) probands were included. As a comparison group, 20 randomly selected sporadic-autism probands (blue) and 20 randomly
selected controls (black) were included. The first two principle components were used for the formation of a two-dimensional space.
The merged list of DEX genes (p < 0.01) in 16p11.2 duplications, 16p11.2 deletions, and 7q11.23 duplications was utilized for PCA.
(Figure 7D) is consistent with the absence of significant

shared genome-wide gene-expression changes differenti-

ating between randomly selected cases versus controls

(Figure S6). To further study the relationship between
50 The American Journal of Human Genetics 91, 38–55, July 13, 2012
recurrent variants that are associated with autism, we com-

pared the DEX genes from 16p11.2 deletions, 16p11.2

duplications, and 7q11.23 duplications with the DEX

genes identified previously in 15q11-13 duplications



(15qdup) and fragile X mutation carriers with autism

(FMR1-FM).22 Interestingly, RIMS3 (MIM 611600)55 is

DEX in 16p11.2dup, 7q11.23dup, 15qdup, and FMR1-FM,

indicating convergent dysregulation of this gene in

multiple ASDs.
Discussion

These results demonstrate the utility of gene-expression

analysis in evaluating the functional consequences of

rare functional structural variations in a human neuropsy-

chiatric disease (ASD). Given the difficulty in interpreting

whole-genome-level data in the context of rare variation,

our data demonstrate a wealth of transcriptional alter-

ations that are associated with structural variation. By inte-

grating expression and genomic data, we show that

the more pathogenic classes of CNVs are associated with

increased odds of harboring transcriptional alterations

either within or nearby the CNV; this is consistent with

previous studies that demonstrate the impact of CNVs

on genome-wide expression.20,42 We also found that the

CNVs only explain a portion of outlier genes; further

studies are needed for the identification of potential muta-

tions or epigenetic modifications that might contribute to

the expression alterations observed in these outlier genes.

Additionally, for recurrent CNVs known to be associated

with ASDs, cis- and trans-expression analyses suggest

distinct molecular mechanisms for 16p11.2 deletions and

duplications.

It is well recognized that any method based on expres-

sion profiling would be optimal in the tissuemost involved

in the disorder (i.e., CNS tissue), preferably during early

brain development, when ASDs unfold. There is no doubt

that this analysis has missed some disease-relevant genes

that are not expressed in lymphoblasts.56 Unfortunately,

postmortem brain tissue is only available from a very small

number of individuals, and tissue from early develop-

mental stages is not available. Thus, the use of lympho-

blasts has the advantage that these cells are widely

available and permit a high-throughput, genome-wide

analysis. Advances in induced pluripotent stem cell (IPSc)

technology might eventually permit analyses of neuronal

development in vitro.57 Our successful use of expression

data in lymphoblasts supports the use of such an approach

in the future for determining the functional consequences

of rare SNVs and CNVs. This is especially germane given

the recent results of exome sequencing in ASDs.58–61 These

studies reveal an excess of rare de novo nonsense SNVs

and, to a lesser extent, missense SNVs, in ASDs. Except

for in a few cases, the extent to which a given variant is

functional is hard to predict. Thus, integration of gene

expression with SNV data would most likely be helpful.

Analysis of outliers was performed independently from

analysis of CNVs, and there were equivalent numbers of

outliers in probands and siblings. However, GO analysis

demonstrates that there is specific enrichment of CNS
The
pathways in outliers detected in probands, supporting

the hypothesis that ASD risk in simplex families is associ-

ated with the position and size of the CNV and not

necessarily its overall burden. The GO pathways dysregu-

lated specifically in probands also include known autism

candidate genes, for example, the oxytocin receptor

(OXTR)62 and ubiquitin protein ligase E3A (UBE3A).17 We

also observed enrichment of non-neural pathways in

probands. Although some of these are not annotated as

neural in GeneGo, they include signaling pathways, such

as BMP, TGF-b or FGF signaling, that play crucial roles

in neural development. Few pathways are enriched in

siblings, and all are non-neural, consistent with the inter-

pretation that these probably represent noise, such as

that introduced during the EBV transformation process63

or based on the effect of variability in genetic background.

The pathogenic role of de novo CNVs in ASDs has been

previously established.7,17,43,64,65 Although it has been

assumed that underlying changes in gene expression

contribute to pathogenicity, this has not been demon-

strated previously. If a CNV encompasses a region where

biologically critical genes are more likely to be haploinsuf-

ficient, then it has a higher chance of having a functional

impact on transcription.44 The fact that we observed

a higher pHI of genes in rare CNVs only in probands and

not in sibling CNVs provides independent validation of

the outlier analysis by showing clear differences between

the functional impact of these CNVs on expression.

Previous studies have shown that many factors can con-

tribute to the pathogenicity of CNVs; these factors can

include size, gene density, segmental duplication density,

enrichment of certain functional pathways, and a higher-

than-average expression correlation compared with that

of the genome background.66,67 Here, we show that anal-

ysis of peripheral-blood gene expression can provide

a useful and direct assessment of the functional conse-

quences of chromosomal structural variation in a neuro-

psychiatric condition.

Assessment of the functional and potentially pathogenic

impact of individual rare nonrecurrent CNVs in disease

remains an important challenge. Here, we use the outlier

approach to identify candidate ASD loci at 12p11.22,

15q23, 1p34.3, 3q27, and 3p26.2. For example, the

3p26.2 deletion in one proband contains three expressed

genes: inositol 1,4,5-triphosphate receptor, type 1 (ITPR1

[MIM 147265]), SET domain and mariner transposase

fusion gene (SETMAR [MIM 609834]), and sulfatase modi-

fying factor 1 (SUMF1 [MIM 607939]), all of which are

downregulated. Although none of these genes has been

previously associated with autism, they are all functionally

linked to the nervous system.68–70 Another example is

a 100 kb deletion at 3q27.2, which includes only one

gene, the SR-like splicing factor SFRS10/TRA2b (Htra2-

beta1; also known as TRA2b [MIM 602719]), which was

downregulated in the probands. TRA2b has recently

been implicated in activity-dependent regulation of RNA

splicing via interaction with DARPP-32 (MIM 604399).71
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This is particularly interesting given the involvement

of another neuronal splicing factor, Fox1/A2BP1 (MIM

605104) in ASDs,73 regulated by neuronal activity72 and

previous data implicating activity-dependent regulation

of gene expression in ASDs.74

Here, we also explore the functional impact of 16p11.2

microdeletions andmicroduplications on gene expression.

Previously, it was unclear which genes are dysregulated in

or near the 16p11.2 region or whether there is a common

expression signature shared by 16p11.2 cases. Our analysis

shows a significant positive correlation between expres-

sion level and copy number, as recently observed in mouse

models,47 and highlights genes with the most consistent

alterations across all 16p11.2 cases; these genes include

potassium channel tetramerisation domain containing

13 (KCTD13), aldolase A, fructose-bisphosphate (ALDOA),

and MYC-associated zinc finger protein (MAZ [MIM

600999]). Genes encoding potassium-channel proteins,

such as KCNJ3 (MIM 601534) and KCNMA1 (MIM

600150), have been associated with neurodevelopmental

abnormalities.75,76 ALDOA is involved in glycolysis and

energy balance, which is important for synaptic metabo-

lism and neurotransmitter release.77 MAZ enhances the

NMDA receptor subunit type 1 activity during neuronal

differentiation.78 This study provides a source for candi-

date-gene prioritization for future functional and muta-

tional analyses. Although our analysis of differential

expression highlights different molecular pathways dis-

rupted in 16p duplications and deletions, one needs to

also consider that we could be missing some common

pathways that are only expressed in the brain. In this

regard, it is notable that 7q11.23 cases cluster with the

16p11.2del cases in terms of global gene-expression

changes in lymphoblasts. Within the 7q11.23 duplica-

tions, we found that STX1A (MIM 186590), CLIP2 (MIM

603432), and LIMK1 (MIM 601329) are upregulated, but

we do not see alterations in GTF2I (MIM 601679) and

CYLN2 (MIM 603432), which were previously shown to

be dysregulated in 7q11.23 duplications by qPCR.79 This

might be due to differences in techniques or the pheno-

types assayed, and further studies in larger samples will

permit more precise expression-phenotype correlations.

We hypothesize that the observed expression differences

are most likely related to the phenotypic differences ob-

served in reciprocal 7q11.23 events and provide a starting

point for connecting specific genes to phenotypes in

subjects with 7q11.23 CNVs.

We also provide the molecular correlates of a clinical

phenotype, head circumference, in ASDs.48–53 This is

especially interesting because 16p11.2 deletions (associ-

ated with macrocephaly) are highly penetrant for ASDs,

whereas 16p11.2 duplications (associated with micro-

cephaly) are less penetrant for ASDs. Here, in 16p11.2

events, we demonstrate a significant correlation between

head circumference and expression of several genes within

the CNVs; one such gene is TAOK2, which showed

the largest correlation. TAOK2 interacts with the JNK
52 The American Journal of Human Genetics 91, 38–55, July 13, 2012
mitogen-activated protein kinase pathway,80 which has

been shown to control survival, proliferation, and differen-

tiation of cells composing the central and peripheral

nervous systems.81 This provides a biologically plausible

link between this gene and a brain-growth phenotype;

this link can be tested in neural tissues and model organ-

isms in future studies.

In summary, we present the largest genome-wide expres-

sion-profiling study on ASDs and integrate this transcrip-

tional data with genomic data. Each of these datasets,

gene expression and CNVs, is complementary, and they

are more powerful together than they are alone. These

data highlight the utility of this approach for the prioritiza-

tion of mutations and specific genes for further down-

stream functional or mutational analysis—an approach

that should have widespread utility given the proliferation

of genome sequencing and analysis of structural variation.

This is especially true for rare, nonrecurrent variants for

which standard statistical tests of association are under-

powered. We show that the intersection of such events

with expression permits a statistical analysis of individual

events and facilitates the prioritization of individual rare

CNVs. These results elucidate the genome-wide functional

impact of CNVs andmight help to explain complex pheno-

types related to brain growth, such as head circumference,

and in doing so, they will help to link genotype to pheno-

type in complex neuropsychiatric disorders, such as ASDs.
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