Table 3. Summary out in-degree scaling analysis.
Colony | Slope1 | SE | R squared | P-value |
1 | −1.589522 | 0.95259 | 0.258183 | 0.1337 |
2 | −2.390163 | 0.4221644 | 0.8423322 | 0.0013 |
3 | −1.27468 | 0.9519083 | 0.1831009 | 0.2173 |
4 | −2.434398 | 0.335663 | 0.8976089 | 0.0003 |
5 | −1.105925 | 1.0091694 | 0.1305242 | 0.305 |
6 | −2.685515 | 0.3487973 | 0.936789 | 0.0015 |
7 | −1.742611 | 0.3006386 | 0.8936109 | 0.0044 |
8 | −1.849658 | 0.3015067 | 0.8827247 | 0.0017 |
9 | −1.957485 | 0.2508555 | 0.9383577 | 0.0015 |
10 | −1.838498 | 0.2517909 | 0.8555716 | 0 |
11 | −2.018978 | 0.4390072 | 0.7790092 | 0.0037 |
12 | −2.344854 | 0.4034605 | 0.8491615 | 0.0011 |
(2) This is the OLS-estimated slope for the relationship describing how the number of nodes with a given number of in-degree edges scales with in-degree. The data (x) were transformed prior to regression according to log10(x+1). The absolute value of the slope is an estimate for the degree distribution power law exponent (alpha).