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INTRODUCTION
Considerable attention has been focused on the effect of ex-

tended duration work shifts (EDWS, > 24 h) on the performance 
of resident physicians.1-5 The Accreditation Council for Graduate 
Medical Education has recently limited the maximum duration 
of a work shift to 16 h for the approximately 24,000 postgradu-
ate year (PGY)-1 residents (i.e., residents in their first year after 
medical school), while continuing to allow the approximately 
84,000 intermediate-level and senior resident physicians (PGY-
2 and above) to work 28-h shifts twice per week.6 Working 
continuous EDWS has been shown to reduce overall total sleep 
time, increase the rate of attentional failures overnight,7 increase 
the risk of errors on clinical tasks,8 result in higher rates of medi-
cal errors,2,9 and increase the risk of crashes as a result of driving 
while drowsy.10 It has been demonstrated in the laboratory that 
1-2 weeks of chronic sleep deficiency can be as detrimental to 
waking performance as 1-2 days of acute sleep deprivation.11-13

Moreover, acute and chronic sleep deprivation interact such 
that performance during a night of lost sleep is up to 10-fold 
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worse when individuals have been chronically sleep deprived 
beforehand in comparison with acute sleep loss alone.13 Pre-
vious studies that examined the cumulative effects of chronic 
sleep loss11,12 did not do so on a background of acute sleep de-
privation, as experienced in trainee physicians. Furthermore, 
because the study by Cohen et al.13 was conducted in the con-
trolled laboratory environment, the extent to which acute and 
chronic sleep deprivation interact in a real-world occupational 
setting is unknown.

Given that medical and surgical resident physicians are rou-
tinely required to undergo both acute sleep deprivation and 
chronic sleep deficiency when working repeated 24- to 30-h 
EDWS, we sought to evaluate the effect of such schedules 
on performance in resident physicians. Because much of our 
understanding on the effect of acute and chronic sleep loss is 
based on highly controlled laboratory studies, the study also 
aimed to assess whether their effect on performance could be 
detected in an operational environment.

METHODOLOGY

Design Overview
Residents were studied during a 3-week rotation in the medi-

cal intensive care unit or the coronary care unit while following 
a Q3 shift schedule (as described in the next paragraphs). Resi-
dents completed a daily sleep- and work-hour log, and complet-
ed a 10-min psychomotor vigilance test (PVT) before, during, 
and at the end of each scheduled shift.
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Participants
PGY-1 residents in the internal medicine residency training 

program at Brigham and Women’s Hospital (2002-2004) were 
invited to participate in the study. Thirty-four PGY-1 resident 
physicians (23 males; age 28.0 ± 1.83 standard deviation (SD) 
years; range 24-32 years) whose schedules were compatible 
with an available study slot were placed in the study on a “first-
come, first-serve” basis (Figure 1). The study was approved by 
the Human Research Committee of Partners Healthcare, consis-
tent with principles of the Declaration of Helsinki. All partici-
pants provided written informed consent and were reimbursed 
for their participation.

Shift Schedules
The hospital schedule required residents to work EDWS 

of 24-30 scheduled consecutive hours every other shift (start-
ing every 3rd calendar day “Q3”) for 3 weeks.2,7 While on the 
traditional schedule, a team of 3 interns provided continuous 
coverage on a repeated 3-day schedule, consisting of a day 
shift (approximately 07:00 to approximately 15:00) on Day 1 
followed by an EDWS from 07:00 on Day 2 to approximately 
12:00 on Day 3. Interns had the day off when a day shift oc-
curred Saturday-Monday. Interns had the opportunity for sleep, 
at home, for 2 full nights in between each EDWS.

For two weeks before the study, residents worked on a non-
call clinic rotation without extended shifts. The study rotation 
therefore began with residents relatively “well slept” (total 
sleep time) 54.3 h/week).2,7 No neurobehavioral data were col-
lected during this time.

Data from the first 6 successive EDWS were analyzed to ex-
amine change in neurobehavioral performance during the rota-

tion. The seventh extended shift was not available in 17 of 34 
participants due to scheduling considerations, and was therefore 
excluded from the analyses. As the timing of EDWS were stag-
gered systematically within the 3-person resident team, EDWS-
X does not depict the same study day for each participant but 
does depict the same order of EDWSs. For example, Intern 1 
started an EDWS on days 1, 4, 7, 10, 13, and 16 whereas Intern 
2 started EDWS on days 2, 4, 8, 11, 14, and 17 and so on. The 
term first EDWS always refers to the first EDWS for each in-
tern; second EDWS always refers to the second extended dura-
tion shift, etc.

Measurements and Outcomes

Sleep Measurements
Residents completed a daily sleep/work log and continu-

ous wrist actigraphy (Actiwatch-L; Mini-Mitter, Co., Inc., 
Bend, OR) throughout the study. Sleep logs were used to col-
lect data on sleep timing and duration, sleep quality, awaken-
ings, and work schedules and were available for 676 of 714 
nights. The sleep logs were previously verified from polysom-
nography (PSG) from the first 20 residents, recorded for 3-4 
days/week during shift rotations (Vitaport-2/3, TEMEC Instru-
ments, The Netherlands), showed 95.6% agreement epoch-to-
epoch (r = 0.94, P < 0.001). These data are described in another 
study.7 When sleep logs were unavailable for (38 of 714 nights; 
5.32%), actigraphy data were substituted to determine sleep on-
set and offset time, total sleep time (including naps) per day 
(00:00-23:59), and sleep parameters in relation to each PVT.

Neurobehavioral Performance
Neurobehavioral performance was assessed using a standard 

measure of sustained visual attention: 10-minute Psychomotor 
Vigilance Test (PVT). Random inter-stimulus intervals ranged 
from 1-9 sec and a typical task administration involved ap-
proximately 100 stimuli presentations. The PVT has been dem-
onstrated to have little to no practice effects12 and is sensitive 
to both time awake and circadian phase in the laboratory.14-16 
Residents completed the PVT on 3-6 occasions throughout each 
EDWS, typically at the beginning and end of the shift, and ap-
proximately every 6 h during the shift. Each PVT was assigned: 
(1) duration since last sleep episode ≥ 30 min; (2) duration at 
work; and (3) total sleep, including naps, in the previous 24 h.

To address the effect of time on shift, PVT data were aver-
aged within-subject, and across all 6 EDWS, for each of the 
4 time bins: DAY 1: 06:00 – 14:59; EVENING: 15:00-22:59; 
NIGHT: 23:00 – 05:59; DAY 2: 06:00 – 14:59. One participant 
did not have PVT data in all 4 time bins, for all shifts, and was 
excluded from this analysis.

To address the change in neurobehavioral performance with 
each successive EDWS, we calculated average PVT perfor-
mance, within-subject, across each shift. Any EDWS without 
PVT data in both the first and 2nd half of the shift was exclud-
ed. This occurred in 13 cases, in 3 participants (6.4%; 13 of a 
possible 204 cases [34 subjects*6 EDWS]). These participants 
were excluded from the analyses. Multiple tests for an individ-
ual participant were averaged within either shift-half.

To assess the interaction between the effects of time on shift 
(acute effect) and successive extended duration shift (chronic 

Figure 1—A flow chart showing subject progression through the study 
stages (for years 1 and 2 of the study).
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effect), we evaluated performance at the start and end of each 
shift (to keep time of day constant) for each extended shift. Of a 
possible 408 data points (6 shifts × 2 time points × 34 subjects), 
49 were missing (12%). Missing data points were evenly dis-
tributed across shifts and time on shift (sample size ranged from 
29-32 for each data point). All participants completed the PVT 
during each EDWS but not in every time bin. A linear mixed 
model approach was used to accommodate missing data points 
and to account for inter-individual variability.

Mean reaction time (RT), the mean of the 10% slowest re-
sponses and number of lapses (responses ≥ 500 ms) were used 
as measures of neurobehavioral performance. To normalize the 
data distribution, mean RT was expressed as the log of mean 
RT and lapses were normalized ((√n)+(√(n+1)). Mean, standard 
error, and/or confidence intervals are reported.

Medication and Caffeine Intake
Participants provided information on daily caffeine intake 

and prescribed/over-the-counter medications in a daily log. 
Caffeine content was defined as 202 mg/16 oz cup of coffee 
(17 mg/oz), 30 mg/12 oz cup of tea, and 40 mg/12 oz can of 
soda.17,18 There was no change in estimated weekly caffeine 
intake (P = 0.95) and therefore caffeine was not used as a 
covariable.

Three participants reported taking medication that could 
affect sleep or alertness for the entire study (i.e., antidepres-
sant, diuretic, thyroid medication) and 2 occasionally (i.e. al-
lergy medication, muscle relaxants), totaling 14 days (1.96%) 
between them. These days were included in the analysis and 
checked to ensure these were not distributed preferentially in 
any shift.

Statistical Analysis
Paired sample t tests were used to assess changes in sleep/

work parameters at the start and end of each EDWS. Repeat-
ed measures 1-way analysis of variance was used to examine 
changes in performance due to successive EDWS (chronic ef-
fect) or time on duty (acute effect). Paired comparisons with 
Holm-Bonferroni corrections were performed as post hoc tests 
and missing data were excluded on a case-by-case basis. For 
any violation of sphericity, the Huynh-Feldt statistic and asso-
ciated epsilon (ε) value are reported. To assess any interaction 
between acute and chronic effects, a linear mixed model was 
used for fixed (time on shift; successive EDWS) and random 
(subject) effects using a scaled identity covariance structure. To 
consider stability in interindividual variability, we calculated 
intraclass coefficients (ICC) and these were assessed using the 
Wald test.19 Here we followed published criteria for categoriz-
ing levels of stability: “slight” (0.0-0.02), “fair” (0.2-0.4), and 
“moderate or beyond” (> 0.4).20

To examine whole RT distribution more extensively for cog-
nitive and perceptual processing speed21 we calculated the 5th-
95th percentiles, in 5% increments, for each PVT at the start 
and end of EDWS 1 and EDWS 6. This method enables an 
examination of the slowest responses (in addition to nonlapse 
response times), fastest responses, and variability of responses 
simultaneously. For instance, although some individuals may 
have larger mean RTs, this finding may be attributed only to 
long response times for a small number of responses. Response 

time distributions are not normal distributions, but rather have 
a long tail caused by longer RTs. The data were therefore fitted 
with a Weibull distribution curve, as previously described by 
Santhi et al.22 Using this method, we were able to evaluate all 
percentiles to describe and display succinctly the observed data 
in its entirety.

The 4-parameter Weibull curve fit to the data provides 4 out-
come parameters describing the distribution of the data: (1) Shift 
- leading edge of the RT distribution reflecting the fastest pos-
sible response; (2) Scale - the spread of distribution, i.e. vari-
ability; (3) Shape - a measure of the skew of the distribution23; 
and (4) Midpoint (X0) - the 50th percentile (median). We exam-
ined these parameters using a 1-way repeated measures analysis 
of variance and subsequent paired comparisons. As performing 
paired comparisons at every percentile point to see where the 
distribution varies would increase the likelihood of a type 1 er-
ror, the Weibull analysis permits statistical assessment of the 
overall distribution of the responses and provides an estimation 
of the curve of the RT distribution by group (acute*chronic). 
This method also protects to some extent against “subject bias”; 
the overall distribution of data is very difficult to contrive, 
whereas simple measures such as number of lapses and slowest 
RTs can be manipulated much more easily by the participant 
(several 10-s reaction times will have a dramatic effect on the 
average RT, for example). After the acute and chronic interac-
tion demonstrated by Cohen et al.,13 planned comparisons on the 
Scale parameter were performed to compare the spread of dis-
tribution at the end of the sixth shift (acute*chronic) compared 
with the end of the first shift (acute only). All data were analyzed 
using SPSS 18.0 software, SPSS Inc., Chicago, IL.

RESULTS

Sleep and Wake

Acute Sleep Loss
Each EDWS averaged 31.92 h ± 0.35 h in duration (95% 

confidence interval (CI): 31.26 – 32.59 h) and 30.4% (62 of 
204) of these were completed without any sleep, such that, ap-
proximately 75% of participants (25 of 34) completed at least 
1 EDWS without sleep. An average of 2.3 h of sleep was ob-
tained per shift. As each EDWS was preceded by a day off or 
a swing shift, sleep in the previous 24 h at the beginning of the 
EDWS was of longer duration (8.44 ± 0.21 h) than at the end 
of shift, demonstrating acute sleep loss over the shift (Table 1). 
Compared to PVTs at the start of the shift, PVTs at the end of 
the shift were associated with greater time awake (t(1,33) = 10.89, 
P < 0.0005) and less sleep in the previous 24 h (t(1,33) = 14.28, 
P < 0.0005). Sleep duration in the 24 h before the PVT at the 
end of each EDWS differed (F(5,190) = 3.135, P < 0.01), such that 
EDWS 4 (P = 0.05) and EDWS 5 (P = 0.02) were preceded by 
more sleep than EDWS 1, demonstrating that any change in 
performance during the rotation was not simply due to changes 
in sleep duration before the test.

Chronic Sleep Deficiency
Cumulative total sleep time at the end of each week was 43.4 

h ± 0.92 h (95% CI: 42.5-44.3 h), 88.0 h ± 1.68 h (95% CI: 
86.5–89.8 h) and 130.4 h ± 2.07 h (95% CI: 130.2–134.3 h), 
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respectively, with a nightly average less than that obtained dur-
ing two weeks of ambulatory clinic (7.75 h/night; Figure 2). 
EDWS resulted in cumulative sleep deficiency over the 21-day 
rotation, with an average sleep duration of 6.3 h ± 3.15 h per 24 
h over the entire 21-day study.

Effect of Time on Shift
There was a significant deterioration of mean RT with in-

creasing duration of time on duty (F(3,96) = 16.918, P < 0.0005, 
η2 = 0.35), such that mean RT had slowed by more than a third 
at the end of the shift as compared with the start (Figure 3A). 
The number of lapses more than doubled during the shift 

(F(3,96) = 18.004, P < 0.0005, η2 = 0.36; Figure 3B) as did 
the RT for the slowest 10% of responses (485 to 1,083 ms; 
F(2.50,80.09) = 9.483, P < 0.0005, ε = 0.83, η2 = 0.23; Figure 3C). 
For mean RT, average reaction times were 284.6 ± 9.10 ms 
(95% CI 266.8–302.4 ms) at the beginning of the shift versus 
379.4 ± 23.9 ms (95% CI 332.6–426.2 ms) at the end of the 
shift. For lapses, there were 2.7 ± 0.59 lapses (95% CI 1.52–3.8) 
at the beginning of shift which increased to 6.7 ± 0.82 (95% CI 
5.2–8.5 lapses) at the end of the shift. For slowest 10% of RTs 
this increased from 485 ± 41.2 ms (95% CI 404.2–565.8 ms) 
at the beginning of the shift to 1083.1 ± 146.0 (95% CI 796.9–
1299.2 ms) at the end of the shift. Post hoc tests showed that 
performance during NIGHT and DAY 2 was worse than DAY 1 
(P < 0.0005) and EVENING trials (P < 0.001) (Figure 3C). Al-
most all interns (32 of 34, 94.1%) exhibited increased lapses 
from the start to the end of the shift.

Effect of Successive Shifts
There was a significant slowing of PVT mean RT with in-

creasing number of successive EDWS (F(3.75, 89.99) = 4.714, 
P = 0.002, ε = 0.75, η2 = 0.16) such that mean RT slowed by 
20% (from 320.0 ms to 385.4 ms, Figure 4A). Similarly, the 
rate of lapses (F(5,120) = 7.037, P < 0.0005, η2 = 0.23) and the RTs 
for the slowest 10% of responses (F(4.66, 111.94) = 2.250, P = 0.05, 
ε = 0.93, η2 = 0.08) also increased with successive shifts, 
whereby lapses increased 2.4-fold from 2.8 to 6.7 (Figure 4B), 
and the slowest 10% was slower by 361.7 ms, changing from 
744.5 ms on EDWS 1 to 1106.2 ms on EDWS 6 (Figure 4C). 
Post hoc tests are shown in Figure 4B for lapses and Figure 4C 
for slowest 10% of responses. The observed effect of worsening 
performance from the first to the sixth extended duration shift 
was apparent in most of the interns (26 of 34, 76.5%).

Interaction of Time on Shift and Number of Successive EDWS
For mean RT, there was a main effect of TIME 

(F(1,326.49) = 56.04, P < 0.0005), EDWS (F(5,321.35) = 4.692, 
P < 0.0005) , and a significant EDWS × TIME interaction 
(F(11,315.27) = 8.599, P < 0.0005) (Figure 5A). Lapses exhibited a 
main effect of TIME (F(1,325.99) = 67.321, P < 0.0005) and EDWS 
(F(5,321.30) = 5.147, P < 0.0005), and significant TIME × EDWS 
interaction (F(11,315.16) = 10.301, P < 0.0005) (Figure 5B). For 
slowest 10% RTs, there was a significant main effect of TIME 

Table 1—Average sleep/wake parameters (± standard deviation) at the time of psychomotor vigilance test (PVT) at the start (approximately 06:30 Day 1) and 
end (approximately 14:30 Day 2) of the extended duration work shift (EDWS)

Time Time at work (d.h.) Time since sleep (d.h.) Sleep in previous 24 hr (d.h.) Caffeine use
START END First PVT Last PVT First PVT Last PVT First PVT Last PVT

EDWS 1 06:31 14:30 1.26 ± 0.87 28.03 ± 1.51 1.37 ± 0.10 19.36 ± 2.30 6.61 ± 0.36 1.62 ± 0.34 485.76 ± 407.3
EDWS 2 06:25 14:35 0.94 ± 0.62 28.82 ± 1.23 1.68 ± 0.42 15.87 ± 2.11 7.80 ± 0.43 2.52 ± 0.40 502.76 ± 396.4
EDWS 3 06:29 14:31 0.25 ± 0.07 29.75 ± 1.03 1.13 ± 0.11 14.06 ± 1.86 7.16 ± 0.43 2.25 ± 0.37 537.70 ± 408.5
EDWS 4 06:25 14:34 0.46 ± 0.10 30.77 ± 0.69 1.14 ± 0.12 11.00 ± 1.48 7.72 ± 0.44 2.83 ± 0.43 573.52 ± 557.8
EDWS 5 06:31 14:36 1.18 ± 0.84 31.18 ± 1.09 1.19 ± 0.11 15.63 ± 2.24 7.95 ± 0.50 2.43 ± 0.52 485.35 ± 401.4
EDWS 6 06:39 14:25 0.62 ± 0.22 30.85 ± 1.27 1.42 ± 0.21 14.35 ± 2.31 6.90 ± 0.25 1.99 ± 0.35 524.48 ± 443.8
Mean 06:30 14:30 0.79 ± 0.23 31.68 ± 0.18 1.32 ± 0.08 15.28 ± 0.88 7.36 ± 0.17 2.13 ± 0.15 535.21 ± 435.3

Each EDWS was associated with an increased time since sleep, increased time at work, and decreased sleep in the previous 24-h period. Caffeine use did 
not differ across shifts, n = 34. (d.h. –decimal hours).

Figure 2—Cumulative total sleep time during the residents’ intensive 
care unit (ICU) schedule including nocturnal sleep and diurnal naps in 
comparison with cumulative sleep over 14 days  prior to the ICU rotation 
(including 7 days of projected cumulative sleep; dotted lines, open circle). 
Compared with daily sleep duration (7.75 h; 95% confidence interval 6.5-
9.0 h) obtained when not on alternating extended duration shifts, when 
on a schedule including alternating 30-h shifts residents obtained 10.9 h 
less sleep by day 7, 20.4 h less sleep by day 14, and a projected 30.6 h 
less sleep by day 21, n = 34.
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(F(1,329.30) = 25.58, P < 0.0005) and EDWS (F(5,322.895) = 2.764, 
P = 0.018), and a significant EDWS × TIME interaction 
(F(11,316.87) = 4.364, P < 0.0005) (Figure 5C). Moderately stable 
interindividual differences for lapses were seen in response to 
both time over the shift (ICC–0.37, Z = 3.482, P < 0.0005) and 
successive EDWS (ICC 0.35, Z = 3.436, P < 0.001) but were less 
stable for mean RT (ICC 0.26-0.29, Z > 3.10, P < 0.002) and the 
slowest 10% of responses (ICC 0.10-0.12, Z > 2.10, P < 0.03).

To examine the acute and chronic effects beyond simple 
mean RT, we evaluated the change in RT distribution at the 
start and end of the first and last EDWS (Figure 6). For the 

Shape (skew of the distribution) and Shift parameter (reflects 
fastest possible RT) there was no change across the 4 shifts 
(P = 0.076; P = 0.482, respectively). Although there was no 
main effect of EDWS on the Scale parameter (P = 0.159), 
which depicts the spread of distribution and longer RTs, 
planned pairwise comparisons did show a larger Scale pa-
rameter at the end of the sixth EDWS when compared with 
the end of the first EDWS (P = 0.003); Figure 6. The mid-
point (X0) parameter is the median RT, and reflects cognitive 

Figure 3—Mean change in mean PVT reaction time (RT) (A), lapses (B), 
and slowest 10% RTs (C) over the duration of an extended shift. Post hoc 
differences are shown (***P < 0.0005; **P < 0.001; *P < 0.005). Mean ± 
standard error of the mean reported, n=33.

Me
an

 R
T 

(m
se

c)

***
**

**

10% Slowest RT

Me
an

 R
T 

(m
se

c)

1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300

***

**
***

***

Lapses

Nu
m

be
r o

f L
ap

se
s

10
9
8
7
6
5
4
3
2
1
0

06:00 – 14:59
Day 1

15:00 – 22:59
Evening

23:00 – 05:59
Night

06:00 – 14:59
Day 2

A

B

C

 

***

***
***

***

Mean RT

480
460
440
420
400
380
360
340
320
300
280
260
240

Figure 4—Degradation of neurobehavioral performance over 6 
successive extended duration shifts on a 21-day rotation. Change in 
mean PVT reaction time (RT) (A), number of lapses (B), and slowest 
10% RTs (C) from EDWS1 to EDWS6. Post hoc differences are shown 
(***P < 0.0005; **P < 0.001; *P < 0.005). Mean ± standard error of the 
mean reported, n = 31.

10
9
8
7
6
5
4
3
2
1
0

A

B

C

*

*
***

***

M
ea

n 
RT

 (m
se

c)

**
**

10% Slowest RT

Me
an

 R
T 

(m
se

c)

1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300

***
***

***

Lapses

Nu
m

be
r o

f L
ap

se
s

EDWS 1 EDWS 2 EDWS 3 EDWS 4 EDWS 5 EDWS 6
Extended Duration Work Shift

Mean RT

480
460
440
420
400
380
360
340
320
300
280
260
240



SLEEP, Vol. 35, No. 8, 2012 1142 EDWS and Neurobehavioral Performance—Anderson et al

DISCUSSION
Our study shows that medical residents working 24- to 30-h 

EDWS every other shift exhibit impaired neurobehavioral 
performance over the course of each individual EDWS due 
to acute sleep loss; a cumulative deterioration of neurobehav-
ioral performance with each successive EDWS due to chronic 
sleep deficiency; and a nonlinear interaction between acute and 
chronic sleep loss that multiplies the detrimental effects on 
performance. Our data show that repeated exposure to chronic 
sleep deficiency inherent in resident schedules exacerbates the 
degradation of performance due to acute sleep deprivation ex-
perienced during an EDWS.

The 24- to 30-h EDWS induced prolonged acute sleep de-
privation, such that residents only obtained an average of 2.3 
h sleep per shift, and no sleep at all for approximately 30% 
of these shifts. As predicted from previous laboratory stud-
ies,12,24 such acute sleep deprivation caused neurobehavioral 
performance to deteriorate, slowing average reaction time by 
33% and more than doubling the average response times for the 
slowest 10% of responses to more than 1 sec, and increasing the 
rate of vigilance lapses 2.5-fold.

The effect of chronic sleep deficiency on the time course 
of neurobehavioral degradation is less well studied than acute 
sleep loss alone, and only one previous laboratory study has ex-
amined the interaction between chronic and acute sleep loss. In 
the current study, residents obtained only 6.3 h of sleep per day 
on average during the 21-day intensive care unit rotation and 
with a sporadic pattern. This failure to obtain adequate sleep 
each day caused a cumulative deterioration in performance 
across successive shifts, slowing average reaction time by 20% 
and the slowest 10% of responses by 49%, and caused more 
than a doubling in vigilance lapses by the sixth EDWS when 
compared with the first. Sleep obtained during the EDWS (2.3 
h/shift) was extremely short but was followed by long recov-
ery sleep (approximately 10 h) on scheduled days off or the 
intervening day (swing) shift (approximately 8.5 h). Consistent 
with laboratory data,13 these two full nights of recovery sleep in 
between each EDWS were insufficient to restore performance: 
On the sixth EDWS, residents’ performance at the start of the 
EDWS was already impaired and then deteriorated much more 
rapidly when challenged by acute sleep deprivation than during 
the first EDWS (Figure 5). The rate of lapses in attention was 7 
times higher at the end of the sixth EDWS compared with the 
beginning of the first extended shift and the slowest 10% of 
responses were more than 3 times slower. Cognitive slowing as 
examined using RT distribution showed that performance at the 
end of the first EDWS (acute effect) was strikingly similar to 
performance levels at the start of the sixth EDWS (chronic ef-
fect). In summary, although the acute and chronic effects alone 
were of similar magnitude, together they multiplied the perfor-
mance impairment.

These findings echo a recent controlled laboratory study by 
Cohen et al.13 where a 10-fold increase in lapses was observed 
due to the interaction of acute and chronic sleep deprivation. 
Unlike our study, however, participants in the laboratory had 
tightly controlled sleep-wake schedules, controlled access to 
nutrition, and were living in very dim light. We were able to 
detect a decline in neurobehavioral performance in working 
residents despite the fact that they had unrestricted opportunity 

slowing. This parameter significantly differed between shifts 
(F(3,20) = 16.551, P < 0.0005, η2 = 0.71), such that there was 
a significant slowing of responses at the end of the first and 
sixth EDWS when compared with the start of the first EDWS 
(P < 0.0005), and when comparing the end of the sixth EDWS 
with the end of the first EDWS (P = 0.004) and start of the 
sixth EDWS (P = 0.03). There were no significant differences 
for Shape, Scale, Shift, or midpoint parameters between the 
end of the first EDWS (acute effect) and the beginning of the 
sixth EDWS (chronic effect).

Figure 5—Interaction of chronic and acute effects: change in performance 
from the start of the extended duration work shift (Day 1 – 06:00-14:59) 
to the end of the extended duration work shift (06:00-14:59) mediated by 
the effects of each successive extended duration shift. Performance at 
the end of the shift shows greater chronic effects, whereas performance 
at the start of shifts remains relatively protected. Mean ± standard error 
of the mean reported, n = 34.
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for recovery sleep between shifts, often napped during work 
shifts,25 and had free access to countermeasures including caf-
feine (an average of 535 mg/EDWS),26 physical activity,27 up-
right posture,28 and light.26 Although our data show moderately 
stable interindividual differences in PVT performance over 
time, this was less stable than previous laboratory studies,19 
which may be due to other factors present in the field such as 
changeable levels of sleep, caffeine, work demands, etc. Given 
the instability of these factors in the field, it is remarkable that 
we observe these interindividual consistencies in PVT perfor-
mance over time (whether over the course of one extended 
work shift or for responses to each subsequent extended work 
shift). This progressive decline in performance in individuals 
whose sleep opportunities and countermeasures access are not 
restricted has not previously been demonstrated in either the 
laboratory or in a field setting.

Our study used a proxy measure of neurobehavioral function, 
the PVT, rather than a direct measure of medical performance. 
The PVT is a well-validated test of sustained attention widely 
used to study the effects of sleep loss, including impairments in 
neurobehavioral function due to acute sleep deprivation (num-
ber of hours awake),12,15,29 chronic sleep deficiency,11-13 circa-
dian phase (time of day),24,30 and alcohol and drug effects under 
both laboratory and field conditions, and may be considered a 
good indicator of medical performance. For example, Arnedt et 
al.3 demonstrated performance on the PVT after four weeks of 
“Heavy Call” (Q4 or Q5; EDWS starting every 4th or 5th day, re-
spectively) deteriorated in a manner similar to that observed in 
an intern after four weeks of “Light Call” plus a blood alcohol 
concentration of 0.05%. We have also demonstrated that medi-
cal performance deteriorates over an EDWS in a manner simi-

Figure 6—Psychomotor vigilance test (PVT) cumulative reaction time (RT) distribution (left panel) with means and 95% confidence intervals and Weibull 
function parameters fitted to cumulative RT distribution (right panel). These data represent the average RT percentiles (mean ± 95% confidence intervals) 
and the fitted cumulative distribution function (4-parameter Weibull) from PVTs completed at the start and end of the first and sixth extended duration work 
shift (EDWS). The top and bottom axis represents log-transformed RTs and equivalent mean RTs, respectively. The y-axis represents the percentile value. 
A rightward shift corresponds to an overall cognitive slowing, and a stretching of the tail indicates increased variability and long RTs. Data distribution at the 
end of the first EDWS (EDWS 1 – End (open circle) was strikingly similar to the start of the sixth extended duration work shift (EDWS 6 – Start (filled triangle). 
Data distribution at the end of the EDWS suggests increased cognitive slowing and increased variability due to long RTs. The end of the sixth EDWS was 
associated with significantly greater variability than the start and end of the first shift, and enhanced cognitive slowing (offset midpoint), (n = 34). †P < 0.03, 
‡P < 0.0005. aMeasure of skew (1.0 = exponential). bSpread of distribution reflecting variability. cLeading edge of RT (fastest possible response). dMidpoint 
(50th percentile) - cognitive slowing.
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lar to the PVT data using a high-fidelity medical performance 
simulator in a study of a subset of PGY-1 residents.4 Moreover, 
a comprehensive meta-analysis by the ACGME8 showed that 
sleep loss associated with 24- to 30-h EDWS reduced cogni-
tive performance in the laboratory by almost 1 standard devia-
tion (SD), and physicians’ clinical performance by more than 
1.5 SD, demonstrating that sleep loss degrades performance of 
physicians during clinical tasks at a comparable rate to non-
clinical laboratory tests like the PVT.

In the current study, we only examined the effects of chronic 
sleep deficiency across a “Q3” shift and do not have data from 
other “call” shifts (e.g., “Q4”or “Q5”). The rate of accumula-
tion of performance impairment due to chronic sleep deficiency 
is inversely correlated with the daily sleep opportunity that, at 
least over 14 days, shows an essentially linear trend.11,12 Consis-
tent with this interpretation, we have shown previously that the 
number of EDWS worked per month is associated with an in-
creased risk of motor vehicle accidents10 and percutaneous inju-
ry31 in residents. We would anticipate, therefore, that residents 
working a less frequent call schedule would still accumulate 
a chronic decline in performance but at a slower rate than the 
current study describes. In a recent systematic review, Levine et 
al.5 describe how reducing the number of extended calls shifts 
from a Q3 schedule to Q4 or less results in better resident qual-
ity of life, sleep and/or fatigue while increasing patient safety, 
which is likely due to a slower rate of impairment due to the 
combined effects of acute and chronic sleep deprivation and 
increased recovery time between extended duration shifts. 
The adverse acute effects on performance of working a 24- to 
30-h shift apply the first and every time a 24- to 30-h EDWS 
is scheduled regardless of the frequency of the overnight call.10 
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Performance was always worse on Day 2 in comparison with 
the same time on Day 1 for every 1 of the 6 successive EDWS 
that we studied (Figure 3).

These data provide valuable insights into the time course of 
cumulative performance deterioration due to repeated expo-
sure to EDWS and further highlight the need to reform resident 
schedules to prevent acute and chronic sleep deprivation and 
to allow for sufficient recovery time between shifts. Our study 
shows that even a single EDWS induces a measurable degree of 
cognitive impairment and that chronic repetition of these shifts 
exacerbates this impairment. In addition, these findings provide 
the first demonstration that laboratory data on the acute and chronic 
effects of sleep loss11-13 translates to real working environments for 
individuals who are subjected to acute and chronic sleep as an 
inherent part of their work shift schedules.
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