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Abstract
Collaborative investigations have characterized how multineuron hippocampal ensembles encode
memory necessary for subsequent successful performance by rodents in a delayed nonmatch to
sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to
enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output
(MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived
from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded
in the sample phase necessary for successful performance in the nonmatch phase of the task. The
extension of this MIMO model to online delivery of electrical stimulation delivered to the same
recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels
of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence
for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased
utility of the MIMO model as a prosthesis device was exhibited by the demonstration of
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cumulative increases in DNMS task performance with repeated MIMO stimulation over many
sessions on both stimulation and nonstimulation trials, suggesting overall system modification
with continued exposure. Results reported here are compatible with and extend prior
demonstrations and further support the candidacy of the MIMO model as an effective cortical
prosthesis.

Keywords
Closed-loop feedback; cortical neural prosthesis; delayed memory task; hippocampal ensemble
activity; neural stimulation; nonlinear mathematical model; performance enhancement

I. Introduction
The encoding of memory by brain systems has long been one of the major interests of
neuroscience research since this process allows temporal bridging between events that occur
at different times, as well as expectation of future circumstances based on accurate recall of
prior experiences [1]. Effective memory requires recognition, categorization and detection in
order to allow adequate performance in a number of conditions [2] as indicated most
dramatically by circumstances such as Alzheimer’s disease in which total memory loss leads
to incapacitation and helplessness [3]. The brain structure most intricately involved in this
process is the hippocampus, existent in all mammalian species and capable of long-term
retention of goal-directed objectives [4]–[7]. Development of new technologies and brain-
behavior assessments have allowed progressive insight into the process of memory
formation and retrieval in this structure [8]–[13] to the extent of making it possible to
formulate and test a “device” that can substitute for these functions when they are
compromised by damage or disuse [17] in the same manner as other neural prostheses [14]–
[16].

In order to understand the neural basis of memory in hippocampus several features of both
the context in which encoding occurs as well as the functional aspects of simultaneous
multineuron firing patterns must be identified, interpreted and manipulated which has been
an important objective of the research described here. This entailed integrating 1) an
effective operational mathematical model for online prediction of CA1 cell discharges from
simultaneously recorded firing patterns of presynaptic CA3 neurons [14], [17]–[19],
together with, 2) systematic recordings of hippocampal ensemble activity in a behavioral
task in which trial-to-trial short-term encoding of task features was required for successful
performance [20], [21]. The combining of these two approaches involved the analysis and
characterization of neuronal firing patterns in CA3/CA1 hippocampal subfields that have
been repeatedly subjected to mathematical nonlinear input/output analysis [22]–[25]. The
culmination of these investigations [26] demonstrated that the “codes” extracted online by
the multi-input/multi-output (MIMO) nonlinear model could 1) enhance performance by
changing the memory requirements of the task to fit the strength of encoding and 2) replace
the pharmacological induced compromised operation of hippocampus by inserting electrical
stimulation patterns that mimicked natural strong codes in animals performing the same
task.

In the studies reported here four additional features of MIMO model extracted firing patterns
of hippocampal ensembles are demonstrated that provide further support for its application
as memory prosthesis. First, the actual basis of the utility of ensemble firing patterns
detected by the MIMO model is revealed in terms of how encoding of specific task events
reflects likelihood of performance on a given trial. Second, it is shown that if given
repeatedly on specified trials within the testing session, such facilitatory MIMO model
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stimulation patterns can enhance performance on trials without stimulation in the same
sessions and that such enhancement persists even after stimulation trials are terminated.
Third, we report that similar patterns exist across animals similarly prepared and trained and
can be generalized and used to improve performance via standardized stimulation patterns
even if not previously recorded from the same animals. Finally, it is revealed that
hippocampal firing patterns extracted online by the MIMO model and used to control and
predict behavioral performance conform to the synchronized firing of cells in the ensemble
that naturally successfully encode task features [27]. Collectively these findings support the
feasibility of applying the current prosthetic device [26] to 1) facilitate the repair of
damaged or disrupted brain-memory processes, and/or 2) enhance memory functions in
circumstances where retention is weak or ineffective [14], [28]–[30].

II. Methods
1) Animals

Forty five male, Long-Evans rats (Harlan) aged 4–6 months were used as subjects. They
were individually housed, allowed free access to food and water-restricted to maintain 85%
of ad libitum body weight during testing. All animal protocols were approved by the Wake
Forest School of Medicine Institutional Animal Care and Use Committee (IACUC),
Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC), and
the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals.

2) Apparatus
The behavioral testing apparatus for the delayed nonmatch to sample (DNMS) task is the
same as reported in other studies from this laboratory [21], [22], [26], [31]–[33] and
consisted of a 43 × 43 × 50 cm Plexiglas chamber with two retractable levers (left and right)
positioned on either side of a water trough on the front panel [Fig. 1(a)]. A nose-poke device
(photocell) was mounted in the center of the opposite back panel with a cue light positioned
immediately above the nose-poke device. A video camera was mounted on the ceiling and
the entire chamber was housed inside a commercially built sound-attenuated cubicle.

3) Behavioral Training Procedure
The DNMS task consisted of three main phases: Sample, Delay, and Nonmatch [Fig. 1(a)].
At the initiation of a trial, either the left or right lever was randomly (50% probability)
selected and extended and the animal required to press the lever as the Sample Response
(SR), which retracted the SR lever and initiated the Delay phase, signaled by the
illumination of a cue light over the nosepoke photocell device on the rear panel (Fig. 1(a),
Delay). At least one nosepoke was required during the delay interval which varied randomly
in duration between 1–30 s on each trial during the session. After the delay timed out the cue
light turned off and both levers on the front panel were extended, signaling the onset of the
Nonmatch phase. A correct response in the Nonmatch phase consisted of a response on the
opposite lever, a Nonmatch Response (NR) with respect to the SR, and produced a drop of
water (0.4 ml) reward in the trough between the two levers. After the NR the levers were
retracted for a 10.0-s intertrial interval (ITI) before a Sample lever was presented to begin
the next trial. A response on the same lever as the SR (Match Response) constituted an
“error” with no water delivery and the chamber house lights dimmed for 5.0 s with the next
trial presented 5.0 s later. Individual performance was assessed as % correct NRs with
respect to the total number of trials (100–150 per 1–2 h daily session) as well as the %
correct trials as a function of delay [Fig. 1(b)].
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4) Hippocampal Electrode Arrays
All surgical procedures conformed to NIH and AAALAC guidelines, and were performed in
a rodent surgical facility approved by the Wake Forest School of Medicine IACUC.
Following training to criterion performance levels in the DNMS task animals were
anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) and placed in a stereotaxic
frame. Craniotomies (25 mm diameter) were performed bilaterally over the dorsal
hippocampus to provide for implantation of two identical array electrodes (Neurolinc, New
York), each consisting of two rows of eight stainless steel microwires (diameter: 20 µm)
positioned such that the geometric center of each electrode array was at co-ordinates 3.4 mm
posterior to Bregma and 3.0 mm lateral (right or left) to midline [34]. The array was
designed such that the distance between two adjacent electrodes within a row was 200 µm
and between rows was 400 µm to conform to the locations of the respective CA3 and CA1
cell layers [21]. The longitudinal axis of the array of electrodes was angled 30° to the
midline during implantation to conform to the orientation of the longitudinal axis of the
hippocampus, with posterior electrode sites more lateral than anterior sites [Fig. 1(c)]. The
electrode array was lowered in 25–100 µm steps to a depth of 3.0–4.0 mm from the cortical
surface for the longer electrodes positioned in the CA3 cell layer, leaving the shorter CA1
electrodes 1.2 mm higher with tips in the CA1 layer. Extracellular neuronal spike activity
was monitored from all electrodes during surgery to maximize placement in the appropriate
hippocampal cell layers. After placement of the array the cranium was sealed with bone wax
and dental cement and the animals treated with buprenorphine (0.01–0.05 mg/kg) for pain
relief over the next 4–6 h. The scalp wound was treated periodically with Neosporin
antibiotic and systemic injections of penicillin G (300 000 U, intramuscular) were given to
prevent infection. Animals were allowed to recover from surgery for at least one week
before continuing behavioral testing [27].

5) Electrophysiological Acquisition and Monitoring of Neural Data
Animals were connected by cable to the recording apparatus via a 32-channel headstage and
harness attached to a 40-channel slip-ring commutator (Crist Instruments, Hagerstown, MD)
to allow free movement in the behavioral testing chamber. Single neuron action potentials
(spikes) were isolated by time-amplitude window discrimination and computer-identified
individual waveform characteristics using a multi-neuron acquisition processor (MAP)
(Plexon Inc., Dallas, TX). Single neuron spikes were recorded daily using waveform and
firing characteristics within the task (perievent histograms) for each of the DNMP events
(SR, LNP, and NR). Only isolated spike waveforms exhibiting firing rates consistent with
CA1 and CA3 principal cells (i.e., 0.5–5.0 Hz baseline firing rate) and stable behavioral
correlates across sessions were employed for experimental manipulations and model
development [16], [20], [22], [35]–[37]. Final neuron ensembles used to analyze encoding of
DNMP events consisted 15–32 single neurons, each recorded from a separate identified
electrode location on the bilateral arrays [Fig. 1(c)].

6) MIMO Model
A general, nonlinear model using a Volterra kernel-based strategy for the MIMO nonlinear
dynamics underlying the transformation of CA3 to CA1 spike trains was established to
predict output patterns of CA1 firing pattern from input patterns of CA3 neural activity [14],
[19], [38]–[40]. The spatio-temporal pattern transformations from the hippocampal CA3
region to the CA1 region are thus formulated in a manner that the MIMO system can be
decomposed into a series of multiple-input, single-output (MISO) subsystems (Fig. 2) that
can be expressed by the following equations
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where the variables xi and yi represent input and output spike trains, respectively, and the
hidden variable w represents the prethreshold membrane potential of the output neurons.
Three physiologically plausible components are incorporated in the system: u, the synaptic
potential produced by the input spike trains; a, the output spike-triggered after-potential; and
ε, a Gaussian white noise term with standard deviation, σ, which accounts for both
unobserved inputs and intrinsic noise of the output neuron. An output spike (y) is generated
when w exceeds threshold, θ. A feedback after-potential (a) and feedback kernel (h,
describing the transformation of y to a) are also triggered and then added to w. The
feedforward kernel, k describes the transformation from x to u, allowing u to be expressed as
a Volterra functional series of x

where N is the number of inputs, with Mk equal to the “memory” length (in time bins) of the
feedforward process. The zero order kernel, k0, is the “background” or baseline value of u

with no input. First-, second-, and third-order self-kernels, k1(n), , describe the
first-order linear, as well as second- and third-order nonlinear relations between the nth

input xn and u, respectively. Second-order cross-kernels, , describe the nonlinear
interactions between each unique pair of inputs (xn1 and xn2) as they affect u. The output
feedback variable, a, from the MISO subsystem above is expressed as

where Mh is the memory length (in time bins) of the feedback process, and h is the linear
feedback kernel.

Hampson et al. Page 5

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2012 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The full model describes the transformation of third-order (i.e., triplets) of temporal spike
train intervals for each input, and second-order (i.e., pairs) temporal intervals for any of two
interacting inputs, into output spike trains, taking into account noise and output spike-
triggered feedback due to circuitry and/or membrane biophysics, as well as threshold
differences specific to each neuron. In order to reduce the number of open parameters to be
estimated, orthonormal Laguerre basis functions [17] were used to expand the k and h terms.
Given the Gaussian noise term and the threshold, this model operates as a special case of the
Generalized Laguerre–Volterra Model (GLVM) employing a probit link function [24], [41],
[42]; and uses an iterative reweighted least-squares method [18] to estimate all model
parameters. Threshold, θ, and noise deviation, σ, are redundant variables indirectly obtained
through variable transformation [24], [41], [42]. The stochastic nature of the system allows
validation of model estimates using a Kolmogorov–Smirnov test based on time-rescaling
[43]. Code Strength is computed from the ensemble firing rate multiplied by the MIMO
coefficients for each single trial. The coefficients are the same for each trial; however, the
firing of each neuron varies on each trial. Thus, Code Strength yields a continuous measure
of variability in ensemble firing as well as correspondence between neural activity on single
trials versus the mean across Correct trials for Left versus Right SR; with weak (< 1.0)
scores corresponding to errors and strong (> 2.0) scores corresponding to correct DNMS
performance.

7) Prediction of CA1 Firing Using MIMO Model
CA1 output predictions from the MIMO model were computed across 3–5 consecutive
DNMS sessions for each animal. The MIMO model accurately predicted CA1 (output) spike
trains based on CA3 (input) spike trains on strong and weak SR code trials (Fig. 2, lower
right), requiring at least second-order self-kernels (k2s) to sufficiently capture the CA3-CA1
nonlinear dynamics. MIMO detected single trials were identified as consistent with strong
and weak SR codes based on correlation with successful DNMS performance. MIMO-
derived strong SR code CA1 firing patterns showed common features across animals and
were thus averaged to produce a “Generic” CA1 strong SR code pattern which was tested in
the same manner as MIMO derived patterns during CA1 stimulation trials.

8) Computation of MIMO Code Strength
CA3 and CA1 neural firing patterns were defined as strong codes in terms of behavioral
performance. Trials that were correct at the longest DNMS trial delays (21–30 s) were
classified as Strong Codes, while trials that are errors at short delays (< 15 s) were classified
as Weak Codes. Kernels of the MIMO model were computed using only Left and Right
Strong Code trials, so that the model prediction of CA1 firing generated Strong Codes for
Left and Right trials. Within the MIMO model, individual trial SR Codes were identified
and scored by computing the Pearson product-moment cross-correlation of each MIMO
Model CA1 prediction with actual CA1 firing, and normalizing the resultant scores to mean
= 0 with standard deviation = ±1.0. This produced a bimodal distribution of scores with
peaks at approximately −2.0 and +2.0, representing the mean scores for Left and Right trials,
respectively. The absolute value of this distribution, scaled from 0 to 3.5 with a peak
between 1.5 and 2.5, is reported here as “Code Strength” (Figs. 2 and 4). Strong Codes are
thus trials with > scores one standard deviation above the mean (peak) of the distribution,
while Weak Codes are those scores less than one standard deviation below the peak of the
distribution.

9) MIMO Generated Electrical Stimulation of CA1 Neurons
A custom built 16-channel stimulator (Triangle BioSystems Inc., Durham, NC) was utilized
to deliver patterns of electrical pulses to CA1 electrodes bilaterally in both hippocampal
arrays. The stimulator delivered digital-to-analog (D/A) converted biphasic output pulses to
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the eight CA1 electrodes in each single array. Each D/A output channel delivered one-half
of a symmetric biphasic stimulation pulse of 1.0 ms duration to a pair of adjacent electrodes
in CA1 allowing bipolar stimulation that was isolated from other electrodes on the same
array. The biphasic stimulator pulses were electronically gated to produce square constant
voltage outputs in the range of 0.1 to 15 V (20 – 100 µA) in 0.1 V increments with a
minimum interpulse interval of 50 ms on a given channel. The range of parameters typically
employed on a single MIMO output channel was: biphasic, 1.0–4.0 V p-p, 1.0 ms, ≤ 20.0
Hz. Stimulation patterns consisted of pulses delivered to eight pairs of CA1 electrodes in
trains of 1.5–3.0 s duration during performance of the SR. Real-time lag between CA3
recording and MIMO calculation and stimulation was approximately 100 ms. Controls
consisted of 1) delivery of trains of the same pulse intensities that were randomized with
respect to location and timing between channels by shifting the coefficients of the MIMO
model, or 2) by delivering effective SR patterns at different times periods during the trial
other than coincident with the SR [26].

III. Results
Analyses of hippocampal neuronal activity in rodents performing the DNMS memory task
have been conducted over a number of years and have yielded trial-specific patterns of firing
by ensembles of neurons recorded in a specific spatiotemporal context [20]–[22], [31], [33],
[44]–[47]. Fig. 1(a) shows the DNMS task in which the rat was required to make a “Sample”
lever response (SR) at the start of the trial when either the Right or Left lever was presented,
and retain the position of the lever during a subsequent delay interval that varied randomly
in duration from 1–30 s on different trials, in order to make the correct “Nonmatch”
response (NR) by pressing the lever in the opposite position to the SR when both levers
were presented after the delay timed out. Fig. 1(b) shows that DNMS performance accuracy
(% correct NRs) decreased uniformly across animals (n = 25) as a direct function of the
duration (1–30 s) of the intervening delay interval. A correlated behavioral measure, mean
latency to make the NR from the time that both levers were presented in the Nonmatch
phase increased as a function of delay duration and was inversely related to performance
accuracy [Fig. 1(b)]. Electrophysiological recording of hippocampal neural activity during
the DNMS task employed custom designed arrays of microwire (20 µm) electrodes
implanted bilaterally in the dorsal hippocampus [21], [22] to provide single neuron firing
data from eight pairs of CA3-CA1 probes aligned at 200 µm intervals along the longitudinal
axis of hippocampus [21], [33].

We have recently utilized the MIMO nonlinear mathematical model for analysis of CA3/
CA1 ensemble firing to provide real-time assessment of ensemble “SR codes” to predict
CA1 output patterns based on the CA3 neural firing inputs [Fig. 1(c)] to the model [26]. The
model was used to determine the temporal firing relationships between spike occurrences
recorded in CA3 (left) and CA1 [CA1 Actual, Fig. 1(c)] on correct DNMS trials irrespective
of duration of delay. Color contour displays of the rate of firing of the respective CA3 and
CA1 neurons recorded from the hippocampal electrode array 3.0 s prior to occurrence of the
SR at each spatial position of the Sample lever, are shown in Fig. 1(c). Both the recorded
(Actual) and MIMO model predicted outputs of at the same CA1 cell locations are shown
for each position of the SR corresponding to different trial types. The MIMO model
therefore: 1) receives presynaptic inputs from CA3 cell discharges (Fig. 1(c), CA3 Input)
and 2) calculates outputs for postsynaptic CA1 cells based on those inputs (Fig. 1(c), CA1
Prediction) via putative monosynaptic, Schaffer collateral connections [48]. The recorded
firing of CA1 neurons over the same trials in which CA3 activity was used to teach the
model and extract MIMO coefficients, is shown for comparison in Fig. 1(c) (CA1 Actual) to
illustrate similarity to the MIMO model output. Hence, the MIMO model extraction of
nonlinear coupling between CA3 and CA1 neuronal spike events provides the basis for
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online “prediction” of CA1 (output) neuron firing from simultaneously recorded CA3
(input) cell activity in the same hemisphere.

1) DNMS Performance Accuracy and MIMO Model-Predicted Firing Patterns
The MIMO model also provided a means of identifying “strong” versus “weak” SR
encoding on individual trials [26]. Since the MIMO model was developed using the SR
firing on correct Left or Right DNMS trials, its predictions represent CA1 firing patterns
highly likely to be rewarded on the same trial (i.e., “strong SR codes”). The rate contour
maps at the top of Fig. 2(a) compare the recorded CA1 firing (Actual) to MIMO-predicted
CA1 firing (Model: Strong Code) on successfully performed Left DNMS trials and at the
bottom this same comparison is made for errors on left trials (Model: Weak Codes). Contour
maps were computed as x ● wLeft, where x = ensemble firing rates by neuron and time, and
wLeft = the weighting coefficients derived from the MIMO model that generated the mean
firing pattern associated with correct Left trials. The graph in the middle [Fig. 2(a)] plots
behavioral performance on left trials of different delay durations as a function of differing
SR “code strength.” The weighted firing rate Code strengths in Fig. 2(a) were computed as
the correlation between the actual firing pattern and MIMO-predicted Left Correct SR firing.
These scores were normalized (mean = 0, standard deviation = 1) such that a “strong code”
(xLeft ● wLeft = 2.5) yielded maximal performance. For MIMO model derived Strong SR
code patterns with a “code strength” of 2.5 (Fig. 2(a), red triangles) correct performance was
> 90% at nearly all delays. However if a CA1 firing pattern for a Right correct trial occurred
on a Left trial (Fig. 2(a) bottom) this represented the least correlation with the Left trial
Strong code and resulting in a very “weak code” (xRight ● wLeft = 0.5) for that type of trial.
Since the weakest code for a Left trial is the strong code for a Right trial this should
correlate with the worst possible performance as a function of delay, which is shown at a
strength 0.5 in Fig. 2(a). Fig. 2(b) shows examples of intermediate levels of code strength
associated with different levels of performance in terms of codes that result from a lack of
exact matches to the MIMO model prediction of CA1 derived from strong codes. This is
because the firing of the CA3 input contains spikes at spatiotemporal locations that do not
match the firing on correct trials to different degrees ranging from similar but not the same
as strong codes to patterns that approach that appropriate for the opposite type of trial (weak
codes). It is clear from Fig. 2(b) that the transformation from Strong to Weak codes involves
a lack of clustering of synchronous firing which is indicated by the more or less random
dispersion across the CA1 recording sites. Interestingly therefore the MIMO derived code
associated with normal DNMS performance [Fig. 1(b)] is most similar to the code strength
curve in Fig. 2(b) (green curve) that yields a nearly random weighted firing ([xLeft : xRight]
● wLeft) as shown in Model Normal Code map indicating that normal performance of the
task is associated with SR codes for the correct and incorrect lever on any given trial This
mixture of cell type firing across trials during DNMS sessions has been reported before (31)
and shows that the strong codes were composed of appropriate cell types for that trial and
that weak codes consist of cell firing that is appropriate for the opposite trial type.

2) Enhanced DNMS Performance With CA1 Stimulation Derived From MIMO Model Patterns
To assess the ability to apply the MIMO model of hippocampal ensemble processing as a
cortical prosthesis [26], these same CA1 output predictions from CA3 cell firing were
transformed online into simultaneous electrical stimulation patterns (1.0 ms biphasic pulses
20–100 µA) delivered bilaterally to the same CA1 electrode locations in the hippocampal
arrays during the SR [Fig. 3(a)]. The patterns of electrical stimulation were specific for
strong SR code for each lever position (right or left), as shown in Fig. 1(c). Under normal
DNMS testing conditions MIMO model stimulation facilitated performance in relation to
trials in which stimulation was not delivered by the model. Fig. 3(b) shows that such
stimulation produced a significant (F(6,1057) = 12.7, p < 0.001) increase in performance (Fig.
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3(b), MIMO Stim, n = 9 animals) on trials with delays > 10 s compared to similar trials in
the same sessions without stimulation (Control). Since the stimulation patterns were specific
for the right or left lever, the effectiveness of the stimulation was not related to: 1) mere
increases in neuron firing rate (Fig. 2), 2) presence or absence of stimulation as a cue and 3)
differences in stimulation intensity [26]. A further demonstration of specificity was
demonstrated by delivery of the Left CA1 stimulation pattern on Right lever DNMS trials
(and vice-versa) which resulted in a significant (F(6,1057) = 8.3, p < 0.001) impairment of
DNMS performance relative to control levels (Fig. 3(b), Reversed Stim) and suggests that
the animals were biased to respond on the opposite lever as encoded by the pattern of
stimulation [Fig. 3(c)]. Finally, delivering a randomized stimulation pattern by “scrambling”
the coefficients of the MIMO model did not facilitate performance (F(6,1057) = 0.7, n.s.) in
the same manner as strong code stimulation indicating that delivery of electrical current
alone irrespective of pattern was not sufficient to improve performance. Also stimulation
with scrambled coefficients did not impair performance below normal control levels (Fig.
3(b), Scrambled Coeff) which is consistent with the results shown in Fig. 2(b) in which there
is a similarity with “Normal Intermediate Codes” associated with nonfacilitated performance
of the task under normal conditions. The randomized (scrambled) coefficient procedure
imposes a stimulation pattern which can activate both appropriate and inappropriate cell
types, which is similar to the normal code intermediate firing patterns shown in Fig. 2(b).
Therefore, on scrambled stimulation trials the hippocampus is activated in the same manner
(Fig. 3) under normal performance conditions when neither a strong or weak code is present
on the trial (Fig. 2(b), Intermediate Normal code).

3) Cumulative Effects of Repeated Strong Code CA1 Stimulation on DNMS Performance
Another feature of MIMO model stimulation patterns that could serve an extrapolated
benefit as a cortical prosthesis was examined with respect to repetition of strong SR code
stimulation procedures over several testing sessions. In this context individualized MIMO
model stimulation patterns [Fig. 1(c)] as well as a Generic (mean across animals) MIMO
strong SR code stimulation pattern (Fig. 2), were both tested (in different animals) to assess
the cumulative effects of MIMO stimulation over several sessions. A unique aspect of this
assessment was that the effect of stimulation delivered on selected (20%–40%) trials in the
session (delays 16–30 s) was also evaluated with respect to performance on trials in the
same sessions in which no stimulation occurred. As previously utilized for animals with
compromised hippocampal activity [26], a “Generic” strong SR code stimulation pattern,
derived across several individual animal strong code patterns, was delivered to CA1 at the
time of the SR. Comparison of the open symbols in Fig. 4(a) shows that a marked increase
in overall mean % correct performance (n = 8 animals) occurred rapidly on across trials and
sessions for both stimulation conditions. Mean performance on nonstimulation trials
increased at slower rate but was consistent over 240–400 trials in the same sessions [red and
blue curves, Fig. 4(a)]. Such changes over time were markedly different from the flat
cumulative performance curves for animals (n = 10) with no exposure to MIMO model
stimulation trials during the same time period [Control, Fig. 4(a)]. Both stimulation patterns
produced facilitation of performance on nonstimulated trials in the same sessions, however
individualized MIMO Stim patterns produced a faster facilitation (slope = 24%/day, R =
0.79, F(1,88) = 39.10, p < 0.001) than Generic Stim (slope = 1.5%/day, R = 0.74, F(1,88) =
44.9, p < 0.001) as shown in Fig. 4(a). Animals that received individualized MIMO Stim
patterns also showed a slower decline in performance (slope − 1.4%/day, R = 0.82, F(1,88) =
27.18, p < 0.001) compared to Generic Stim (slope = − 2.8%/day, R = 0.76, F(1,88) = 14.27,
p < 0.001) measured over 1000 successive trials across several daily sessions after
stimulation was terminated [Fig. 4(a)]. The cumulative facilitation in performance on
nonstimulated trials in the above sessions as a function of increased individualized MIMO
Stim trials was associated with corresponding improvement in DNMS delay curves shown
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in Fig. 4(b), (Trl 180, 240, MIMO Stim F(10,476) = 5.72, p < 0.001). These changes on
nonstimulated trials were accompanied by a corresponding upward shift in mean single trial

SR code strength (Fig. 2) in the same animals (Fig. 4(b), Trl 180, 240, , p <
0.001). In addition, the gradual decline in performance following cessation of individualized
MIMO stimulation procedures was accompanied by a delay-dependent decrease in
performance (F(10,476) = 4.23, p < 0.001) as well as a gradual decline in single-trial SR code

strength ( , p < 0.01), as shown in Fig. 4 (Trl 800). These same phasic changes
were duplicated, but to a lesser degree, for animals that received Generic Stim Fig. 4,
Generic Stim, Trl 180, 240, 800) with the facilitatory effects dissipating more rapidly than
individualized MIMO stim (F(10,476) = 2.53, p < 0.01, Trl 800) after cessation of stimulation
trials.

The results depicted in Fig. 4 demonstrate that MIMO model derived stimulation effectively
changed normal hippocampal operation such that SR encoding on all trials was facilitated as
a direct function of the number of strong SR code stimulation exposures (240–400 trials),
and that this effect persisted for 800 trials after MIMO stimulation was no longer delivered.
These findings confirm the fact that 1) the actual presence of electrical stimulation on a
given trial was not required for facilitation of performance after a series of stimulation trials,
and 2) the changes detected by the MIMO model that correspond to effective performance
across more difficult long delay trials, were provoked to occur naturally in hippocampal
ensembles and in parallel with the cumulative increases in performance following repeated
exposure to stimulation patterns that were determined by the same process.

4) Neuronal Basis of Hippocampal “Strong Code” Firing Patterns
MIMO model predictions were tested by assessing the relation to performance of the DNMS
task, as shown in Figs. 3 and 4. MIMO model derived mean (generic) firing patterns
averaged across several animals (n = 19) associated with successful performance (strong SR
codes), or with errors (weak SR codes) on trials in the same sessions, are shown in Fig. 5(a)
and (b), respectively. Fig. 5(c) shows the relationship of these two types of firing patterns to
ensembles recorded in different animals in terms of the correlation of patterns in individual
animals (each bar) to the overall mean pattern for each SR. The consistency of correlations
(r = 0.4 to 0.6) between each animal’s individual MIMO-derived CA1 pattern for Left and
Right strong SR codes and the generic CA1 Left and Right strong codes averaged across
animals (n = 20) shown in Fig. 5(c) indicates that 16%–36% (i.e.r2 = 0.16 to 0.36) of spikes
in the mean generic patterns occurred on the same neuron channel and at the same temporal
position as in the individual MIMO-derived patterns. This is significantly above the chance
correlation (r = 0.29, r2 = 0.08) obtained when individual CA1 ensemble spike patterns were
randomized, averaged, then correlated to the mean. Fig. 5(d) shows the possible basis for
this similarity in terms of prior characterizations and classifications of individual CA1 and
CA3 cell firing characteristics in the same DNMS task [22], [27], [33], [35]. The perievent
histograms characterize different cell types that show firing correlates to (i.e., encode)
specific features of the DNMS task (i.e., lever position, phase of task, and/or conjunctions of
both). Although ensemble cell firing is distributed across all task-relevant events, The most
complex type firing involves the hierarchical combining of these properties in some neurons,
termed Trial-Type cells, that respond only to inputs from what appear to be pairs of
conjunctive cells to reconstruct (i.e., encode) particular features which define a type of trial.
In this context Trial-Type cells fire only on left SRs and right NRs (Fig. 5(d), lower right)
i.e., both behavioral events that define only one type of DNMS trial and not anything related
to the other. It is important to note that recently it was discovered [22], [27] that this natural
encoding feature accounts for a large portion of the differentiation of MIMO patterns into
strong codes that are present on successful DNMS trials. The MIMO model therefore can
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selectively filter occasions in which large numbers of CA1 and CA3 Trial-Type cells fire
synchronously on the same. Strong code trial, as shown in Fig. 5(e)

IV. Discussion
The results presented here provide additional evidence to support prior demonstrations [26]
that a device employing a nonlinear MIMO model to extract hippocampal ensemble firing
patterns online during a delayed memory task can, not only enhance and repair memory but
if necessary, also, after repeated exposure, change how the hippocampus alone encodes
events to facilitate retrieval and enhance performance. As demonstrated here, the
effectiveness of the MIMO derived electrical stimulation patterns delivered to the same
hippocampal locations in which they occur during similar task demands (Figs. 3–5)
establishes the functional significance of MIMO model extracted SR codes. Although other
recent investigations have reported relationships between multineuron firing in cortical
ensembles and distinct behavioral events [11], [29], [43], [49]–[57], few have attempted, as
performed here, to directly substitute electrical stimulation for behaviorally correlated
neuron discharges from the same anatomic loci [58]–[62]. Also unlike other forms of
effective brain stimulation [58], [63], [64], the beneficial effects of MIMO derived
stimulation requires that the stimulation pulses be delivered in the identical spatio-temporal
firing patterns as recorded from the same neural ensembles [14], [23], [24], [60].

The results presented here have taken this analysis to its final level by showing that the
“strengths” of SR codes are related directly to the specificity of the lever position that is
being encoded and that deviation from this firing pattern specificity is related to a
proportional “mixing” of codes between the two lever positions as shown in Fig. 2. The fact
that this mixing tendency is proportionately vulnerable to the duration of the intervening
delay makes this the primary determinant of successful performance since “strong SR
codes” produce maximum success at all delays and “weak SR codes” resemble strong codes
for the opposite lever (Fig. 2) and hence are at risk for error at all delays. From these two
extremes it is possible to derive measures of code strength from trial specific ensemble
firing patterns subjected to MIMO coefficient adjustment and therefore provide an
explanation for decreased performance as a function of duration of delay because of the
transitional gradients expressed in patterns with different code strengths corresponding to
trials with increasing delays. It is clear from Fig. 2 that ensemble codes with intermediate
strength between strong and weak codes show a proportionate vulnerability to delay
duration strictly as a function of how similar the patterns are to the either the strong code
which insures maximal performance at all delays, and weak codes which produce near
chance performance on trials > 16 s where hippocampus is required to perform the task [20],
[31], [37]. The direct test of this requirement in recent studies showed that the beneficial
effect of MIMO stimulation was not present if: 1) stimulation patterns were the same
intensities but the SR code was altered by “scrambling” the MIMO derived coefficients
across electrode locations and temporal sequences, 2) the exact same effective patterns were
delivered at different times during the trial than the SR, and 3) SR code stimulation patterns
for each lever were reversed [22], [26]. Randomizing the coefficients of the MIMO model
strong code pattern produced a change in the spatiotemporal pattern which when delivered
as “scrambled” stimulation no longer facilitated performance and mimicked firing that
occurred on trials with intermediate codes where fully developed strong or weak codes were
not present [Normal Codes, Fig. 2(b)].

The above intricate analyses make it obvious that the effectiveness of the stimulation
patterns cannot be attributed to subjective influences such as acting as a cue to the animal
for correct responding for several reasons; 1) the stimulation patterns differ for each lever
position which means that if the animal were utilizing the mere presence of stimulation on
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certain trials to perform better than nonstimulation trials, it would also have to be capable of
discriminating the individual patterns of stimulation for each lever independent of the lever
position which is very unlikely, also 2) since the stimulation is delivered only at the time of
the SR, retrieval of the specific stim pattern as a cue together with lever position (left or
right) would also be required at the time of the NR, 10–30 s later, which is unlikely, 3)
stimulation patterns in addition to being different for each lever position are delivered to
CA1 cells in both hemispheres, therefore it is not possible for differential unilateral
activation to provide a cue from the stimulation either, finally and perhaps most relevant to
this alternative explanation for the effectiveness of the stimulation is the fact that as shown
in Fig. 4, 4) performance on nonstimulation trials was systematically and differentially
facilitated as a function of the number and type of MIMO stimulation trials previously
experienced, which makes it impossible for conditioning to stimulation-related “cues” to
have been the basis for improved performance in the DNMS task.

Another cohesive factor in the results reported here that prevents alternative interpretations
was that MIMO model derived stimulation was effective because it reflected the predicted
strong SR code ensemble firing pattern in which performance could be enhanced by its
utilization in the closed loop paradigm [22], [26]. In this case enhancing performance by
linking the detection of strong codes to trials in which task delays could be lengthened
showed that 1) the patterns were generated online coincident with the occurrence of neural
events that required encoding and 2) when such “strong” SR codes did occur they were
sufficient to survive delays longer than the animal had experienced previously but were still
delay-dependent in the same manner as weaker SR codes which were at risk for error [22],
[26]. This is also consistent with the fact that the “read out” of the MIMO model derived
codes reflect a natural encoding process in hippocampus where behaviorally relevant
features of the DNMS task are hierarchically demarcated into the distributed functional cell
types [FCTs, Fig. 5(d) and (e)] that have been shown extensively in prior studies [16], [27],
[33], [35], [65]. The fact that strong SR codes occurred only on trials with a high percentage
of synchronously firing appropriate Trial-Type cells [Fig. 5(e)], provides a biological basis
for the success of the MIMO model stimulation in facilitating performance since prior
investigations have shown that such hierarchical encoding and distribution of task
information amongst hippocampal cell types occurs only after delays are introduced in the
DNMS training regimen [33], [35], [66].

An important new feature of MIMO model stimulation shown in Fig. 4 appears to exploit
the well-known long-term plasticity of hippocampal synaptic circuitry [48], [52], [67]–[70]
via cumulative effects after repetitive strong SR code stimulation trials exhibited by
improved performance on nonstimulation trials progressively over time in the same
behavioral sessions. The subsequent gradual decline in enhanced performance over days on
nonstimulated trials after stimulation was terminated, suggests that the changes provoked in
hippocampal plasticity underlying effective SR encoding were likely due to synaptic
degradation in the absence of continued potentiation from MIMO stimulation [71], [72]. The
fact that the frequency of spontaneously generated strong SR codes increased on
nonstimulated trials during cumulative MIMO stimulation trials and decreased to near
prestimulation levels after stimulation was terminated (Fig. 4) is also supportive of synaptic
mechanisms being altered. This feature indicates that such patterned stimulation may have
tapped directly into factors known to control long term potentiation (LTP) of hippocampal
synaptic processes such as, 1) frequency of stimulus pulses within the train, 2) number of
times pulse trains are delivered, and because of the nonlinear nature of MIMO model
derivations [23], [39], [73]–[75], 3) the polarization status of postsynaptic cell membrane at
the time of convergent presynaptic inputs [71], [72], [76], [77]. If synaptic potentiation were
being provoked by cumulative MIMO model stimulation a possible direct consequence
would be an enhanced tendency for subclasses of appropriate Trial-Type cells to fire
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synchronously on nearly every trial, thereby producing nearly automatic encoding and
accurate performance as shown when such firing occurred spontaneously (Fig. 2). The
above results clearly illustrate the difference between individualized MIMO stimulation
patterns derived online from the CA3 region and “Generic Stim” patterns averaged across
large numbers of similarly trained and tested animals (Fig. 4). However, the virtual
standardization of the DNMS recording circumstances across animals made possible the
application of the MIMO model as universal hippocampal prosthesis since in this context it
was possible to employ Generic stimulation patterns without preassessment and derivation
of individual stimulation parameters online. We have reported recently that this approach
can be used to replace hippocampal function when ensemble firing no longer produces task-
related strong SR codes due to pharmacological blockade of glutamatergic transmission
[26].

This is also consistent with the fact that the “read out” of the MIMO model derived codes
reflect a natural encoding process in hippocampus where relevant features of the DNMS task
are hierarchically demarcated into the distributed functional cell types [FCTs, Fig. 5(d) and
(e)] that have been shown extensively in prior studies [16], [27], [33], [35], [65]. The fact
that strong SR codes occurred only on trials with a high percentage of synchronously firing
appropriate Trial-Type cells [Fig. 5(e)], provides a biological basis for the success of the
MIMO model stimulation in facilitating performance since prior investigations have shown
that such hierarchical encoding and distribution of task information amongst hippocampal
cell types occurs only after delays are introduced in the DNMS training regimen [33], [35],
[66]. Finally, the fact that MIMO model patterns of electrical brain stimulation can repair
and/or enhance cognitive efficiency suggests that cortical prostheses of this nature could be
implemented in a variety of brain regions if applied in a manner consistent with the
ensemble information processing they are intended to replace [29], [30], [50], [78]–[81].
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Fig. 1.
DNMS task and associated hippocampal ensemble activity. (a) DNMS trial diagram of SR,
Delay, and NR for water reward (WR) Timeline below indicates sequence of phases in the
task: intertrial interval (IT); Sample Presentation (SP); Sample response (SR); Delay interval
(Delay); last nosepoke (NP) during Delay (LNP); Nonmatch response (NR); Reinforcement
(water reward) (Reinf.). (b) DNMS performance for 15 animals. Blue trace indicates mean ±
S.E.M. % correct Nonmatch Responses on DNMS trials sorted according to length of delay
(in 5 s increments). Red Trace indicates latency to perform the Nonmatch Response on the
same trails. (c)MIMO nonlinear model analysis of DNMS generated hippocampal ensemble
activity. Left: Color contours depict ensemble firing from 16 CA3 neurons (8 per
hemisphere) recorded up to 3.0 s prior to the SR on Left (upper) or Right (lower) DNMS
trials. Center: Schematic of MIMO model. CA3 input spike trains X1 − Xn predict CA1
output spike trains Y1 − Yn at right. The input–output relationship between CA3 and CA1 is
modeled b parallel MISO nonlinear equations: w = u(k, x) + a(h, y) + n(σ), where k
indicates the Volterra kernels, σ is a noise term, and H is a feedback term. The MIMO
model is constructed of parallel MISO computations expanded with corresponding
definitions. Near Right: MIMO predicted CA1 output for Left and Right Sample derived via
MIMO model from the CA3 firing input at left. Far Right: Actual CA1 firing corresponding
to the MIMO model output. Neuron firing rates spike probability indicated by color scale.
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Fig. 2.
DNMS performance level corresponds to strength of SR encoding. (a) Contour Plots
illustrate derivation of SR encoding using the MIMO model. Top: CA1 firing in Sample
phase of correct Left trials (Actual Firing) constitutes a Strong Code. CA3 firing for the
same trials, input to the MIMO model, produces the corresponding Strong Code output
prediction of CA1 firing. Weighted CA1 firing map (Model: Strong Code) is derived from
product of CA1 firing with model coefficients as xLeft ● wLeft, where xLeft = Left SR
ensemble firing (by neuron and time), and wLeft = the MIMO weighting coefficients for
correct Left trials. Bottom: CA1 firing corresponding to opposite trial (Right Sample)
demonstrates lack of correlation between CA1 firing (Actual Firing) and model coefficients
which produces low code strength (Model: Weak Code) for the Left Sample. Center: Graph
shows DNMS performance on trials with varying strength of SR encoding. Code strength
computed as the correlation between CA1 actual firing on DNMS trials and MIMO-
predicted Left Correct SR firing (normalized with mean = 0, standard deviation = 1).
Colored-coded curves show DNMS performance on trials at different delay durations
associated with the respective weighted CA1 firing (dashed arrows); for example, Strong
Codes are associated with high level (correct) DNMS performance at all delays (black
trace), while Weak Codes are predominantly associated with errors at delays > 10 s (red
line). Green dashed trace illustrates “Normal” DNMS performance equivalent to control
trace in Fig. 1(b) B: Intermediate Codes: “Mixed,” “Normal,” and “Sparse” codes result
from combination of both correct and incorrect trial firing input to the MIMO model. Each
MIMO model output is shown with actual firing representative from single trials with
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performance consistent with the behavioral graph for the respective code strength at left.
Errors are indicated for delays at each code level. The “Normal” code reflects the MIMO
model for trials associated with the behavioral performance associated with 1.5 code
strength (Green dashed line) that occurred on normal trials with no strong or weak codes
present. Insets: Schematic illustrates correspondence between model coefficients (red curve)
and CA1 firing (raster) for each of the SR code conditions.
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Fig. 3.
MIMO stimulation on DNMS trials. (a) Prediction of strong SR encoding in CA1 via MIMO
model used to derive spatio-temporal patterns of electrical stimulation delivered to CA1
electrode sites (right). Stimulation consisted of biphasic electrical pulses (0.5–2.0 V, 10–50
µV, 0.5 s duration, minimum interpulse interval=50 ms), delivered on trials with delay
durations of 15–50 s. (b) DNMS delay curves for animals (n = 9) tested under normal (no
stimulation) conditions, and when 35% of trials received CA1 stimulation commencing 3.0 s
prior to the SR. Stimulation sessions consisted of (a) CA1 patterns derived from the MIMO
model (green), (b) reversal of patterns to deliver Right trial stimulation on Left trials, and
vice versa (red), or (c) the same stimulation “power,” but with randomization of MIMO
coefficients to disrupt CA1 spatiotemporal firing patterns. Mean (±S.E.M.) DNMS
performance is shown averaged over five sessions (i.e., 500 trials) per condition. Asterisks
(*p < 0.01, **p < 0.001) indicate significant difference in DNMS performance compared to
Control (No Stim.) trials. Inset: Weighted CA1 firing plot derived from strong-code DNMS
trials when the MIMO coefficients were “scrambled” by randomizing the spatiotemporal
sequence of coefficients (by neuron and time), but not the actual CA1 firing. (c) Same data
as in B sorted according to Left versus Right DNMS trials. Bars indicate mean (±S.E.M.)
DNMS performance averaged over all delays, dark shading=Left DNMS trials, light
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shading=Right DNMS trails. Asterisks (**p < 0.001) indicate significant difference in
DNMS performance compared to Control (No Stim.) trials.
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Fig. 4.
Cumulative effects of MIMO generated strong SR code CA1 stimulation. (a) Cumulative
increase (left) in overall performance on nonstimulated trials (mean%correct ± SEM) in
animals (n = 8) receiving 25–30 stimulation trials (Stim Trials) per session over successive
sessions. Individualized MIMO stimulation patterns produced a more rapid increase in
performance after 240 trials than Generic stimulation patterns that took an additional 160
trials (400 trials total) to produce equivalent performance levels (shown at breakpoint in
axis). The right half of the plot (after the break point) shows the decay (Decline) of
facilitated performance over an additional 600 trials with the same delays when stimulation
was no longer delivered on any trials during the sessions. Dashed line=performance of
equivalently trained animals (n = 20) that never received stimulation. (b) DNMS delay
curves for phases of cumulative facilitation and decline in performance following 180 trials
(Trl 180) and 240 trials (Trl 240) of MIMO (left) and Generic (right) stimulation and after
cessation of stimulation for an additional 400 trials (Trl 800), corresponding to the periods
shown in A. Distribution of SR code strengths for all trials within the same sessions are
shown in the graphs to the right of the corresponding delay curves. Code Strength computed
from overall ensemble firing rate multiplied by the MIMO coefficients for each trial (see
Section II). Dashed vertical line indicates median code strength of 2.0 obtained prior to
cumulative stimulation procedure. Asterisks (*p < 0.01, **p < 0.001) indicate significant
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increase over control (no stimulation, Trl 0); hash marks (# p < 0.01, ##p < 0.001) indicate
significant difference in code distribution from control (Trl 0).
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Fig. 5.
Neural contributions to MIMO model. (a) Mean firing rate contour maps of hippocampal
ensemble activity averaged across 20 animals from neurons recorded at each respective CA1
electrode location in arrays in both hemispheres. Mean of MIMO derived strong SR codes
calculated 3.0 s prior to SR occurrence (−3.0 to 0.0 s, X- axis) for left and right lever
positions appropriate to the two types of DNMS trial. (b) Mean firing rate contour maps
averaged across the same 20 animals as in A for MIMO derived weak SR codes. High
density of firing in strong SR codes. (A) contrasts sharply with lack of firing density in weak
SR codes. (B) averaged across the same animals and DNMS sessions. (c) Cross-correlation
of each of the 20, single animal, Strong SR Code patterns with the mean pattern in A
averaged over the remaining 19 animals. Distribution of high correlations (R > 0.38, p <
0.001) reveals consistent pattern of SR firing across animals, leading to identification of
“Generic” MIMO strong SR codes for Left and Right lever trials. (d) Examples of FCTs
recorded in hippocampal ensembles, shown as single trial raster displays (dots = neural
spikes, row of dots = one DNMS trial,) and perievent histograms for ±1.5 s relative to SR
and NR responses designated as 0.0 s. Position cells fire only to behavioral responses on one
lever position (Left Position cell shown) in either phase of DNMS task. Phase cells fire only
during Sample or Nonmatch phase, irrespective of position of lever response (Nonmatch
phase cell shown). Conjunctive cells fire only to a particular combinations of position and
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phase (i.e., Left Nonmatch cell shown). Trial-type cells combine conjunctive cell attributes
and fire in both Sample and Nonmatch phases of task but only on a single type of trial and
do not fire on the opposite type of trial (Right Sample/ Left Nonmatch Trial-type cell
shown). (e) Contribution of FCTs to mean strong SR code in A. Individual ensembles
exhibiting strong SR code patterns for 20 animals were analyzed, and neurons with a
significant tendency to fire in this pattern (i.e., significant variance contributions: > 50%
coefficient weighting) were classified as to FCT and ranked in terms of percentage of total
cells contributing to the strong SR code pattern. Graphs indicate frequency distribution of
different FCTs contributing to Left and Right strong SR codes in A. Asterisks (*p < 0.01,
**p < 0.001) indicate significantly higher than chance contribution of a given FCT

( , p < 0.001); hash marks (#p < 0.01) indicate significantly lower contribution than

expected by chance ( , p < 0.01).
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