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Abstract

Complex diseases are typically caused by combinations of molecular disturbances that vary widely among different
patients. Endophenotypes, a combination of genetic factors associated with a disease, offer a simplified approach to dissect
complex trait by reducing genetic heterogeneity. Because molecular dissimilarities often exist between patients with
indistinguishable disease symptoms, these unique molecular features may reflect pathogenic heterogeneity. To detect
molecular dissimilarities among patients and reduce the complexity of high-dimension data, we have explored an
endophenotype-identification analytical procedure that combines non-negative matrix factorization (NMF) and adjusted
rand index (ARI), a measure of the similarity of two clusterings of a data set. To evaluate this procedure, we compared it with
a commonly used method, principal component analysis with k-means clustering (PCA-K). A simulation study with gene
expression dataset and genotype information was conducted to examine the performance of our procedure and PCA-K. The
results showed that NMF mostly outperformed PCA-K. Additionally, we applied our endophenotype-identification analytical
procedure to a publicly available dataset containing data derived from patients with late-onset Alzheimer’s disease (LOAD).
NMF distilled information associated with 1,116 transcripts into three metagenes and three molecular subtypes (MS) for
patients in the LOAD dataset: MS1 (n1~80), MS2 (n2~73), and MS3 (n3~23). ARI was then used to determine the most
representative transcripts for each metagene; 123, 89, and 71 metagene-specific transcripts were identified for MS1, MS2,
and MS3, respectively. These metagene-specific transcripts were identified as the endophenotypes. Our results showed that
14, 38, 0, and 28 candidate susceptibility genes listed in AlzGene database were found by all patients, MS1, MS2, and MS3,
respectively. Moreover, we found that MS2 might be a normal-like subtype. Our proposed procedure provides an alternative
approach to investigate the pathogenic mechanism of disease and better understand the relationship between phenotype
and genotype.
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Introduction

The identification of genes that contribute to human disease is

an important step toward understanding disease etiology and can

facilitate the development of diagnostic tools, preventive medicine,

and novel treatments. Complex diseases are caused by multiple

genetic, environmental, and behavioral factors. If a disease has

heterogeneous etiologies, then the detection of operable genes is

difficult as one set of genes can be important for one etiology, but

not another. Therefore, the identification of the genetic determi-

nants of complex diseases is difficult. Endophenotype is an

intermediate phenotype that combined genetic factors associated

with a disease to reduce genetic heterogeneity [1]. This approach

assumes that complex diseases can be described by sets of simple

and measurable disease characteristics, with each characteristic

representing a basic biological phenomenon. In the literature,

synonyms for endophenotype include intermediate phenotype,

biological marker, and sub-clinical trait, although each term has

slightly different implications [2–5]. The endophenotype approach

may be useful in exploring different pathways leading to the onset

of a complex disorder. For example, patients with the same

diagnosis may differ greatly in the number and severity of

symptoms, suggesting heterogeneity in the causal pathways [6–8].

Therefore, the creation of more homogeneous subgroups of

patients based on their endophenotypes may facilitate our

understanding of the involved biological processes.

The identification of disease subtypes is important because

homogeneous groups likely reflect stronger clinical, pathological,

and genetic coherence, and this may facilitate the understanding of

the mechanisms underlying a disease. The molecular heterogene-

ity of a complex disease may suggest the existence of molecular

subtypes [9,10]. Genomic tools such as DNA microarrays hold

great potential for the deciphering of the molecular patterns of

disease and the identification of new and improved clinical

markers. Gene expression profiling has been applied extensively to

studies on gene function, gene regulation, cellular processes, and

disease subtypes. Many human genes show natural variation in

expression levels [11,12], which suggests that gene expression
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levels may be used to establish endophenotypes to identify genes

that confer disease susceptibility [13–15].

In general, gene expression datasets contain thousands of genes

derived from a relatively small number of samples. The gene

expression data can be represented by a matrix A (Am|n) of m
transcripts in n samples. As such, standard statistical methods are

not appropriate for analyzing gene expression data. Unsupervised

clustering methods represent an alternative approach for exploring

molecular dissimilarities among patients. To date, several methods

have been applied for dimension reduction such as principal

component analysis (PCA) [16], singular value decomposition

[17], and independent component analysis [18]. These methods

capture overall gene behaviors that cluster genes based on global

similarities in their expression data [19]. Recently, Lee and Seung

[20] proposed non-negative matrix factorization (NMF), a matrix

factorization method, A&W|H , where the elements of A, W ,

and H are all non-negative. NMF imposes non-negative con-

straints to detect local gene behaviors, in contrast with the

approaches used by other linear representation clustering

methods. NMF differs from PCA and singular value decomposi-

tion by enforcing the constraint that the two factors W and H must

be non-negative, i.e. all elements must be equal to or greater than

zero, and the factorization of matrices is generally non-unique.

NMF has been applied to microarray data, protein sequence data,

and data from neuroscience studies [21–23].

NMF creates a small number of gene subspaces from all of the

genes in a genome and summarizes the sample gene expression

patterns in each of the gene subspaces [24]. These gene expression

patterns are then used to cluster samples into distinct tumor types

and subtypes. NMF is superior to both hierarchical clustering and

self-organizing mapping in subtype discovery. A previous study has

compared the performance of dimension reduction using NMF

and PCA with several widely studied, related cancer microarray

datasets and has shown that NMF outperformed PCA in reducing

data dimensionality [25].

In the present study, with the advantages of higher clustering

accuracy and superior dimension reduction, we investigated an

endophenotype-identification analytical procedure that first

applies NMF to explore the potential molecular dissimilarities

of a complex disease based on high-throughput microarray data

and then uses the adjusted rand index (ARI) [26]. ARI is

a measure of the similarity of two clustering groups of a data set.

In our study, ARI was applied to select informative transcripts

for each molecular subtype. Both NMF and PCA are methods

that reduce the dimension linearly and aim to find a small set of

transcripts that describe the underlying information contained in

Am|n with a lower dimension, k. We also used a simulation to

compare the efficiency of NMF and PCA with k-means analysis

(PCA-K) for endophenotype construction. Finally, we used

a publicly available dataset derived from patients with late-onset

Alzheimer’s disease (LOAD) [27] to evaluate the feasibility of our

proposed procedure.

Materials and Methods

Endophenotype-identification Analytical Procedure:
Molecular Subtype Construction via NMF
NMF is an algorithm based on decomposition by parts that

can reduce the dimension of expression data from thousands of

genes to a handful of gene sets [24]. When applying NMF to

a matrix A, the matrix A can be factored into two matrices W
and H with Am|n&Wm|k|Hk|n, where the columns k of

matrix W are called metagenes, as defined by Brunet et al. [24].

Figure 1 showed the factorization structure [24]. In this study,

the entry wpi of matrix W is the coefficient of transcript p in

metagene i. The entry hij represents the expression level of

metagene i in sample j. Each column of matrix H represents the

metagene expression level of the corresponding patient sample.

After applying NMF with an appropriate value of k, a k-
dimension metagene expression level will be generated for each

sample, h.j~(h1j , h2j , � � � , hkj)T for sample j~1, � � � , n. In this

study, the standard NMF factorization with an algorithm

adopted from Lee and Seung [13] was used to produce two

non-negative matrices, W and H . The factorization process was

begun by randomly initializing matrices Wand H and then

iteratively updating them to minimize a divergence function

D~
P

i, j Ai, j log (Ai, j=(WH)i, j){Ai, jz(WH)i, j for metagene

i~1, � � � , k and sample j~1, � � � , n. To apply NMF to construct

endophenotypes, the entry wpi of matrix W was regarded as the

importance value of transcript p for p~1, � � � ,m in metagene i
for i~1, � � � , k. Transcripts with large wpi values contributed

more toward the metagene when wpiw0 for any i value. Note

that the dimension was reduced from m transcripts to k
metagenes. Regarding h.j , sample j was placed in cluster i if

hij was the largest entry in h.j , as suggested by Brunet et al. [24].

One key issue in NMF is choosing an appropriate k such that

the samples decompose into k ‘‘meaningful’’ clusters. To evaluate

how many clusters were appropriate, a widely accepted criterion,

the cophenetic correlation coefficient (rcc), which is based on

a consensus matrix, was used to determine cluster number [24,28].

The rcc is a measure to evaluate the stability of the clusters from

NMF. It is computed by the Pearson correlation of two distance

matrices. The first matrix is the consensus matrix which measures

the distance between samples. The second distance matrix is made

by the linkage used in the reordering of the consensus matrix [24].

The entries of the consensus matrix range from 0 to 1 and reflect

the probability that samples i and j cluster together. Based on the

idea of consensus clustering, rcc range from 0 to 1. A large rcc
indicates high clustering stability; therefore, the number of clusters

k with the largest rcc was chosen. To visualize the sample

clustering stability associated with a given cluster number k,
average linkage hierarchical clustering were used to reorder the

columns and rows of the consensus matrix [24]. For this study, the

R software (http://www.r-project.rg) [76] package ‘‘NMF’’ [29]

was used to perform NMF.

Endophenotype-identification Analytical Procedure:
Informative Transcript Selection for Biological
Interpretation of Metagenes
Most entries wpi of matrix W were close to zero, meaning that

metagenewas determined by a relatively small number of transcripts

with large importance values. In addition, redundant transcripts in

W complicated the biological interpretation of metagenes and

identification of molecular subtypes. To exclude redundant

transcripts, we determined which transcripts were most informative

for each metagene by ranking each column of matrix W . The

transcript selection process was performed as follows. First, for each

w.i~(w1i, � � � ,wmi)
T , the entry wpi in w.i for p~1, � � � ,m was

ranked in descending order. Given a certain value t, the top t
transcripts were selected for each metagene i~1, � � � , k. Then,
another round of NMF was carried out, based solely on non-

redundant t|k transcripts selected from k metagenes.

To choose an appropriate t, the process was repeated t times for

each metagene. ARI is a frequently used cluster validation

measurement that verifies the agreement between two partitions

[26]. In the present study, let C be the set that contained non-

redundant t|k transcripts and R be the set that contained m
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transcripts. ARI was used to assess the agreement of the molecular

subtypes between set C and set R. ARI values range from 0 to 1.

Higher index values indicate more agreement between sets. In this

study, the minimum t among those with ARI $0.95 was selected

as the optimal informative transcripts set. The selected transcripts

were then used for pathway analyses.

MetaCoreTM (GeneGo, Inc., St. Joseph, MI, USA) is a web-

based computational platform designed for systems biology. It

provides tools for gene list enrichment analysis, multi-experiment

comparison, interactome analysis, and biological network analysis

[30,31]. The biological characteristics of each molecular subtype

were determined using MetaCore pathway analysis. The top t
transcripts that overlapped among k metagenes were excluded in

the MetaCore pathway enrichment analysis.

PCA-K
PCA is a common method that is used to provide a simple

overview of complex structure using a small number of principal

components (PCs) to reduce high-dimension data. The PCs are

linear combinations of original transcripts that explain the

variation in the data and are orthogonal to each other. In gene

expression analysis, the PCs have been referred to as metagenes, as

introduced by Ma et al. [32]. Briefly, to apply PCA to

transcription data, the data matrix A with m transcripts and n
samples was decomposed by singular value decomposition to

Am|n~Um|nLn|nV
T
n|n, where Um|n was a score matrix, Vn|n

was a loading matrix, and Ln|n was a matrix containing the so-

called singular values. Matrices U and V were orthogonal. To find

potential molecular subtypes, the score matrix was used for

clustering with the standard k-means clustering method and the

squared Euclidean distance measure [25].

Simulation Studies
For comparing the performance between NMF and PCA-K in

constructing endophenotype, we considered informative genes and

non-informative genes based on the idea proposed by Fogel P. et al

[33] in order to mimic real microarray data. In the simulation

studies, we considered three different molecular subtypes, T1, T2,

and T3, each with an equal sample size of 80. The non-

informative genes represented those that had no contribution in

distinguishing molecular subtypes. First, for simulating non-

informative genes, the gene expression level was described by

the model

Ym|n~Gm|nzEm|n, ð1Þ

where matrix Y (the gene expression data) had size m|n with

rows representing genes and columns representing samples, matrix

G was the log2-transformed mean of the overall gene expression

level using log2 of 100 [33], matrix E was the multivariate random

variable simulated from a multivariate normal distribution with

a mean vector of zero. We assumed that all genes in a molecular

subtype were correlated at the same level. Hence, to simulta-

neously simulate multiple molecular subtypes, the covariance

matrix was considered as a diagonal partition consisting of the

correlation matrix for each molecular subtype. The variance of

each gene was set to be 0.3, and the correlation level between

genes was set to moderate dependence ranging from 0.4 to 0.6

[34]. In addition, the proportion of non-informative genes, h, was
assumed at 70%, 80%, and 90% [33].

Recent works [35–37] has demonstrated that co-regulated genes

are expected to rise and fall together in expression levels. The

genetic variation can be used to identify groups of genes that might

share a common background. Correlated variation in groups of

genes may result in common phenotypes [38]. To add the

variation in gene expression to our simulation, we presumed that

the difference in gene expression level between molecular subtypes

was resulted from the variants in the DNA sequences (i.e., single-

nucleotide polymorphisms [SNPs]) [39]. Hence, for informative

genes, we used a linear model to link the relationship between SNP

data and gene expression as proposed by many eQTL studies such

as Stranger et al. [40] and Chen et al. [41]. We assumed a one-to-

one correlation between a SNP and a gene expression level, that is,

the expression level from microarray is related to SNP allele

frequency. Therefore, a group of SNP markers were selected by

fixing the difference of minor allele frequencies (MAF) (f ) to

Figure 1. Schematic representation of factorization in NMFmethod. NMF decomposes matrix Am|n intoWm|k andHk|n . The columns k of
matrix W are called metagenes and the entry wpi of matrix W is the coefficient of transcript p in metagene i (p~1, � � � ,m; i~1, � � � , k). The entry hij
of matrix H represents the expression level of metagene i in sample j (j~1, � � � , n).
doi:10.1371/journal.pone.0040996.g001
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predict a subtype. To include informative genes, equation 1 was

rewritten as follows:

Ym|n~Gm|nzb|Sm|nzEm|n, ð2Þ

where matrix G and matrix E were the same as in equation 1.

Matrix S (the genotype data) was generated from a multinomial

distribution with consideration of various minor allele frequency

(MAF) differences among subtypes. To simulate informative genes,

160 subtype-specific overexpressed genes were generated for each

of the molecular subtypes. To simulate overexpressed genes in T1,

the MAF was set to 0.1+ f for subtype T1, and the MAF was set to

0.1 for subtypes T2 and T3, where f was the MAF difference

between T1 and the other subtypes (T2 and T3). Similarly, the

process for generating overexpressed genes was repeated for other

subtypes. An additive genetic model was used, which coded copies

of the minor allele as 0, 1, or 2. The coefficient b represented the

magnitude of the SNP effect on gene expression level. Finally,

matrix Y in equation 2 was applied to both NMF and PCA-K.

To evaluate the performance of NMF and PCA-K in

constructing endophenotypes, an accuracy measure, purity [42],

was used. Assuming l is the true number of clusters, after applying

a clustering method (e.g. NMF and PCA-K), k clusters are

obtained. Purity is given by the following equation [42]:

Purity~
Xk

q~1

nq

n
p(Cq), p(Cq)~

1

nq
max
1ƒrƒl

(nrq)

where Cq is a particular cluster of size nq from a clustering

method, nrq is the number of samples in cluster q that belongs to

the original cluster r (1ƒrƒl) and n is the total number of

samples. Hence, Purity indicates the proportion of samples in

cluster q being clustered correctly in cluster r. The larger the value

of purity is, the better the clustering performance. All simulation

scenarios were run 1000 times. The average purity measure was

calculated for each run.

Application to LOAD Dataset
To demonstrate the feasibility of our analytic procedure in an

endophenotype study, we used a publicly available dataset derived

from patients with LOAD [27]. The dataset is freely available at

http://labs.med.miami.edu/myers/. LOAD is a common com-

plex neurodegenerative disorder that occurs in people over the age

of 65 years. The dataset contained data on 176 patients with

a diagnosis of LOAD and on 188 patients who were neurologically

normal. The cRNA data contained 8,650 transcripts that were

obtained using the Illumina Human Reseq-8 Expression Bead

Chip following standard operating procedures as described in

Webster et al. [27]. The DNA data contained 372,084 autosomal

SNPs that were obtained using the Affymetrix Gene Chip Human

Mapping 500 K Array set.

Before evaluating our proposed procedure, we preprocessed the

LOAD dataset. First, transcripts were eliminated when expression

values for a given transcript were missing for .30% of the

subjects. This resulted in the removal of 338 transcripts. For the

remaining 8,312 transcripts, log2-transformed values were used to

reduce outlier impact and ensure normality. Many of the genes on

the array were not expressed, were expressed at low levels, or were

expressed at a level with no biological significance. To further

reduce the effects of irrelevant or noisy variables, we selected

transcripts with mean expression values in the upper 70th

percentile and with variances in the upper 50th percentile, as

suggested by Langfelder et al. [43]. The remaining 1,116

transcripts met all filtering criteria. Missing data from these

1,116 transcripts were replaced by the mean value of the

transcripts across patients. Therefore, further analyses were

constructed without any missing data.

Rare alleles are more likely to result in spurious finding due to

a higher relatedness between individuals sharing rare alleles [44].

In addition, loci with a low MAF (,10%) have significantly lower

power to detect weak genotypic risk [45,46]. Therefore, to avoid

spurious findings resulting from rare genotypes, SNP markers with

low MAFs were excluded; specifically, we adopted the criteria of

removing SNPs with MAF,10% [47], which resulted in a total of

remaining 283,475 SNP markers for further analysis. For in-

complete genotype data, ‘‘beagle’’ software [48] was used for

imputation. Due to the exploratory nature of our study, a loose

threshold (p-value ,1024) was used as the significance criterion in

differential expression and metagene expression QTL analyses.

Results

Simulation Study
Because the results for the simulated scenarios were similar,

Figure 2 demonstrates the average purity results for NMF and

PCA-K with various values for b, f and h~70%. Figure S1 shows

results for h~80% and h~90% with various values for b and f .
As shown in Figure 2, the NMF method performed better than the

PCA-K method under different scenarios. When the MAF

difference, f , was ,0.4, the average purity of the NMF and

PCA-K methods was close to 0.6 under different b values. This

indicated that the classification using the NMF and PCA-K

methods was not satisfactory when the dissimilarity among

subtypes was not clear. With increasing values of f , the average

purity of NMF and PCA-K methods was higher under different b
values. The average purity of the NMF method increased

dramatically at f~0:4, whereas the average purity of the PCA-

K method increased sharply at f~0:6. These results showed that

NMF had a better sensitivity than PCA-K for detecting divergence

among subtypes. Additionally, with different h values and under

b~0:5 and f~0:5, the average purity for NMF and PCA-K

decreased slightly (Figure 3). This finding indicated that the impact

of noise was not strong.

Results for the LOAD Dataset: Molecular Subtypes
Among Patients
We applied NMF to the LOAD dataset containing 1,116

transcripts derived from 176 patients. A cophenetic correlation

coefficient (rcc) was calculated for each value of k. Figure 4A

shows rcc levels corresponding to k~2 to 5. rcc peaked at k~3
(rcc~0:9439) and fell off sharply as k increased, indicating that

k~3 was the best fit for this dataset. Three clusters yielded the

highest rcc values, which reduced the initial dimensionality of the

1,116 transcripts to three metagenes and grouped the 176 patients

into three molecular subtypes: MS1 (n1 =80), MS2 (n2 =73), and

MS3 (n3 =23) shown in Figure 4B.

Hence, NMF decomposed the 1:116|176 LOAD transcription

data matrix into matrix W and matrix H. The non-negative

matrix W was 1,116|3, with each of the three columns

representing a metagene. The non-negative matrix H was

3|176, with each of the three rows representing the metagene

expression levels for the corresponding sample. The three

metagenes captured gene expression patterns specific to three

different molecular subtypes of patients. The three metagene

expression levels were named MGL1, MGL2, and MGL3,

respectively.

Constructing Endophenotype Using NMF and ARI
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Devarajan [49] used metagene expression levels to determine

which sample subtypes belonged to which specific metagenes. We

therefore adopted the same approach. Figure 5 shows boxplots of

the MGL1–3 values for each molecular subtype. Patients grouped

in MS1 had higher MGL1 values as compared with patients

grouped in MS2 or MS3 (Figure 5A). Patients grouped in MS2

had the highest MGL2 values (Figure 5B). The greatest differences

were seen for MGL3, with patients grouped in MS3 having the

Figure 2. Simulation results of NMF and PCA-K for various f and b at h~70%. The simulations for a range of MAF differences (f ) and the
magnitude of SNP effect (b) under the proportion of non-informative genes h~70%. The x-axis represents the MAF differences. The y-axis represents
the average purity given by NMF (red) and PCA-K (blue). The average purity of each method was shown as mean+standard error. A-C indicated
b= 0.3 (A), 0.5 (B), and 0.8 (C), respectively.
doi:10.1371/journal.pone.0040996.g002

Figure 3. Simulation results of NMF and PCA-K for various proportions of non-informative genes h. The simulations for a range of
proportions of non-informative genes (h) under MAF difference f~0:5 and magnitude of SNP effect b~0:5. The x-axis represents the proportions of
non-informative genes. The y-axis represents the average purity given by NMF (red) and PCA-K (blue). The average purity of each method was shown
as mean+standard error.
doi:10.1371/journal.pone.0040996.g003
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highest MGL3 values (Figure 5C). In this way, MGL1, MGL2,

and MGL3 represented distinct biological characteristics of

molecular subtypes MS1, MS2, and MS3, respectively.

Results for the LOAD Dataset: Informative Transcript
Selection for Molecular Subtypes
The wpi values corresponding to p transcripts in the W matrix

were sorted in descending order within each metagene, i
(i~1,2,3). To identify the most relevant t transcripts for each

metagene, eight subsets were selected, i.e. t=50, 100, 150, 200,

250, 300, 400, and 800, respectively. Non-redundant transcript

subsets for the eight values of t when k~3 were listed in Table 1.

The non-redundant transcripts represented the union of the top

t|3 transcripts for the 3 metagenes. For example, when the top

50 transcripts (t~50) were chosen for each metagene (total 150

transcripts), 137 transcripts were the union of the 150 transcripts

from 3 metagenes (Table 1). The transcript subset with t~800
contained all 1,116 transcripts and thus was not considered

further. NMF was then applied seven times to obtain new

molecular subtypes for the seven remaining transcript subsets.

Using a molecular subtype containing all 1,116 transcripts as the

reference group, ARI values were calculated to evaluate molecular

subtype agreement between transcript subsets, t, and the reference

group. According to our criteria, t~150 was the minimum t with
an ARI value of .0.95 and therefore was selected (Table 1). In

comparison with the reference group, only one patient was

misclassified with the NMF method. Therefore, based on this

analysis, the top 150 transcripts for metagenes 1, 2, and 3 were

used to represent the biological characteristics of molecular

subtypes MS1, MS2, and MS3, respectively. To interpret the

biological characteristics of each molecular subtype, overlapped

transcripts (i.e., those found in more than one metagene) were

excluded to ensure uniqueness, and 123, 89, and 71 metagene-

specific transcripts were identified for MS1, MS2, and MS3,

respectively.

Results for the LOAD Dataset: Enrichment Pathway
Analysis via MetaCore
Furthermore, the metagene-specific transcripts were used to

conduct a pathway analysis using the GeneGO pathway map from

MetaCore. The pathways for each metagene-specific transcript

with a significance of p-value ,1023 are shown in Table 2.

Enriched Pathways in Metagene1-specific Transcripts
In metagene1-specific transcripts, there were three significant

enriched pathways. In the Development Gastrin in differentiation of the

gastric muscosa pathway, Gastrin is a peptide hormone produced

primarily by G cells, endocrine cells located in the gastric antrum.

Transcription of the Gastrin gene gives rise to a 0.7 kb mRNA

coding for a 101 amino acids precursor, known as Progastrin.

Progastrin is processed to mature amidated Gastrin (Gastrin 17).

Gastrin 17 mediates its effects primarily through Cholecystokinin B

receptor (CCKBR) [50,51]. The CCKBR is a seven transmembrane

G-protein coupled receptor (GPCR) that is expressed in the gastric

fundus, parietal ECL and D cells. GPCR are involved in numerous

key neurotransmitter systems in the brain that are disrupted in

Alzheimer’s disease (AD) [52]. The second enriched pathway was

Cytoskeleton remodeling Neurofilaments. Cytoskeleton of most eukaryotic

cells consists of three distinct, yet interconnected, filament systems:

actin filaments, microtubules and intermediate filaments (IF).

Neurofilaments are the principal intermediate filament type

expressed by neurons. The third enriched pathway was Neurophys-

iological process dopamine D2 receptor transactivation of PDGFR in central

nervous system (CNS). Dopamine is a major transmitter and

neuromodulator in the CNS. This transmitter mediates its signaling

through GPCRs. Dysregulation of dopamine receptor activity

account for neuropsychotic disorders such as Parkinson’s diseases,

schizophrenia, and Alzheimer’s disease [53].

Figure 4. Unsupervised clustering using NMF. (A). Cophenetic correlation coefficients associated with different numbers of clusters k. Y-axis is
the cophenetic correlation coefficient (rcc); x-axis is the number of clusters. The arrow displays the rcc at k~3. (B). Heat map of reordered consensus
matrix for k~3. Dark blue indicates samples never assigned to the same cluster, and red indicates samples always assigned to the same cluster.
doi:10.1371/journal.pone.0040996.g004
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Enriched Pathways in Metagene2-specific Transcripts
There were eight enriched pathways in metagene2-specific

transcripts. We briefly described the top 3 significant enriched

pathways. The first pathway was Immune response function of MEF2 in

T lymphocytes. The transcription factor Myocyte Enhancer Factor 2

(MEF2) is a family of muscle-enriched transcription factors that

have an essential role in myogenesis. It has been implicated as

playing a pivotal role in neuronal survival as well as in the

development, differentiation, and plasticity of the CNS [54,55].

The second pathway was Cytoskeleton remodeling Neurofilaments. In

Table 2, we found that the metagene1-specific transcripts and

metagene2-specific transcripts shared the same pathway. Howev-

er, the genes in this pathway were different in metagene1-specific

transcripts and metagene2-specific transcripts. This suggested that

the genes in metagene1-specific transcripts had different process

link to this pathway compared to the genes in metagene2-specific

transcripts. The third pathway was Neurophysiological process role of

CDK5 in presynaptic signaling. Cyclin-dependent kinase 5 (CDK5) is

a member of the small serine/threomine cyclin-dependent kinase

family with high activity in the central nervous system [56].

Enriched Pathways in Metagene3-specific Transcripts
The significant enriched pathway in metagene3-specific tran-

scripts was Development EPO-induced PI3K/AKT pathway and Ca (2+)

Figure 5. Association of metagene expression levels with molecular subtypes. Boxplots indicate metagene expression levels (MGL1–3) for
each molecular subtype (MS1–3) in the LOAD samples. (A) MGL1 is the highest in MS1. (B) MGL2 is the highest in MS2. (C) MGL3 is the highest in MS3.
doi:10.1371/journal.pone.0040996.g005

Table 1. Identification of the optimal transcript subset for molecular subtype representation.

No. of top transcripts t chosen for each metagene Transcript subseta Adjusted Rand Index (ARI) No. of sample misclassification

50 137 0.94596 4

100 255 0.92589 5

150 366 0.9869 1

200 475 0.97929 2

250 583 0.97929 2

300 681 0.97929 2

400 846 0.97929 2

800 1116 1 0

aNumber of transcripts that are union of the top t x 3 transcripts for 3 metagenes.
doi:10.1371/journal.pone.0040996.t001
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influx. Erythropoietin (EPO) is a lineage-specific hematopoietic

growth factor required for survival, proliferation and differentia-

tion of committed erythroid progenitor cells [57,58]. EPO has been

shown to have multiple effects on neurons [59].

Application of Molecular Subtypes in the LOAD Dataset:
Differential Expression Analysis
To demonstrate the application of the molecular subtypes

identified by our procedure, we compared discrepancies in

differential expression analysis between patients with LOAD and

normal subjects. We also conducted a differential expression

analysis for patients with each molecular subtype and compared it

to that for the normal subjects. A t-test was used to identify

differentially expressed transcripts among the 1,116 transcripts,

with significant thresholds of p-value ,1024. Our results found

that 660, 887, 30, and 736 transcripts were differentially expressed

for all patients and for patients grouped in MS1, MS2, and MS3,

respectively, when compared with transcripts from normal

subjects. Only 3 of the 660 differentially expressed transcripts

identified for all patients were not included among those identified

for patients grouped in the molecular subtypes. In comparison, it is

worth noting that only 30 transcripts were significant for patients

grouped in MS2, which suggests that MS2 might represent

a normal-like subtype.

Furthermore, when comparing all patients with normal subjects,

there were 660 differentially expressed transcripts. Among those

transcripts, 14 were also listed in AlzGene database [60]. These 14

differentially expressed transcripts detected using all patients were

also found from the results when comparing normal subjects with

MS1 (Figure 6). In addition, 8 out of the 14 differentially expressed

transcripts were intersected with differentially expressed transcripts

identified when comparing normal subjects with MS3. We noted

that there was no candidate susceptibility genes listed in AlzGene

found as differentially expressed transcripts for MS2.

The gene encoding apolipoprotein E (APOE) has been identified

as playing an important role in the development of Alzheimer’s

disease [61–63]. In the differentially expressed analysis, we found

that APOE gene was not significantly different (p-value = 0.3641)

comparing all patients with normal subjects. When patients were

grouped into three subtypes, the p-values of the differential

expression analyses were 1.03610–11, 0.00087, and 0.00182 for

MS1, MS2, and MS3, respectively (comparing with normal

subjects). At the significant threshold p,1024 that we chose to use

in this study, APOE gene was significant when comparing MS1

with normal subjects. A boxplot was drawn to show the expression

level of APOE gene for 3 molecular subtypes, all patients and

normal subjects. The median expression level of APOE gene was

the highest in MS1 (Figure S3).

The Validation of Molecular Subtypes in the LOAD
Dataset
To validate the differential expression analysis derived from

each molecular subtype in contrast to normal subjects, the changes

of effect size were evaluated by Cohen’s d [64]. The results showed

that the distribution of effect size in 1,116 transcripts for patients

grouped in MS2 centered at zero and variation was small, thus,

MS2 had little difference from normal subjects (Figure S2A). The

distribution of effect size in 1,116 transcripts for patients grouped

in MS1 and for patients grouped in MS3 had larger variation

compare to all patients (Figure S2A). This showed that patients

grouped by NMF enhanced the effect size in the differential

expression analysis.

To examine whether the existence of heterogeneous subtypes

among patients was random or not, a permutation strategy was

used as suggested by Allison et al. [65]. In the permutation

analysis, we randomly regrouped patients into three molecular

subtypes. The differential expression analysis was then carried out

in each regrouped subtype compared to normal subjects, and the

effect size was recorded. The empirical distribution of effect size

Table 2. Significant pathways for metagene-specific transcripts.

Metagene-specific
transcripts Pathwaysa Nodesb Gene IDc pValue

Metagene 1 Development Gastrin in differentiation of the gastric muscosa 4/38 PRKCB1;CHGA 7.11E-05

Cytoskeleton remodeling Neuroflamentsd 3/25 NEFM;VIM;TUBA1B 4.19E-04

Neurophysiological process Dopamine D2 receptor transactivation of PDGFR in CNS 3/26 GRIN1;PPKCB1;PPP2R2B 4.71E-04

Metagene 2 Immune response Function of MEF2 in T lymphocytes 4/50 PLCG1;PRKCZ;PPP3CB 3.39E-05

Cytoskeleton remodeling Neurofilamentsd 3/25 INA;STXBP1;TUBB 1.06E-04

Neurophysiological process Role of CDK5 in presynaptic signaling 3/28 SH3GL2;STXBP1;SNAP25 1.50E-04

Signal transduction cAMP signaling 3/38 PPP3CB;PRKCZ 3.76E-04

Translation Insulin regulation of translation 3/42 EIF4A2;EIF4B;PRKCZ 5.06E-04

Regulation of lipid metabolism Regulation of lipid metabolism by niacin and
isoprenaline

3/45 PRKCZ;PPP3CB 6.21E-04

Immune response NF-AT signaling and leukocyte interactions 3/46 PLCG1;PPP3CB 6.62E-04

Innume response NFAT in immune response 3/51 PLCG1;NFAT5;PPP3CB 8.97E-04

Metagene 3 Development EPO-induced PI3K/AKT pathway and Ca(2+) influx 3/43 GAB2;HBB;HBA2 2.20E-04

Pathway enrichment analysis was conducted using metagene-specific transcripts. Significant biological pathways were detected by MeatCore at a significance level p-
value ,1023.
Pathways are listed in order of significance, e.g., most significant pathway are presented at the top.
aName of biological pathway selected by MetaCore.
bThe number of metagene-specific transcripts associated with pathway/the number of all genes associated with pathway.
cGene ID of metagene-specific transcripts associated with pathway.
dDifferent genes in "Cytoskeleton remodeling Neurofilaments" pathway were identified in metagene 1 and metagene 2.
doi:10.1371/journal.pone.0040996.t002

Constructing Endophenotype Using NMF and ARI

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40996



for the randomly grouped patients with 1,116 transcripts was

estimated. We combined the effect size across 1,000 permutations

according to average quantiles of empirical distribution. The

distribution of effect size for the randomly grouped patients was

very similar to that observed for all patients, regardless of the

proportion of patients that were grouped together (Figure S2B).

Therefore, these findings indicated that the definition of molecular

subtypes in the LOAD dataset presented in this study is

meaningful and can improve the efficiency of the identification

of differentially expressed transcripts.

Metagene Expression Quantitative Trait Locus (QTL)
Mapping
To explore the genetic variants that are responsible for the

molecular subtypes identified by differential transcript profiling,

the genotype data were used to identify associations between

genetic variants (i.e., SNPs) and metagene expression levels.

Associations between SNP markers and each of the three MGLs

were tested using a linear regression model in which individual

MGLs were each regressed on individual SNP markers, and the

significance level was set at a threshold p-value of 10–4. The results
showed that 11, 25, and 31 SNP markers were associated with

MGL1, MGL2, and MGL3, respectively, and were named

MGL1-QTL, MGL2-QTL, and MGL3-QTL, respectively.

To explore the additive property of the effects of these SNP

markers on molecular subtype identification, the frequencies of up-

regulated alleles in each MGL-QTL were calculated for MS1–3.

The up-regulated allele was the one that had a positive coefficient

in the regression model; in other words, the up-regulated allele

enhanced the metagene expression level. The up-regulated alleles

were called u-alleles. This analysis was intended to help un-

derstand the possible relationship that the SNPs regulated

metagene expression levels for a specific molecular subtype. We

calculated the mean allele frequency of u-alleles for each MGL-

QTL. The mean allele frequency of u-alleles of 11 MGL1-QTL

was higher in MS1 (0.6658) than in MS2 (0.5924) and MS3

(0.4895). Similarly, the mean allele frequency of u-alleles related to

the 25 MGL2-QTL was higher in MS2 (0.4925) in comparison

with MS1 (0.3797) and MS3 (0.3248); the mean allele frequency of

u-alleles of 31 MGL3-QTL had higher frequency in MS3 (0.3050)

than in MS1 (0.1370) and MS2 (0.1494). The results showed that

the molecular subtypes with its respective MGL had higher

frequencies of u-alleles in the LOAD data.

Discussion

Patients with a common disease can display molecular

heterogeneity [66]. These molecular differences often are

important because they can reflect the biological processes that

underlie pathogenic diversity [67]. Molecular markers such as

transcripts or protein levels can be used to identify molecular

dissimilarities among patients. Identification of these specific

disease subtypes could dramatically improve our understanding

of disease pathology.

In our simulation study, the magnitude of the SNP effect on

gene expression level (b), the MAF difference among subtypes (f ),
and the proportion of non-informative genes (h) were considered

to evaluate the efficiency of endophenotype construction using

the NMF and PCA-K methods. Our findings demonstrated that

the magnitude of the effect of MAF difference (f ) was larger than
the magnitude of the SNP effect on gene expression level (b).
This finding might result from our assumption that SNPs with

differences in allele frequencies varied significantly between

molecular subtypes. The difference might result from different

patterns of expression levels among different molecular subtypes.

In previous cancer microarray studies, NMF was used to

examine the efficiency of detection of potential disease subgroups

[68,69]. Our simulations provide an alternative insight for the

detection of molecular subtypes.

In our simulation study, the variations of gene expression levels

were controlled only by the difference of MAF of some specific

SNP markers among subtypes. In reality, other factors such as

heterogeneity of genetic effect between different subtypes or

different direction of effect between subtypes may influence gene

expression levels. When these effects are considered in our

method, the diversity of gene expression level will increase.

According to a previous study [49], NMF has good performance in

class discovery when diversity of groups is high. Therefore, it is

expected that NMF will still be useful in constructing endophe-

notypes.

In this study, we assumed that all genes in a molecular subtype

were correlated at the same level in simulation study. To check this

assumption, we further examined the variation of correlation for

Figure 6. Venn diagram of differentially expressed transcripts listed in AlzGene. The Venn diagram showed the differential expressed
transcripts in all patients, MS1, and MS3. These differentially expressed transcripts were listed in AlzGene database.
doi:10.1371/journal.pone.0040996.g006
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LOAD dataset. The average correlation with metagenes for each

molecular subtype was calculated. The average correlation 6

standard error were 0.442760.003, 0.231260.0028, and

0.636960.0031 for MS1, MS2, and MS3, respectively. The

results showed that the assumption seems to be acceptable for the

simulation study.

One of the advantages of NMF is that it produces two non-

negative matrices that provide a parts-based local representation of

the data. In comparison with NMF, PCA produces both positive

and negative entries in metagenes (i.e., PCs) that can cancel each

other out, at least in part, and this creates difficulties in the

capturing of local data characteristics [49]. In addition, entries

associated with NMF are interpreted readily as the relative

contribution of genes and are well grounded in physical reality

[26]. Another advantage of NMF is that it can simultaneously

cluster genes and patients. In this study, NMF was used to reduce

data from thousands of transcripts into a small number of

metagenes, k. This simplification provided a summary of patient

gene expression levels from corresponding metagenes and was

used to extract informative patterns from complex data. For

application in complex disease, we applied NMF to the LOAD

dataset and successfully explored three potential molecular

subtypes, MS1, MS2, and MS3.

There have been several improvements to the standard NMF

method. In our present study, we further applied non-smooth

NMF (nsNMF) [19], an extended method by making use of non-

smoothness constraints, to simulations at a few different values of

MAF difference among subtypes (f ) and magnitude of the SNP

effect on gene expression level (b) based on a fixed proportion of

non-informative genes (h=70%). Overall speaking, the average

purity of for nsNMF was better than standard NMF (Figure S4).

The results indicated that nsNMF method refined standard NMF

method in endophenotype construction.

In addition to NMF, we proposed to incorporate the process of

informative transcript selection in the identification of molecular

subtypes. Here we used ARI to measure agreement between

molecular subtypes to ensure that the utilization of the top selected

transcripts,t, for each metagene captured the same molecular

subtypes as when all transcripts, m, were used. Consequently, we

anticipated that the correlations between metagene expression

obtained from the selected and the entire set of transcripts would

be high. For the LOAD dataset, the correlation coefficients for the

metagene expression levels between the top 150 transcripts and

the original 1,116 transcripts were 0.9844, 0.9840, and 0.9772 for

MGL1, MGL2, and MGL3, respectively. As a result, the proposed

process could help to exclude redundant transcripts and to

maintain a similar molecular pattern as that observed with the

original m transcripts.

In order to find the biological characteristics for each molecular

subtype, the metagene-specific transcripts that overlapped among

3 metagenes were excluded to decrease the noise for finding the

specific characteristics for each molecular subtype in pathway

analysis. The removal of these genes may lose potential in-

formation of showing linkages between pathways.

To evaluate the predictive power of three metagene expressions

in molecular subtypes, a multinomial logistic regression using three

metagene expression levels with three molecular subtypes was

constructed. The predictive power was almost 98%. The result

showed that these metagene expression levels predict molecular

subtypes well.

In addition to log2 transformation to preprocess the transcripts

profiling, we also used arcsinh transformation. To examine

whether transformation methods changed clustering, we then

applied NMF method to the data set and utilized ARI index to

compare the clustering between results obtained from the two

transformation methods. The ARI value was 0.9259 which

indicated that the results for the two transformation methods

were similar. Therefore, it seems that the impact of using different

transformation methods to the clustering results is mild.

In our real data, we found that it was feasible to construct

endophenotype using data mining tools with genomic data in

LOAD study. To utilize the most information in LOAD study,

microarray data was used to construct endophenotypes and SNP

data was used to explore the correlation between endophenotypes

and SNP markers for representing the underlying etiology of

Alzheimer’s disease. However, for some phenotypes, microarray

data may not fully represent the underlying genetic etiology. For

example, microarray expression level from lymphocyte drawn

from peripheral blood may not well represent patients’ blood

pressure [70]. Due to differential spatial and temporal expression

patterns, some genes are only expressed in specific tissues [71].

One of the limitations of NMF is that it can only be applied to

continuous data. Other clustering methods e.g. random forest that

can handle discrete data can be considered if only SNP data is

available.

We have considered several thresholds of p-value for association

analysis between metagene gene expression level (MGL) and SNP

marker. Since this was an exploratory study, we chose to use

a loose threshold p-value ,1024. Therefore, proper multiple

testing was not fully considered.

When examining significant MGL-QTLs, there was no over-

lapping SNP marker among molecular subtypes. This result might

be due to the exclusion of overlapping SNP markers before

conducting QTL analysis. Therefore, it is still possible that there is

some heterogeneity of genetic effects between different subtypes.

In addition, we found that numerous candidate susceptibility

genes in the AlzGene database could not be reproduced using data

from all patients. This finding may be due to the dilution effect

contributed by the normal-like subtype, MS2. These results

showed that the use of the entire patient dataset may fail to detect

potentially important susceptibility genes that are specific to

molecular subtypes of patients, as identified using our proposed

procedure.

In our study, we utilized a permutation study to examine

whether the existence of molecular subtypes among patients was

random or not. The results showed that the identified molecular

subtypes were apparent in LOAD patients. Moreover, we also

applied another popular clustering method, PCA-K, to LOAD

dataset and found 3 molecular subtypes. Results showed that the

clustering pattern of PCA-K was similar to those of NMF with

ARI = 0.98 and both of them could identify a normal-like subtype.

These results indicated the existence of heterogeneous subtypes in

LOAD patients.

In pathway analysis, the candidate pathways obtained from our

study have not been identified for Alzheimer’s disease related

studies, however, we found that the three enriched pathways in

metagene1-specific transcripts were related to neurotransmitter

and neuronal system [72,73]. The enriched pathways in

metagene2-specific transcripts were related to neuronal system

and immune system [56,74] and the enriched pathway in

metagene3-specific transcripts reported effect on learning and

memory [75]. The results showed that each molecular subtype

with its respective metagene has specific characteristics. This

finding may help us to understand the pathophysiology of

Alzheimer’s disease.

Therefore, a consideration of the molecular differences among

patients is recommended to identify the genetic causes of a complex

disease. However, if one tests multiple genetic subtypes, one should
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adjust the statistical testing accordingly. Moreover, a potential

disadvantage focusing on molecular subtypes is that statistical

power may be compromised when large data set is reduced to

create homogeneous subgroups. Hence, further study regarding

power reduction in endophenotype using smaller data set with

possible stronger genetic effect should be considered. Carefully

chosen endophenotypes may reveal alternative pathophysiological

disease processes. Collectively, our findings suggest that this

proposed approach is an effective method for constructing

complex disease endophenotypes.

Supporting Information

Figure S1 Results of NMF and PCA with k-means for
simulation. The simulations for a range of magnitude of SNP

effect (b) and proportions of non-informative genes (h). The x-axis
represented the MAF differences f . The y-axis represented the

average purity given by NMF (red) and PCA-K (blue). The

average purity of each method was shown as mean+standard

error.

(TIF)

Figure S2 The validation results of molecular subtypes
with LOAD data. (A) Patients grouped by NMF: the plot

showed the distribution of effect size in 1116 transcripts for all

patients (black) and molecular subtypes (MS1= red, MS2= green,

and MS3=blue). (B) All patients randomly grouped: the plot

showed the empirical distribution of effect size in randomly

grouped patients by average quantile across 1000 times of

permutations (entire patients = black, MS1= red, MS2= green

and MS3=blue).

(TIF)

Figure S3 The gene expression level of APOE gene for
all patients, control subjects and molecular subtypes.

Boxplots indicate the gene expression level of APOE gene for all

patients, control subjects and each molecular subtype (MS1–3).

(TIF)

Figure S4 Simulation results of NMF and nsNMF for
various f and b at h~70%. The simulations for a range of

MAF differences (f ) and magnitude of SNP effect (b) under the

proportion of non-informative genes h~70%. The x-axis

represents the MAF differences. The y-axis represents the average

purity given by NMF (red) and PCA-K (blue). A-C indicated

b=0.3 (A), 0.5 (B), and 0.8 (C), respectively. The average purity of

each method was shown as mean+standard error.

(TIF)
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