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Abstract

Background: High body iron store has been associated with an increased risk of type 2 diabetes (T2D); it remains unknown
whether the genetic variants related to body iron status affect T2D risk. We aimed at comprehensively investigating the
associations between the genetic variants related to body iron status and the T2D risk.

Methodology/Principal Findings: Six common SNPs related to body iron status from recent genome-wide association
(GWA) studies were determined in the Nurses’ Health Study (NHS; 1,467 diabetic cases and 1,754 controls) and the Health
Professionals Follow-up Study (HPFS; 1,124, diabetic cases and 1,298 controls). Plasma levels of ferritin, soluble transferrin
receptor (sTfR), and transferrin were measured in NHS. Significant associations were observed for loci in TPMRSS6 with sTfR
(P = 3.4761026), TF with transferrin (P = 0.0002 to 1.72610210); and HFE with ferritin (P = 0.017 to 1.661028), sTfR (P = 0.007
to 7.961026), and transferrin (P = 0.006 to 0.0007). The six SNPs together explained 5.7%, 2.7%, and 13.3% of the variation in
plasma levels of ferritin, sTfR, and transferrin. After adjustment for the conventional risk factors, the T allele of SNP rs855791
in the TPMRSS6 gene was significantly associated with a 19% decreased risk of T2D (OR = 0.81; 95% CI = 0.66–0.98; P = 0.03)
in men. Multiple tests attenuated this significant association to null. No associations were observed in women. SNPs at HFE
and TF were not associated with diabetes risk in either sex. Dietary iron intake did not modify the associations of the newly
identified loci with diabetes risk.

Conclusions/Significance: The newly identified iron-related SNP rs855791 in TPMRSS6 was nominally associated with a
decreased risk of T2D in men but not in women. The apparent differences by gender warrant further study.
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Introduction

Iron is a redox-active transitional metal and a strong pro-oxidant

that can catalyze the formation of free radicals and subsequent the

production of reactive oxygen species (ROS), which have been

implicated in the etiology of type 2 diabetes (T2D) [1,2]. Prospective

epidemiology studies have shown consistent associations between

body iron store, assessed by serum ferritin or transferrin receptors to

ferritin ratio, and an increased risk of T2D [3–7].

Sequence variations in HFE gene have been associated with

excess body iron store [8,9]. In several recent genome-wide

association (GWA) studies, variants in transferrin (TF) and

TMPRSS6 genes were also found to be related to body iron status

[9,10]. Given the observed relation between body iron store and

diabetes risk, one may hypothesize that the body iron store-

associated genetic variants may predispose to an increased risk of

T2D. Recently one study investigated the associations between the

gene polymorphisms in transferrin receptor gene and T2D [11],

however, no studies have comprehensively examined the associa-

tions between the newly identified variants for body iron status and

T2D.

Therefore, in the present study we aimed to examine the

associations of the reported genetic variants for body iron store

(ferritin, soluble transferrin receptor [sTfR], and transferrin) with

T2D risk in two nested case-control studies. In our previous study,

we found dietary heme iron intake modified the genetic effects of

HFE variants on T2D risk [12]. In this study, we expanded to

assess the interactions between dietary heme iron intake and other

iron-associated SNPs in relation to T2D risk.

Results

Baseline Characteristics of Diabetic Cases and Controls
Table 1 presents the demographic and characteristics of

participants at baseline. T2D cases had a significantly higher BMI

and higher prevalence of family history of diabetes than controls.
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Also, T2D cases engaged in less physical activity and were more

likely to smoke than controls in both men and women. Among

women, T2D cases were more likely to be postmenopausal. T2D

cases in men and women both consumed more heme iron than

controls. In NHS, the levels of ferritin, sTfR and transferrin were

higher in cases than those in controls (P,0.05). There were no

significant differences in use of iron supplement between cases and

controls in both NHS and HPFS (P = 0.13 and 0.31 respectively).

Associations between SNPs in TPMRSS6, HFE, and TF
Genes and Body Iron Status

SNP rs855791 in TPMRSS6 gene was significantly associated

with high sTfR levels and sTfR : ferritin ratio (P = 3.4761026 and

0.01) and marginally associated with low ferritin levels (P = 0.068),

but was not associated with transferrin levels (P = 0.13). Both

rs1799945 and rs1800562 in HFE gene were associated with

ferritin (P = 0.017 and 1.661028), sTfR (P = 7.961026 and 0.007),

and transferrin (P = 0.006 and 0.0007) levels. SNPs of rs3811647

and rs1799852 in TF gene were associated with transferrin levels

(P = 1.72610210 and 0.0002.); However, SNP rs2280673 in TF

gene was not associated with transferrin levels but was significantly

associated with low sTfR: ferritin ratio (P = 0.01) (Table 2). The

six SNPs together explained 5.7%, 2.7%, 13.3%, and 3.9% of

variations of plasma levels of ferritin, sTfR, and transferrin, and

sTfR : ferritin ratio, respectively.

Body Iron Status-associated Genetic Variants and T2D
Risk

Table 3 presents the genotype frequency of the six SNPs in

cases and controls respectively and the associations between the

variants related to body iron status and T2D risk. The minor allele

frequency of the six SNPs in the present study was similar as those

reported (http://www.ncbi.nlm.nih.gov/snp). T allele of SNP

rs855791 in TPMRSS6 gene was nominally and significantly

associated with a decreased risk of T2D in HPFS (OR = 0.81; 95%

CI = 0.66–0.98; P = 0.03) after adjustment for covariates; however,

the SNP was not associated with T2D in the NHS. Because the

body iron stores especially ferritin levels can be influenced by

menopause status [13], we analyzed the associations of SNP

rs855791 with T2D stratified by menopause status in NHS. We

found that carriers of T allele did not significantly associate with

risk of T2D in pre-menopause women (OR = 1.18; 95%

CI = 0.93–1.51; P = 0.17) and in post-menopause women

(OR = 0.92; 95% CI = 0.65–1.30; P = 0.63); and the interaction

with menopause status was not significant (P = 0.24). No significant

associations were found for other five SNPs with T2D risk. After

multiple tests, the association between the SNP rs855791 with

T2D risk was not significant. Exclusion of iron supplement users

did not materially change the associations between these SNPs and

the risk T2D in both NHS and HPFS.

We further examined the combined effects of the iron-related

SNPs on T2D risk. The results indicated that the GRS was

associated with higher risk of T2D in men. Subjects in the highest

tertile of the GRS had a 27% increased risk of T2D (95% CI:

1.05–1.53; P = 0.01), compared with those in the lowest tertile

(Figure 1). The OR (95% CI) for T2D associated with each point

scored, corresponding to one risk allele, was 1.06 (1.01–1.12;

P = 0.03). Adjusted for lifestyle risk factors except BMI did not

alter the results. Further adjustment for BMI attenuated the

associations to marginal significance. The GRS was not associated

with T2D risk in women (data not shown).

Table 1. Risk factor characteristics of T2D cases and controls at baseline in NHS and HPFS*.

Variables NHS HPFS

T2D (n = 1467)
Controls
(n = 1754) P Value{ T2D (n = 1124)

Controls
(n = 1298) P Value{

Age, y 43.5(6.7) 43.1 (6.8) 0.07 55 (8.6) 55 (8.4) 0.65

BMI, kg/m2 27.4 (5.0) 23.5 (3.9) ,0.0001 27.8 (4.0) 25.0 (2.7) ,0.0001

Family history of diabetes, % 49.5 22.1 ,0.0001 33.4 13.6 ,0.0001

Current smoking, % 29.4 20.9 ,0.0001 12.1 7.6 ,0.0001

Alcohol intake, g/d 4.4 (9.1) 6.6 (10.0) ,0.0001 11.2 (16.2) 12.1 (15.9) 0.19

Physical activity { 3.7 (2.8) 4.1 (2.9) 0.0005 14.6 (19.0) 21.1 (25.2) ,0.0001

Current PMH users, % 29.2 28.9 0.90 – – –

Postmenopausal, % 35.7 30.6 0.002 – – –

P:S ratio 0.34 (0.12) 0.35 (0.14) 0.26 0.55 (0.19) 0.58 (0.21) 0.004

Trans-fat intake, g/d 4.1 (1.3) 4.0 (1.3) 0.11 2.9 (1.0) 2.8 (1.1) 0.15

Cereal fiber intake, g/d 2.5 (1.5) 2.6 (1.6) 0.05 5.6 (3.3) 6.3 (4.8) 0.0001

Total energy intake, kcal/d 1611 (520) 1572 (488) 0.04 2100 (652) 2083 (619) 0.49

Total iron intake (mg/d) 17.5 (10.9) 17.8 (11.1) 0.51 20.0 (10.3) 20.7 (11.2) 0.13

Heme iron intake (mg/d) 1.12 (0.35) 1.04 (0.35) ,0.0001 1.29 (0.42) 1.15 (0.42) ,0.0001

Use of iron supplement, % 3.71 4.87 0.13 2.12 2.80 0.31

Ferritin (ng/ml) 105.2(101.2) 72.0 (72.1) ,0.0001 – – –

sTfR (mg/L) 3.38 (1.08) 3.19 (1.07) 0.006 – – –

Transferrin (mg/dl) 275.8 (45.6) 264.7(45.4) 0.01 – – –

*Values are means (SD) unless otherwise indicated. BMI = body mass index; PMH = post-menopausal hormone.
{Test of differences between cases and controls: x2 for categorical and T-tests for continuous variables.
{Metabolic equivalent task hours/wk for men in HPFS and hours/wk for women in NHS.
doi:10.1371/journal.pone.0040919.t001
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Interactions with Heme Iron Intakes in Relation to T2D
Risk

In our previous analyses, we found genetic variants in HFE gene

interacted with heme iron intakes in relation to T2D risk [12]. In

the present study we examined the interactions of heme iron

intake with SNPs in other two loci TPMRSS6 and TF, but did not

find significant interactions in either men or women (data not

shown).

Discussion

In this study we confirmed that the recently identified SNPs in

TPMRSS6 and TF genes were associated with plasma biomarkers

for body iron store, sTfR and transferrin [9,10]. We found SNP

rs855791 in TMPRSS6 gene was associated with lower risk of T2D

in men but not in women. Multiple tests attenuated this significant

association to null. No significant interactions between the newly

identified SNPs and heme iron intake were observed in relation to

T2D risk.

The iron-T2D association has been extensively investigated. It

was found that 53–80% of patients with haemochromatosis, an

autosomal-recessive disorder with iron overload, developed

diabetes [14]. Evidences from the epidemiological studies in the

general population also support the relation between excess body

iron store and an increased risk of T2D [3–7]. Genetic variants in

HFE genes, C282Y (rs1800562) and H63D (rs1799945), have been

related to high body iron store [8,9]. However, in our previous

meta-analysis, we found that these variants were not associated

with T2D risk [12].

A recent GWA study found a nonsynonymous variant rs855791

in TMPRSS6 gene was associated with several indicators of body

iron status including serum iron, transferrin saturation, and ferritin

[10]. TMPRSS6, a transmembrane serine protease, plays a key

role in iron homeostasis by inhibiting the production of hepatic

hepcidin [15], and then influences the intestinal iron absorption

and the release of iron from cellular stores [16]. We demonstrated

the T allele of SNP rs855791 was associated with lower ferrtin and

higher sTfR levels and sTfR : ferritin ratio and this allele was

related to a decreased risk of T2D only in men. However, after

multiple tests, this association was not significant. This might be

due to the small sample size and the weak effects of the SNP on

T2D risk. Menstruation in women causes iron loss, which might

explain the difference in the genetic associations with T2D

between men and women. In fact, in our present study the post-

menopause women had higher levels of plasma ferritin

(111.0699.8 vs 79.1682.9 ng/ml; P,0.001) than pre-menopause

women. Among post-menopause women the T allele was not

significantly associated with risk of T2D; however, the effect

direction of this allele was in line with the observations in men.

The significant associations between TF variants and plasma

transferrin levels were consistent with the results in a GWA study

[9]. Transferrin has been associated with insulin resistance,

through increasing the rate of adipocyte lipolysis and circulating

free fatty acid [17]. However, we did not find associations between

the TF SNPs and T2D risk.

The null-associations between body iron-associated genetic

variants and T2D can be explained in several ways. First, the six

SNPs explained only a very small proportion of the variance in

body iron store. Therefore the weak association between the

genetic markers and T2D would be expected. Second, although

both the NHS and HPFS dataset had more than 80% power to

detect SNPs with odds ratio .1.4, given an a of 0.05 and allele

frequency of 0.10, our study might be underpowered for detecting

weaker associations. The NHS dataset only has 60% power to

detect genetic odds ratio of 1.2 for SNPs with MAFs equal to 0.10,

at the 5% significance level; for the HPFS dataset the power is

47%. Finally, inflammation might influence the findings in the

present study. Ferritin is believed to be influenced by inflamma-

tion. sTfR might also be regulated by inflammatory cytokines [18]

and insulin [19]. Although some studies found that the iron-

diabetes associations were independent of inflammation, it is still

remained to investigate in future studies. Especially, there is

evidence indicating that subunits of ferritin may be a better

biomarker than ferritin for assessing body iron status and that the

ratio of H:L-ferritin subunit levels can help to distinguish the

inflammation-induced or excessive iron-induced elevation of

ferritin [20].

Our data did support an additive effect of the variants at the

three loci HFE, TMPRSS6, and TF on T2D risk. The GRS

combining these genetic variants was associated with an increased

risk of T2D in men. Adjustment for the potential risk factors

especially BMI attenuated the associations of the iron-related GRS

and T2D risk, indicating that BMI might partially explain these

associations. However, the underlying mechanism remained to be

elucidated in further studies. We did not find the associations of

GRS and T2D risk in women. It might be due to the gender

difference as discussed above.

In our earlier analyses, we reported that the genetic variants in

HFE gene interacted with heme iron intake in relation to T2D

[12]. However, we did not find significant interactions between the

newly identified SNPs of TMPRSS6 and TF genes and heme iron

on diabetes risk. These observations suggest that the effects of the

SNPs in TMPRSS6 and TF genes on T2D risk are not modified by

Table 2. Associations between body iron status and the SNPs in TPMRSS6, HFE, and TF genes in NHS.

SNPs* Gene Ferritin (ng/ml) sTfR (mg/L) sTfR: ferritin ratio Transferrin (mg/dl)

b se P b se P b se P b se P

rs855791 T/C TPMRSS6 26.41 3.21 0.068 0.17 0.04 3.47E-6 16.5 7.0 0.01 4.33 2.85 0.13

rs1799945 C/G HFE 28.82 4.27 0.017 0.20 0.05 7.9E-6 24 9.5 0.04 11.43 3.87 0.006

rs1800562 A/G HFE 43.4 6.06 1.6E-8 20.13 0.07 0.007 222.3 13.4 0.08 216.38 4.46 0.0007

rs3811647 A/G TF 4.41 3.33 0.42 20.03 0.03 0.65 25.7 7.4 0.58 17.64 2.89 1.72E-10

rs1799852 T/C TF 25.59 5.12 0.18 0.04 0.06 0.72 17.1 11.2 0.12 213.17 4.50 0.0002

rs2280673 A/C TF 2.31 3.54 0.27 20.06 0.04 0.24 219.6 7.8 0.01 2.32 3.16 0.51

*the first allele of each SNP is effect allele.
doi:10.1371/journal.pone.0040919.t002
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dietary iron intakes. The failure in identifying gene-diet interac-

tions may also due to the low power of the study.

Our study samples are highly homogeneous by only including

Caucasians with European ancestry. Our GWA analyses indicate

that the associations in these samples are not affected by

population stratification [21]. It remains to be determined whether

our findings are applicable to other populations. Another issue is

that some of our control subjects may have undiagnosed diabetes,

which might bias our results toward the null.

However, because the participants in our study are health

professionals and our previous study also showed that the

undiagnosed diabetes prevalence was low (approximately 2%)

[22], it might not appreciably affect our results.

In summary, we demonstrated associations between newly

identified genetic markers in TPMRSS6 and TF genes and body

iron stores, and found that SNP rs855791 in TPMRSS6 was

nominally associated with a decreased risk of T2D in men. Future

studies are needed to investigate the association of these iron

related variants and T2D risk in larger studies and in different

populations, as well as to elucidate potential gender difference in

the genetic effects.

Methods

Study Population
The NHS was established with the recruitment of 121,700

female registered nurses (aged 30–55 years) and residing in 11

large U.S. states completed a mailed questionnaire on their

medical history and lifestyle characteristics [23]. Beginning in

1980, dietary information has been updated every 2 to 4 years

using validated semi-quantitative food frequency questionnaires

(FFQs). Every two years, follow-up questionnaires have been sent

to update information on potential risk factors and lifestyle

information and to identify newly diagnosed cases of T2D and

other diseases [24]. The HPFS began in 1986 when 51 529 male

U.S. health professionals (aged 40–75 years) answered a detailed

questionnaire that included a comprehensive diet survey, and

items on lifestyle practice and medical history [25]. The cohort is

followed through biennial mailed questionnaire. Dietary informa-

tion is updated every four years [26]. Blood was collected from a

total of 32 826 NHS members between 1989 and 1990 and from

18 159 HPFS members between 1993 and 1999.

Subjects for the present study were selected from those who

provided blood samples using a nested case-control study design
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Figure 1. Associations between tertiles of genetic risk score
and type 2 diabetes risk in HPFS.
doi:10.1371/journal.pone.0040919.g001
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[27,28]. Demographics and health status of participants who

provided blood samples were generally similar to those who did

not. T2D cases were identified by self-report methods that were

confirmed with a validated supplementary questionnaire [29,30].

For cases before 1998 cycle, we used the National Diabetes Data

Group criteria [31] to define diabetes. The validity of this method

has been established [32]. We used the 1997 ADA diagnostic

criteria for diabetes diagnoses from 1998 onwards [33]. Among

the diabetes cases, a total of 98% of self-reported diabetes cases

were confirmed by medical records review in both NHS and

HPFS cohorts [29]. Controls were free of diabetes at the time the

case diagnosis and remained unaffected through follow- up till

2006. All participants provided written informed consent, and the

study was approved by the Human Research Committee at the

Brigham and Women’s Hospital, Boston.

Assessment of Covariates
Information about medical history, anthropometrical data,

lifestyle factors, and family history of diabetes in first-degree

relatives was derived from the baseline questionnaires [25,34].

BMI was calculated as weight in kilograms divided by the square

of height in meters (kg/m2). For men, physical activity was

expressed as metabolic equivalent task (MET) hours of moderate

to vigorous exercise per week and was calculated by using the

reported time spent on various activities, weighting each activity

by its intensity level. For women, physical activity was expressed as

hours per week because MET was not measured at baseline in the

NHS. Self-administered questionnaires about body weight and

physical activity have been validated as described previously

[35,36]. Energy-adjusted intakes of heme iron (mg/d) were

calculated based on FFQs. We used the average intakes of

baseline dietary heme iron from the 1980 and 1984 questionnaires

in NHS and 1986 and 1990 questionnaires in HPFS for gene-

dietary heme iron interaction analysis. The correlation coefficient

for energy-adjusted total dietary iron intake from the FFQ and two

1-week diet records spaced 6 months apart was 0.60 after

adjustment for within-person variability in daily intake [24]. In

addition, heme iron consumption based on the FFQ has been

shown to be related to plasma ferritin levels in NHS [37].

DNA Extraction, Single Nucleotide Polymorphisms (SNPs)
Selection and Genotyping Methods

In the NHS nested case-control study, 67.8% blood samples

were obtained after 8-hour overnight fasting; in HPFS, it is 59.0%.

DNA was extracted from the buffy coat fraction of centrifuged

blood using a QIAmp blood kit (Qiagen, Chatsworth, CA). A

genome-wide scan was conducted using the Affymetrix Genome-

Wide Human 6.0 array and the Birdseed calling algorithm [21].

The quality control of genotyping and related analysis methods for

our GWA study were described previously [21]. In this study, six

SNPs related to iron stores, including H63D (rs1799945) and

C282Y (s1800562) in HFE gene, rs855791 in TPMRSS6 gene [10],

and rs3811647, rs1799852, and rs2280673 in TF gene [9] were

extracted from the genome-wide scans. The six SNPs did not

significantly deviate from Hardy-Weinberg equilibrium (HWE) in

controls in either NHS or HPFS after adjustment for multiple

testing (P.0.008: a= 0.05/6 SNPs).

Determinant of Plasma Levels of Biochemical Markers in
NHS

The iron status biomarkers were measured in NHS. Blood

samples in NHS were collected in1989 and 1990 [38]. Concentra-

tions of ferritin and transferrin receptors were measured by a

particle-enhanced immunoturbidimetric assay using the Hitachi

911 analyzer (Roche Diagnostics, Indianapolis, IN) [12]. Transfer-

rin was measured by an immunoturbidimetric assay using the

Hitachi 917 analyzer and Roche Diagnostics reagents (Indianapolis,

IN). To minimize bias and interassay variation, study samples were

selected from randomly ordered case-control pairs in measurement.

The coefficients of variation for ferritin, transferrin receptors, and

transferrin were 3.75%, 8.4%, and 6.0% respectively.

Statistical Analyses
Deviations from HWE were assessed by chi-square tests. We

used logistic regression to estimate ORs for T2D risk, adjusting for

age (in years), BMI (,23.0, 23.0–24.9, 25.0–29.9, 30.0–34.9, or

$35.0 kg/m2 ), family history of diabetes (yes, no), smoking

(never, past, current), alcohol intake (nondrinker or drinker [0.1–

4.9, 5.0–9.9, 10.0–14.9, or $15.0 g/day]), menopausal status

[pre- or post-menopausal (never, past, or current hormone use);

women only], quintiles of physical activity, and quintiles of energy

adjusted P:S ratio, trans-fat and cereal fiber intakes. Power

calculations were performed using Quanto 1.2.3 (http://hydra.

usc.edu/gxe).

A genetic risk score (GRS) was calculated by summing up the

number of alleles of the six variants associated with higher levels of

markers of body iron. Interactions between SNPs and the dietary

heme iron intake were assessed by entering the cross-product of

the two variables into the model. To normalize the distributions,

plasma ferritin, sTfR, and transferrin were inverse normal

transformed. We used R2, which was the difference of model

sum of squares between models with and without the SNPs of

interest divided by the corrected total sum of squares of the full

model, to calculate the percentage of the variance of the

biomarkers that were explained by the SNPs. Because multiple

variants were chosen to be investigated in the present study, we

used the Bonferroni’s correction to do the multiple comparisons

[39]. The SAS statistical package was used for the analyses (SAS,

version 9.0 for UNIX). All P values are two sided.
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