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Abstract
Humans have a massive capacity to store detailed information in visual long-term memory. The
present studies explored the fidelity of these visual long-term memory representations and
examined how conceptual and perceptual features of object categories support this capacity.
Observers viewed 2,800 object images with a different number of exemplars presented from each
category. At test, observers indicated which of 2 exemplars they had previously studied. Memory
performance was high and remained quite high (82% accuracy) with 16 exemplars from a category
in memory, demonstrating a large memory capacity for object exemplars. However, memory
performance decreased as more exemplars were held in memory, implying systematic categorical
interference. Object categories with conceptually distinctive exemplars showed less interference in
memory as the number of exemplars increased. Interference in memory was not predicted by the
perceptual distinctiveness of exemplars from an object category, though these perceptual measures
predicted visual search rates for an object target among exemplars. These data provide evidence
that observers’ capacity to remember visual information in long-term memory depends more on
conceptual structure than perceptual distinctiveness.
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The human brain can store a large number of objects, events, words, and pictures, often after
only a single exposure. In a landmark study of visual long-term memory, Standing (1973)
showed people 10,000 images and found memory performance in a recognition memory task
was quite high (83%). Together with other studies (Shepard, 1967; Standing, Conezio, &
Haber, 1970), these results demonstrated the existence of a massive capacity long-term store
for visual information. However, fundamental questions were left unexplored by these
seminal studies: How detailed are the visual representations? How are thousands of memory
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representations organized and stored so that they can be successfully retrieved at a later
point in time? In the current work we begin to address these questions by examining the
contributions of conceptual and perceptual distinctiveness to long-term memory for visual
objects.

The Fidelity of Long-Term Memory for Visual Information
To estimate the capacity of any storage system, one must evaluate not only how many items
can be remembered (quantity) but also how much is remembered per item (fidelity). The
work of Standing (1973) and others made it clear that observers can successfully remember
thousands of pictures after only a single exposure. However, the representations of the
images in these large-scale memory experiments were assumed to be sparse in detail:
Because all the images were chosen to be visually and categorically distinct, observers could
succeed at the two-alternative forced-choice memory task by using a gist-like representation
—for example, one that captured only the basic category or meaning of the image (Chun,
2003; Simons & Levin, 1997; Wolfe, 1998). Only recently have studies systematically
probed the level of detail or fidelity with which hundreds or thousands of image
representations are maintained in long-term memory (Brady, Konkle, Alvarez, & Oliva,
2008; Hollingworth, 2004; Vogt & Magnussen, 2007). All of these studies demonstrated that
observers could recognize a significant amount of detail about each object or image.

In a study by Hollingworth (2004), for example, observers remained significantly above
chance at remembering which exemplar of an object category they had seen after studying
about 100 objects embedded in a scene context, even with up to 400 intervening objects in
between study and test. This suggests that which particular object exemplar you saw—not
just the category of the object— can successfully be stored for a hundred or more objects in
visual long-term memory. In Brady et al. (2008), observers saw thousands of categorically
unique objects, each presented once, over the course of a 5.5-hr study session. Observers’
memory was then tested using a two-alternative forced-choice task that pitted a previously
seen object against a different object image. Critically, the foil image could either be an
object from a different, novel category (requiring observers to retain only basic-level
category information to succeed, similar to Standing, 1973), an object from the same
category (requiring observers to know which specific exemplar from that category they had
seen), or the same object, but in a different configuration or pose (requiring observers to
remember which state the object was in). Surprisingly, observers succeeded at even the more
subtle discriminations, achieving 87% accuracy in both the state and exemplar conditions.
Together with the previous results, this suggests that visual long-term memory can store a
large number of items with substantial detail, at least under the experimental conditions that
were tested in these studies.

Categorical Distinctiveness in Visual Long-Term Memory
The items to be remembered from Standing (1973) were gathered from various magazines,
and thus presumably reflected everyday scenes and events. However, Standing also
observed that long-term memory capacity for vivid pictures, images that depicted oddities
(e.g., a dog holding a pipe, a crashed airplane), was even better: After seeing 1,000 vivid
pictures, Standing calculated that observers remembered 992 of them. This result suggests
that distinctiveness is a doorway to long-term storage and retrieval: Memories in a sparsely
populated position within the space of representation are more likely to be retrieved than
memories embedded in a dense space of competing memories (e.g., Eysenck, 1979; Nairne,
2006; Rawson & Van Overschelde, 2008; Schmidt, 1985; von Restorff, 1933).

Even when nonvivid images were used in the previous large-scale memory studies (Brady et
al., 2008; Shepard, 1967; Standing, 1973; Standing et al., 1970), one salient aspect of these
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studies is that the thousands of images presented to observers were distinctive from each
other in at least one important way: They were largely categorically unique. For instance, in
Brady et al. (2008), the 2,500 objects presented for encoding were from different basic-level
or entry categories (e.g., one bike helmet, one couch, one coffee mug, etc.). Thus it is
possible that the capacity to retrieve enough information to succeed at subtle within-
category memory tests (e.g., Brady et al., 2008) depends on the categorical distinctiveness of
the items encoded into memory.

A study by Vogt and Magnussen (2007) brings interesting data to bear on this point. Vogt
and Magnussen observed that people could tell apart an image of a new door from a
previously studied door with about 85% accuracy after studying over 400 images of doors
with surrounding background information. This suggests that even with 400 images from the
same category, observers can successfully recognize details about each image. However, in
an important follow-up manipulation, Vogt and Magnussen showed that observers were not
remembering the doors, per se, but local visual details: When the images were edited to
remove other objects and nondoor details from the scene (e.g., light fixtures, window signs,
structures on the surrounding walls), performance dropped by 20%. In other words, when
asked to remember only the doors with nondoor details removed, people were not as
successful. Observers’ memory performance instead seemed to depend on encoding
distinctive details about the background of each of the doors.

Perceptual Versus Conceptual Distinctiveness
There are many reasons to suppose that categorical uniqueness is particularly important for
supporting such high memory performance in visual long-term memory. For example, it is
widely accepted that categories are the organizing structure of long-term knowledge in the
verbal domain (e.g., by spreading activation models; J. R. Anderson, 1983; Collins &
Loftus, 1975), with some privileged status for basic-level categories (Mervis & Rosch,
1981) or entry-level categories (Jolicoeur, Gluck, & Kosslyn, 1984). This suggests that a
unique basic-level category may be a powerful retrieval cue, preventing interference from
other perceptually similar memories. Classic studies also demonstrate the critical role of
semantic organization in verbal memory; for example, details of a story that are consistent
within an existing schema are more likely to be remembered than those which are not (e.g.,
R. C. Anderson & Pichert, 1978; Bransford & Johnson, 1972). Semantic information can
also lead to systematic errors; for example, when recalling word lists, semantically related
nonpresented words will be falsely remembered (Deese, 1959; Roediger & McDermott,
1995). These kinds of results provide further evidence that conceptual knowledge is an
organizing principle for the storage and retrieval of information in memory.

However, our understanding of the role of conceptual knowledge for organizing and
retrieving information from long-term memory has predominantly been derived from studies
that examine memory for text or verbal stimuli. When considering long-term memory for
visual information, perceptual features are likely to play a more central role in long-term
memory. Object categories have a range of perceptual features: dominoes all have the same
shape, whereas leaves have very different shapes; pumpkins have similar colors, whereas
stamps have very different colors. Are these perceptual dimensions critical for organizing
and retrieving memory for visual object information? One reason to believe this is the case
is that the nature of the content to be remembered is perceptual (images): Attending to the
perceptual features of words (the case or font of text, the gender of a speaker’s voice) may
not help memory for the words, but similar “surface-level” attention might be critical for
visual long-term memory.
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On the other hand, we might not expect a strong role for perceptual distinctiveness in
memory because objects can be recognized with line drawings, in different lighting
conditions, and from different viewpoints (e.g., Biederman, 1987), suggesting the
underlying representations may not necessarily require perceptual details for accurate
retrieval. Further, object categories have a range of subordinate category structure; for
example, there are many kinds of cookies and only a few kinds of bowties. This
subcategorical structure arises from knowledge and experience and does not necessarily
reflect the perceptual features of the objects. As more items from a category are loaded into
memory, how do perceptual and conceptual dimensions of variation matter for retaining
detailed object representations in memory?

The Current Study
Here we present a series of experiments that explore the fidelity of our visual long-term
memory and examine which stimulus dimensions support detail in visual long-term memory
representations. Understanding which dimensions predict memory performance constrains
models of encoding and retrieval and enables us to make inferences about the underlying
organization of visual long-term memory. In Experiment 1, observers viewed thousands of
objects with a variable number of exemplars from each category. If categories matter for
visual long-term memory, then the more items per category are studied, the worse memory
performance should be.

In Experiments 2 and 3 we obtained estimates of the conceptual and perceptual
distinctiveness of the exemplars within an object category to examine the contributions of
such distinctiveness to memory interference. We find that the conceptual distinctiveness
within an object category predicts the difficulty of remembering multiple exemplars within
that category. Surprisingly, the perceptual distinctiveness within a category does not predict
interference in long-term memory. Finally, in Experiment 4 we show that our measures of
perceptual distinctiveness predict visual search times using the same stimuli, demonstrating
that the lack of correlation between perceptual distinctiveness and memory interference is
not due to invalid ranking measures. Our results, showing a double dissociation between the
perceptual and conceptual contributions to visual long-term memory and visual search,
support the conclusion that conceptual distinctiveness plays a more prominent role in
supporting detailed representations in visual long-term memory than perceptual
distinctiveness.

Experiment 1: Interference in Visual Long-Term Memory
In nearly all previous large-scale studies investigating the capacity of visual long-term
memory (Brady et al., 2008; Standing, 1973), the items presented were categorically unique
—for example, a single hairdryer, a single coffee mug, and so on. Thus, it is possible that
the capacity to retain detailed information about thousands of visual objects in long-term
memory relies on having encoded categorically distinctive items.

In the present experiment we examined this question by showing observers thousands of
objects, where we varied the number of exemplars seen from each category from one
exemplar to 16 exemplars (see examples of object categories in Figure 1). For each of these
conditions, we tested memory by presenting a new exemplar and a previously studied
exemplar, and observers indicated which item they viewed during the study session. This
allowed us to examine the role of categorical interference in memory: If observers can
remember 16 exemplars from a category as well as they can remember one exemplar from a
category, then memory performance across these conditions will be equal. This pattern of
data would suggest that retaining detailed object representations does not depend on the
categorical distinctiveness of the items in the set. Alternatively, if memory performance

Konkle et al. Page 4

J Exp Psychol Gen. Author manuscript; available in PMC 2012 July 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



decreases systematically as more and more exemplars from a category are loaded into
memory, then this pattern of data would suggest an important role for categorical
distinctiveness in visual long-term memory.

Method
Participants—Eighteen adults (aged 20–35) gave informed consent and received a
compensation of $100 for participating in the 6-hr experiment. All participants had self-
reported normal or corrected-to-normal vision. All of the participants were tested
simultaneously, using computer workstations that were closely matched for monitor size and
viewing distance.

General procedure—The general procedure is illustrated in Figure 2. In the study phase,
observers were presented with 2,800 color images of real-world objects. Each image
(subtending 7.5° × 7.5° visual angle) was presented for 3 s, followed by an 800-ms fixation
cross. Observers were instructed that they would be presented with a stream of thousands of
objects and that the task was to “remember them all.” While studying the items, observers
additionally performed a repeat detection task to maintain focus. For this task they were told
to press a button to indicate if the current item had been presented previously in the study
stream. The study session was broken up into 10 blocks of 20 min each in which 280 images
were shown. Between blocks, participants were given a 5-min break and were not allowed to
discuss any of the images they had seen. Halfway through the study session, a 20-min break
was given.

At the end of the study session, observers were given a 10-min break and then participated
in the test phase, in which they completed a recognition memory task. Two items were
presented on the screen— one previously seen old item and one new foil item—and
observers reported which item they had seen before in a two-alternative forced-choice task.
Observers completed 240 forced-choice tasks: 200 exemplar-level tests and 40 in a baseline
novel category condition. They completed these trials at their own pace and were asked to
emphasize accuracy, not speed, in making their responses. Before starting the experiment,
we explained to observers exactly how their memory for the items in the study phase would
be tested and presented several examples of the kinds of two-alternative forced-choice tasks
to expect. None of these example object images or categories were used in the subsequent
experiment.

Recognition memory task—To probe the role of categorical interference on recognition
memory, we systematically varied how many exemplars were presented in the study phase
for each category. For any given object category, observers studied either 1, 2, 4, 8, or 16
exemplars during the study phase. For each observer, 40 object categories were assigned to
each interference condition, such that across observers each category was used in each
condition. This means that for all 200 object categories used in the exemplar-level
recognition memory task, the category was presented equally often with 1, 2, 4, 8, or 16
exemplars. All the images from these 200-object categories were distributed uniformly
throughout the study phase.

The exemplar-level tests contained one previously seen old item and one new foil item from
the same category. Because a variable number of exemplars from a category could be
presented during the study phase, we always tested memory for the first item presented from
each category. This helped ensure that all tested items were at “equal ground” at the time of
encoding. Further, because the remaining object exemplars from that category were
presented after the tested item, we are examining the role of retroactive interference: Any
decrease in memory performance as the number of studied exemplars per category increases
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is due to interference from subsequently presented items. Participants were not aware of this
manipulation or of the number of exemplars per category.

Importantly, the stimuli used as the test and the foil image in the two-alternative forced-
choice task were the same for each observer. To choose these, for each category a pair of
two exemplars was drawn randomly from the 17 available exemplar images. One of these
exemplars was presented during the study stream, and the other was only viewed as the foil
at the memory task. Which image served as the foil or the studied item was counterbalanced
across observers.

Because all of the memory tasks were the same for all observers, the only varying factors
across observers were (a) which item of the test–foil pair was presented during the study
phase and (b) how many other exemplars were presented within that category. Because all
categories were seen in all conditions, across observers the stimulus set is completely
counterbalanced. This means than any effects on performance at the recognition tests are
due to interference from studied exemplars, and cannot be driven by test–foil pairings that
may be easy or more difficult, or any overall ease or difficulty of particular object
categories.

We also included a baseline memory task condition, consisting of a studied item and a foil
of a different basic-level category (a novel condition, as in Standing, 1973, and Brady et al.,
2008). Forty objects with distinct categories were presented in the study session. At test
these were paired with 40 other objects, from categories distinct from all other object
categories seen during study phase. As before, the test pair items were always the same, and
which novel item was presented in the study stream was counterbalanced across observers.
To choose these, the 80 items from 80 distinct categories were randomly assigned to make
40 test pairs.

Repeat detection task—To maintain attention and to probe memory online, participants
performed a repeat detection task during the study phase. Observers were told that an item
could be repeated from any point in the entire study session, and they responded to exact
repeat items by pressing the spacebar. They were given feedback only when they responded,
with the fixation cross turning red if they incorrectly pressed the space bar (false alarm) or
green if they correctly detected a repeat (hit), and were given no feedback for misses or
correct rejections. Of the 2,800 images shown in the study session, 240 were repeated
images (e.g., on average about one in every 12 items was a repeat image, or one every ~40
s). Which particular image repeated was randomized across observers. All object categories
used for the repeat detection task were distinct from the object categories used for the
recognition memory task.

Unbeknownst to the participants, the repeat images were systematically inserted to test both
the impact of categorical interference and the impact of the number of intervening items. To
probe the role of categorical interference in repeat detection, repeated items could come
from categories in which 1, 2, 4, 8, or 16 exemplars had been previously viewed. The
repeated image was always the last item of that category to be shown. Thus, we can measure
repeat detection performance as a function of number of preceding within-category items,
examining the role of proactive interference. There were 40 repeat trials for each condition
of preceding exemplars (16, 8, 4, 2, 1) with an additional 40 trials for the one-exemplar
condition, yielding a total of 240 repeats.

Additionally, we manipulated how many intervening items occurred between the repetition
of an image, from 1, 15, 63, 255, to 1,023 intervening items. Repeat items were inserted into
the stream uniformly, with the constraint that all of the lengths of n-backs (2-back, 16-back,
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64-back, 256-back, and 1,024-back) had to occur equally in the first half of the experiment
and the second half. This ensured that fatigue would not differentially affect images that
were repeated from further back in the stream. Of the 240 repeat trials, 48 happened after
one item, 48 happened after 15 items, and so forth. This manipulation was crossed with the
categorical interference manipulation. Thus, for example, each of the 48 repeats with one
intervening item was preceded by a variable number of exemplars from the same category,
from one to 16. Specifically, there were eight repeats for each categorical interference
condition × n-back length, with eight additional repeats for all n-back conditions with one
exemplar.

Stimuli—The total image database contained 4,760 different images of single objects, from
520 different object categories. A set of 200 object categories, each with 17 exemplars
(3,400 images), was used for the recognition memory task. This allowed a full
counterbalance of these items across observers, with up to 16 presented in the study phase,
and one more reserved as the foil item in the test phase. Additionally, 80 distinct categories
with one exemplar each were used for the novel condition in the recognition memory task
(80 images). The remaining 240 object categories were used in the repeat detection task, in
which we did not perform a full counterbalance across stimuli. Therefore the same
categories were seen with 16, 8, 4, 2, or one exemplar(s) by each observer. There were 40
categories with 16 exemplars, 40 categories with eight exemplars, 40 categories with four
exemplars, 40 categories with two exemplars, and 80 categories with one exemplar (1,280
images).

Stimuli were gathered using both a commercially available database (Hemera Photo-
Objects, Vol. I & II) and Internet searches using Google Image Search. The 200 categories
used in the memory recognition task were the first 200 categories for which we could obtain
17 exemplars. For each category, care was taken to try to span the variety of exemplars,
colors, and shapes that existed in the category, but all exemplars within a category were
chosen to have a similar viewpoint. Figure 1 illustrates some example sets. The full database
of stimuli is available on our website.

Data analysis—All analyses of variance (ANOVAs) reported are 1 × 5 repeated measures
unless otherwise indicated, and effect sizes are reported as eta-squared (η2), which can be
interpreted as the proportion of variance accounted for by the independent variable (iv): η2 =
SSiv/(SSiv + SSerror). For d′ calculations, perfect hit rates were adjusted to .995, and zero
false alarm rates were adjusted to .005.

Results
Recognition memory task—The results of the forced-choice memory task are shown in
Figure 2. When a singleton item in the study stream was tested against a novel category at
test (novel condition), memory performance was 92.6% correct (SEM = 1.3%), consistent
with previous findings of visual long-term memory requiring only memory for the item’s
category (Brady et al., 2008). When a singleton item was tested against an exemplar foil
(one-exemplar condition), memory performance was 88.6% (SEM = 2.0%). There was a
difference that approached significance in performance between novel and one-exemplar
conditions: In other words, when a single item from a distinct category was studied, memory
performance for such an item is slightly higher when tested against a foil from a different
basic-level category than when tested against an exemplar-level foil, t(17) = 2.03, p = .06.
These data replicate the results of Brady et al., 2008, and also demonstrate that the ability to
remember a categorically unique item (at both the novel and exemplar level) is not affected
by the presence of many exemplars of other object categories within the study stream.
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Next, we examined the impact of subsequently presented items from the same category. As
the number of exemplars presented in the study stream increases, memory at the subsequent
two-alternative forced-choice task decreases, F(4, 68) = 6.46, p < .001, η2 = .28. We
calculated the slope of memory performance as a function of the log2 number of exemplars
for each observer and use this as a measure of interference attributable to the number of
exemplars from a category in memory (average interference = −2.0%, SEM = 0.4%).
Surprisingly, the degree of interference from multiple exemplars was minimal, averaging
only a 2% drop in memory performance with each doubling of the number of the exemplars
in memory: Even with 16 exemplars from a category in mind, observers could still
distinguish one of those from a new 17th exemplar with 82% accuracy. Thus, overall, the
memory performance in this task was quite high. However, this interference slope was
significantly different than zero, demonstrating that there was minimal, but reliable,
interference, t(17) = 4.6, p < .0001.

Although observers were told to emphasize accuracy, not speed in their unpaced memory
task trials, we also recorded reaction times (RTs). Correct responses had a mean RT that was
1.2 s faster than the mean RT for errors (correct RT = 2.5 s, incorrect RT = 3.7 s), t(17) =
5.10, p < .001. Additionally, when only a single exemplar of a category was studied, correct
responses were faster when the foil item was from a novel category than when it was
another exemplar from the same category (novel condition RT = 2.2 s, one-exemplar
condition RT = 2.3 s), t(17) = 2.06, p = .05. RTs for correct responses increased
monotonically as the number of exemplars in memory increased, from 2.3 s in the one-
exemplar condition to 2.7 s in the 16-exemplar condition [RT = 2,300 ms + 106
ms*log2(exemplars)], F(4, 68) = 9.45, p < .001, η2 = .36. Incorrect RTs were not different as
a function of the number of studied exemplars, F(4, 68) = 1, ns, η2 = .03.

Repeat detection performance—We first examined the effect of number of intervening
items between the item and its repetition, collapsing across how many exemplars of the
same category were previously studied. Sensitivity (d′) for repeat detection was calculated
for each condition, which takes into account hit rates corrected by the overall false alarm
rate. As the number of intervening items increases, repeat detection performance decreases
systematically, F(4, 68) = 43.5, p < .001, η2 = .72. Performance on the repeat detection task
during the study session is shown in Figure 3 (left panel). Note that in these data, we cannot
distinguish between effects due to the amount of elapsed time and effects due to the number
of total items intervening.

The corresponding false alarm rate and hit rates for these data are as follows: 95% hits for
one intervening item, 94% hits for 15 intervening items, 87% hits for 63 intervening items,
79% hits for 255 intervening items, and 63% hits for 1,023 intervening items, with an
overall false alarm rate of 3.9% (SEM = 0.5). With one intervening item, the hit rate was
95%, suggesting that people were maintaining focus throughout the entire 5.5-hr study
session. Further, even for repeats with 1,023 intervening items, in which the item was
initially presented over 2 hr before it was repeated, repeat detection performance was still
high (63% hit rate, d′ = 2.2). Finally, people rarely had false alarms, with on average 100
false alarm responses out of 2,560 possible correct rejections.

We next examined repeat detection performance as a function of the number of preceding
items of the same category, collapsing across the number of intervening items between
initial presentation and repeat presentation. There was a significant effect of the number of
preceding within-category items on d′: As the number of preceding items within the
category increases, the repeat detection sensitivity decreases, F(4, 68) = 69.0, p < .001, η2

= .80. Measures of sensitivity are shown in Figure 3 (right panel). Again, overall the repeat
detection performance was high (all d′ scores > 2.0). Hit rates were 84% for one preceding
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exemplar, 88% for two preceding exemplars, 85% for four preceding exemplars, 81% for
eight preceding exemplars, and 79% for 16 preceding exemplars; this decrease is reliable,
F(4, 17) = 12.2, p < .001, η2 = .42. The false alarm rate was calculated such that only false
alarms to the items of the same category were counted; they were 0.2%, 2.5%, 2.7%, 4.4%,
and 6.4%, respectively, for the 1-, 2-, 4-, 8-, and 16-preceding exemplar conditions; this
increase is also reliable, F(4, 17) = 9.4, p < .001, η2 = .36. Finally, observers’ overall
performance in the recognition memory task was positively correlated with their overall
performance in the repeat detection task (r2 = .61, p < .001).

Discussion
Recognition memory task—Overall, memory performance at test was high: Even after
spending 5 hr viewing 2,800 objects—including 16 different backpacks, 16 different
binoculars, 16 different apples, and so on— observers could discriminate between old and
new exemplars 82% of the time. These data demonstrate that observers are remembering
more than a gist-like representation in these large-scale memory studies, and they are
consistent with the results of Brady et al. (2008) showing high-fidelity memory
representations (see also Koutstaal & Schacter, 1997).

These data also suggest that categorical organization has a strong effect on the maintenance
of detailed visual long-term memory representations. To place the effect of categorical
interference in perspective, compare the present results to the landmark findings of Standing
(1973; Standing et al., 1970). Standing et al. (1970) presented observers with 2,500 items
and found 91% correct recognition performance for items foiled against a novel item, quite
similar to the present study (2,800 items, 93% correct). Standing (1973) then increased the
number of items to remember dramatically: After studying 10,000 items, observers’
performance dropped to 83% correct. This suggests that the addition of 7,500 items in
Standing’s studies caused performance to drop from 91% to 83%. It is interesting that, in the
present experiment, the addition of only 16 items of the same category caused a drop in
performance for our exemplar-level foils from 89% to 82%. This drop is similar in
magnitude to the addition of 7,500 new categorically distinct items in Standing’s studies. Of
course, in both cases, it is important to point out that memory performance at a level of 83%
correct after 10,000 items in the case of Standing or 16 exemplars and 2,500 total unique
items is still quite high.

The present results suggest that category information is an organizing principle in visual
memory, showing strong support for the idea that categorical uniqueness can prevent items
from interfering with each other in visual long-term memory.

Repeat detection task—The primary purpose of the repeat detection task was to require
a sustained task so participants maintained focus throughout the study phase. However, the
accuracy and RT data also allow us to probe online memory performance with a low-
prevalence old–new recognition task (rather than a two-alternative forced-choice task in the
memory task). Additionally, the old–new discrimination performance in the present study
required exemplar-level precision in memory (whereas in Brady et al., 2008, only
categorical precision was needed to succeed at the repeat detection task). Overall,
performance was high, with observers at 63% hits (d′ = 2.2) when the item repeated over 2
hr previous, and at 79% hits (d′ = 2.4) when the item was preceded by 15 other exemplars
from the same category before it was repeated.

These data suggest a strong effect of categorical organization on visual memory: As the
number of preceding exemplars increased from one to 16, d′ dropped. This drop was
comparable to the drop that occurred when the total number of intervening items increased
from one to 1,023. Thus, remembering 16 exemplars from the same category caused about
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as much interference as remembering over 1,000 objects of different categories. These data
reinforce the idea that categorical organization plays an important role in the storage and
retrieval of information in visual long-term memory.

Although the purpose of study was not to distinguish between different models of item-
recognition memory, there are systematic effects in the hit rate and false alarm rates that
constrain models of memory retrieval (e.g., global-matching retrieval models; McClelland &
Chappel, 1998; Shiffrin & Steyvers, 1997). For example, we observed that false alarm rates
increased as more exemplars were already in memory, presumably because any given new
item is more likely to falsely match an old item (e.g., Koutstaal & Schachter, 1997). In other
words, when presented with a new image of a book, an observer may be unsure if she has
seen this particular book before, but because she has seen many books, she may be more
likely to believe this was one of them. This would lead to more false alarms with more
exemplars studied. However, this same logic also predicts observers should get more hits,
because repeated items will also benefit from having many other categorically similar items
studied (e.g., see Shiffrin, Huber, & Marienelli, 1995). In our data, however, we observed
that the hit rate decreased slightly with more exemplars in memory.

Why should hit rates decrease here—for example, why should one be less accurate in saying
“yes that’s a book I saw already” if one has seen that book and 16 others? One possibility is
that the presence of many book representations in memory degrades the trace of a new book
via proactive interference, leading to a worse match when that book is repeated. An alternate
possibility is that there is no trace degradation but that the decrease in hits results from noise
during the retrieval process. For example, if the current book leads to the retrieval of the
proper stored representation as well as the representation of other similar books, then the
trace activated during retrieval would be a poor match to the current item’s representation,
leading to fewer hits. Although the current data do not distinguish between these hypotheses,
they do constrain existing global-matching models.

The memory task and the repeat detection task let us probe, respectively, the impact of
retroactive and proactive interference. The items tested in the two-alternative forced-choice
memory task were always the first of their category to be presented in the study stream, with
additional exemplars presented afterwards. Thus the decrease in recognition memory
performance with increasing exemplars from a category was caused by subsequently
presented items, or retroactive interference. Conversely, in the repeat detection task
performed during the study stream, the repeated item was always the last exemplar
presented from an object category. Thus the decrease in repeat detection as a function of
increasing exemplars was caused by interference from preceding items, or proactive
interference. Although the present data do not allow us to examine the relative impact of
these two kinds of interference, they do demonstrate that visual memory representations are
subject to interference by both preceding items and following items that are categorically
similar.

Experiment 2: Distinctiveness Rankings and Visual Memory
Experiment 1 suggests that the more categorically distinct the thousands of items to be
remembered are, the better the memory performance observed in the forced-choice task.
However, increasing the number of exemplars presented for each category effects both how
conceptually distinct an item is in the set of to-be-remembered items and also how
perceptually distinct an item is, assuming that on average two items from the same category
are more perceptually similar than two items from different categories. In Experiments 2 and
3, we aimed to understand what is contributing to within-category interference in memory
by examining both the conceptual and perceptual distinctiveness of items within a category.
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By perceptual distinctiveness, we are specifically referring to dimensions of perceptual
variation that can be assessed for any object category (e.g., color, shape), without any
existing knowledge about what an object is. Beyond these basic dimensions, perceptual
features are likely to be category specific (e.g., the curvature of the mug relative to the
curvature of the handle) and to be acquired through visual experience (e.g., Schyns,
Goldstone, & Thibaut, 1998), and thus begin to blur the line between perceptual and
conceptual features. We chose to focus on shape and color dimensions for several reasons.
First, evidence suggests that there are neural mechanisms in the visual cortex that are
dedicated to processing these object properties (e.g., for color, see, Bartels & Zeki, 2000;
Brouwer & Heeger, 2009; Conway, Moeller, & Tsao, 2007; Hadjikhani, Liu, Dale,
Cavanagh, & Tootell, 1998; for shape, see, Malach et al., 1995; Grill-Spector, Kushnir,
Edelman, Itzchak, & Malach, 1998; Kourtzi & Kanwisher, 2000, 2001). Second, influential
theories of cognitive development have identified shape and color as core object properties
which young children use for object individuation (Tremoulet, Leslie, & Hall, 2000; Wilcox,
1999) and object classification (Carey, 1985; Keil, 1989; Keil, Carter Smith, Simons, &
Levin, 1998). Finally, shape and color are basic feature dimensions with consequences for
many perceptual tasks such as visual search (e.g., Duncan & Humphreys, 1989).

To address the role of conceptual distinctiveness, we specifically targeted the subordinate
category structure, that is, the number of kinds of a given object category, such as kinds of
cars. Given the importance of basic-level categories from Experiment 1, we predicted that
further subordinate category structure might provide additional support for high-fidelity
visual object representations. That is, objects in memory will interfere with each other less if
they are conceptually distinctive at the subcategory level. It is important to note that
conceptual differences between two kinds have to, at some point, be realized in perceptual
features or else the two images will be the same. However, for some object categories, there
are many different kinds that are similar in color and shape (e.g., cell phones, TVs), and
other categories may be highly distinctive in color and shape but be of all of the same kind
(e.g., bottles, buckets). Thus, to the extent that shape, color, and kinds are uncorrelated in
our 200-category set, we can probe for the independent contributions of perceptual and
conceptual distinctiveness on alleviating interference in memory.

Experiment 2 used the following procedure. First, we obtained quantitative estimates of each
object category’s variation along three focused dimensions— color, three-dimensional
shape, and subordinate category structure (i.e., the variety of kinds). Next, we calculated an
interference slope for each category reflecting how memory performance in Experiment 1
was impacted by increasing the number of exemplars. Finally, we examined if there was any
correlation between the distinctiveness measures and the memory interference scores.

Method
Stimuli—The database consisted of the 200 object categories with 17 exemplars from each
category used in Experiment 1.

Participants—Eighteen adults (aged 20–35) gave informed consent and participated in
one to three of the ranking experiments. They received $10/hr of participation. Twelve
observers ranked each dimension. Seven participants completed one ranking experiment,
four completed two ranking experiments, and seven completed all three ranking
experiments. Because the aim was to obtain estimates for each category and each dimension,
we allowed observers to rate more than one dimension if they had time, with the order of
rating tasks randomized within and across observers. Further, as these ranks were gathered
to predict memory interference in Experiment 1, no observers in Experiment 2 were the
same as in Experiment 1.
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Procedure—Participants were given instructions about the dimension along which they
were going to rank the stimuli. For each trial, all 17 exemplars of a category were presented
on a 30-in. computer monitor. Each object was displayed to fit within approximately 8° × 8°
of visual angle. Observers were instructed to assign a rating to characterize the set of items
in the object category on a scale from 1 (very similar) to 5 (very distinctive) by clicking a
numbered button on the screen. Participants completed 200 trials, one for each category, and
were given as much time as they needed to respond. The order of trials was randomized
across observers and ranking dimensions.

For color rankings, participants rated how similar or varied the colors were between all the
exemplars of a category. Example categories at the low and high end of the scale were given
for reference. Here a category with very similar colored exemplars was jack-o-lanterns, and
one with very different colored exemplars was flags. For shape rankings, participants rated
how similar or varied the three-dimensional shapes of the objects were, with example
categories of golf balls for similar shapes and leaves for different shapes. For kind rankings,
participants rated how few or many kinds of that object there were. Here, example
categories were bowties and soda: There are few kinds of bowties but many kinds of soda
pop. The example categories used in the instructions to the participants were chosen on the
basis of pilot ranking completed by the four authors. Participants were instructed to focus
solely on the dimension of interest and to ignore the others.

Data analysis—The reliability of the distinctiveness judgments was assessed using two
different measures. First, the mean correlation (MC) reflects the average of all observer
pairwise correlations. Second, the effective rater reliability (R) takes into account the MC
across observers as well as the number of observers. R can be interpreted as the percent of
the underlying true ranks that has been recovered for a given set of raters (Rosenthal &
Rosnow, 1991). We also calculated the intraclass correlation (ICC) estimates on the rank
data, which showed similar results as the MC estimates. ICC estimates are reported in
Appendix A, Table A1.

Results
Data from two observers were excluded because their average correlation with other
observers’ data was greater than 2 SDs from the set of observers’ average correlations.
Postexperiment surveys suggest that these two observers might have used the 1–5 scale
backward. Therefore, the analyses presented below were performed on 12 observers for the
kind ranks and 11 observers for the shape and color ranks.

For all 200 categories, the mean rating was calculated for the color, shape, and kind tasks.
These mean ratings were used as a measure of distinctiveness for each category along each
dimension. For example, the set of 17 coffee mug images were highly distinctive in color
(4.8), moderately distinctive in shape (2.9), and not very distinctive in the number of kinds
represented (1.3). Figure 4 shows an example category with low and high distinctiveness for
kinds, shapes, and colors. In our image database, there are few kinds of mugs but many
kinds of cars; balls are very similar in three-dimensional shape, whereas different pieces of
exercise equipment are very distinctive from each other in shape; keyboard keys are similar
in color, while water guns are distinctive in color.

Across the 200 categories, the average pairwise correlation between observers was 0.64 for
color ranks (z = 9.00, p < .001), 0.55 for shape ranks (z = 7.69, p < .001), and 0.25 for kind
ranks (z = 3.57, p < .001). R, calculated based on the average pairwise correlation,
accounting for the number of observers, was high for all three dimensions (shape: R = .91;
color: R = .95; kind: R = .80). Comparing the dimensions, the conceptual distinctiveness
(kinds) and the shape distinctiveness of that category were moderately correlated (r = .307, p
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< .001). Color and shape ratings showed a trend for a negative correlation (r = −.136, p = .
06). Finally, color was not significantly correlated with kinds (r = −.122, p = .08).

Distinctiveness and interference—We next obtained a measure of interference for
each category using the data from Experiment 1. That is, for each of the 200 categories, we
calculated the change in memory performance for increasing numbers of studied exemplars
(i.e., 1, 2, 4, 8, and 16). If a category has an interference slope of 0, this indicates that there
was no impairment in memory as the number of exemplars to be remembered from that
category increased. As the interference slope becomes more negative, this indicates worse
memory performance with additional exemplars. The slope was calculated for each category
as the change in percent correct as a function of log2(exemplars). Due to the across-subjects
design, the estimate of any single category’s interference slope was noisy (see Appendix A
for measures of reliability); however, the large number of object categories made it possible
to examine the correlation between distinctiveness and the degree of interference in
memory.

The correlations between interference in memory and the three distinctiveness ratings are
shown in Figure 5. Categories composed of conceptually similar items showed more
interference with increasing exemplars in memory; categories composed of conceptually
distinct items were relatively spared from interference with increasing exemplars in
memory. Overall, this correlation between conceptual distinctiveness of a category and the
memory interference slope was significant (r = .150, p = .03). In contrast, there was no
correlation between either of the perceptual distinctiveness measures and the interference
slope (color: r = −.020, p = .78; shape: r = .040, p = .58). In other words, as more exemplars
are loaded into memory, subsequent memory performance was not affected by whether these
additional items were of similar or distinctive colors. Likewise, categories with items that
were similar or distinctive in shape were equally likely to cause interference in memory with
increasing exemplars.

For visualization purposes, the 200 categories were divided into three bins, based on the
mean and standard deviation of the distinctiveness scores (<1 SD, within ±1 SD, and >1
SD). For statistical purposes, the correlations and calculations were performed without the
binned ranks, using the average rank for each category and the interference slope. Although
the correlations between conceptual ranks and memory interference were reliable, the
magnitude was small. When we take into account the reliability of the measures of these
factors, this correlation indicates that conceptual distinctiveness accounts for about 13% of
the explainable variance in memory interference (see Appendix A, Table A1, r2 adjusted
column).

To assess the contributions of these three factors on memory interference, we also conducted
a stepwise multiple linear regression analysis. This yielded a model with only the conceptual
ranking included (partial correlation denoted with the abbreviation pr; conceptual included,
pr = .153, t[198] = 3.60, p = .03; color excluded, pr = .003, t < 1, p = .96; shape excluded, pr
= −.010, t < 1, p = .89).

Discussion
These data present a dissociation between the contribution of perceptual and conceptual
distinctiveness in visual long-term memory. When categories have subordinate category
structure—in other words, there are many kinds of objects—people can remember more of
them, even if they all have similar shapes and colors (e.g., cell phones, televisions). Indeed,
the most distinctive categories had an average interference slope of zero, suggesting that
there was no cost to increasing the number of conceptually distinctive exemplars in memory.
However, perceptual distinctiveness did not predict how well objects would be remembered
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as the number of exemplars increased. This finding is important given that we are examining
memory for visual information, where exemplars are often different on perceptual
dimensions (e.g., the shapes and arrangements of buttons on remote controls).

For terminological purposes, we refer to distinctiveness in the number of kinds as
conceptual distinctiveness (rather than kind-distinctiveness). However note that the
instructions were explicitly aimed at the number of kinds, and not about general knowledge
or functions of the items per se. The conceptual distinctiveness of items depends on
knowledge or experience with that category. For example, some raters might know much
about cars or kinds of bread and give them high rankings, whereas other raters might
perceive no obvious subordinate categorical structure to kinds of bread or cars and might
give low rankings to these categories. For each category, we average the distinctiveness
measures across raters and presume this reflects the average subordinate category structure
for each category across the general population. In the memory interference measures, we
also collapse over any individual differences with particular object categories when we
calculate the interference score for each category. This, if anything, would make a
correlation between conceptual distinctiveness and interference in memory more difficult to
find. However, even in averaging people’s expertise in the ranking and the memory
measures, we still observe a significant correlation between conceptual distinctiveness and
memory interference.

In this study, we did find a moderate correlation between shape ratings and conceptual
ratings, consistent with a “shape” bias in category formation (Landau, Smith, & Jones,
1988). However, in general the three dimensions were not highly correlated, suggesting that
conceptual variation for these stimuli is not directly proportional to the amount of perceptual
variation along these dimensions. Importantly, it is variation along this conceptual
dimension that predicts the degree to which items will interfere in memory, and not variation
along perceptual dimensions.

One potential concern is that the perceptual rankings were along focused dimensions of
shape and color, rather than capturing a more general perceptual distinctiveness over many
perceptual features. This may account for why we did not observe a relationship between the
perceptual distinctiveness measures and memory interference. To address this possibility, in
Experiment 3 we obtained ratings on overall perceptual distinctiveness.

Experiment 3: Overall Perceptual Distinctiveness Rankings
In Experiment 3, observers made judgments about the overall perceptual distinctiveness of a
set of exemplars. Observers were instructed to judge only overall visual appearance,
including features such as size, color, shape, and texture, and so forth, and to ignore any
knowledge they had of the depicted items, including their functions, the number of kinds,
and so on. Additionally, a different set of observers completed the same task but with the
images presented upside down. We expected this manipulation to help observers focus on
the visual appearance and draw less on existing knowledge about what the objects were.

Method
Twenty-six adults (aged 20–35) gave informed consent and participated in the overall
perceptual ranking experiment, with 13 observers presented with upright images and 13
observers presented with inverted images. One observer from each task also participated in
Experiment 2, and no observers were the same as those in Experiment 1.

Observers were instructed to give the set of 17 objects a rating on a scale from 1 (very
similar in overall visual appearance) to 5 (very different in overall visual appearance). Care
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was taken to remind observers to focus only on the visual or perceptual features such as size,
color, shape, texture, and so forth and to ignore other aspects such as the number of kinds,
the functions, or any other knowledge of the object category. For the inverted task, observers
were told that, to help them focus on the visual appearance, the objects would be presented
upside down. Example categories were jack-o-lanterns (very similar in overall visual
appearance) and sippy cups (very different in overall visual appearance). All other methods
were the same as in Experiment 2.

Results
Data from two observers were excluded because their average correlation with other
observers’ data was greater than 2 SDs from the set of observers’ average correlations.
Postexperiment surveys again suggest that these observers might have used the 1–5 scale
backward. The analyses below used data from 12 observers for both upright and inverted
versions of the overall perceptual distinctiveness task.

For all 200 categories, the mean overall perceptual distinctiveness rating was calculated for
the upright and inverted groups. For example, birds were highly distinctive in overall
perceptual judgments (4.0 upright, 4.1 inverted), whereas chessboards were not distinctive in
overall perceptual judgments (1.8 upright, 2.0 inverted). Across the 200 categories, the
average pairwise correlation between observers was .31 for upright images (z = 4.42, p < .
001) and .24 for inverted images (z = 3.4, p < .001). Adjusting for the number of observers,
both variants of the task showed a high effective rater reliability (upright: R = .84; inverted:
R = .79). Further, upright and inverted overall perceptual distinctiveness judgments were
significantly correlated with each other (r = .71, p < .001).

Next we examined the relationship between overall perceptual distinctiveness measures and
the color, shape, and kind ranks from Experiment 2. When upright, overall perceptual
judgments were highly correlated with shape (r = .70, p < .001) but were more correlated
with the number of kinds than with color (kinds: r = .35, p < .001; color: r = .22, p < .01).
When the same judgment was made by different observers on inverted images, overall
perceptual distinctiveness was more evenly correlated with both shape and color (shape: r = .
51, p < .001; color: r = .44, p < .001), and the correlation with number of kinds was
numerically reduced, but still present (r = .28, p < .001).

Distinctiveness and interference—Next we examined the relationship between the
overall perceptual distinctiveness ranks and memory interference. Neither of the overall
perceptual distinctiveness ranks made on upright images or inverted images was
significantly correlated with memory interference slopes (upright: r = .10, p = .17; inverted:
r = .01, p = .83). Thus, consistent with the results of Experiment 2, categories composed of
overall visually similar items showed no more interference in memory with increasing
exemplars than did categories with overall visually distinctive items. The correlations
between interference in memory and the two measures of overall perceptual distinctiveness
are shown in Figure 6.

Although nonsignificant, there was a moderate correlation strength between overall
perceptual distinctiveness on upright images and memory interference (r = .10, p = .17). A
post hoc analysis suggests that this correlation is driven solely by the shared variance
between upright overall perceptual distinctiveness and conceptual distinctiveness ratings of
the number of kinds (see Appendix B).

Stepwise linear regression analysis using all of the ranking dimensions to predict memory
interference also confirmed these findings, yielding a model with only conceptual ranking
included, and all other predictors excluded (kinds included: pr = .153, t[198] = 3.60, p = .03;
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color excluded: pr = .003, t < 1, p = .96; shape excluded: pr = −.01, t < 1, p = .89; upright
overall percept excluded: pr = .047, t < 1, p = .51; inverted overall percept excluded: pr = −.
028, t < 1, p = .69).

Discussion
Measures of overall perceptual distinctiveness, whether on upright or inverted images, were
only moderately correlated with the specific shape and color rankings, leaving open the
possibility that these new perceptual ranking might correlate with memory interference
slopes. However, neither upright nor inverted versions of overall perceptual distinctiveness
significantly correlated with memory interference.

We also observed that judgments of overall perceptual distinctiveness were not the same
when images were upright versus inverted. One possible explanation for this difference is
that when judging overall visual appearance, especially on upright objects, knowledge about
different object categories might cause observers to adjust the amount of weight given to
different feature dimensions. For example, given a category such as “apples” for which color
variation is relevant for distinguishing which kind it is and shape variation is less important,
observers might have intrinsically discounted shape variation and relied more on color
variation when making the overall visual distinctiveness judgment. When inverted,
observers may more easily discount what the objects are to focus on what they look like.
Although it may not be possible to fully separate overall visual appearance from existing
object knowledge, our attempts to do so with explicit instruction and inverted object images
support the conclusion that perceptual distinctiveness does not account for the degree of
within-category interference observed in Experiment 1.

In Experiments 2 and 3, we employed a correlational approach to explore the nature of the
category interference effect observed in Experiment 1 (i.e., the finding that memory
performance decreased as the number of within-category exemplars increased). This
approach takes advantage of natural variation in object knowledge and the perceptual
variability of the object categories tested. Future experiments can experimentally manipulate
these factors by training observers to learn new categories (e.g., arbitrary categories for
novel objects) which vary in their degree of perceptual distinctiveness. We predict that the
degree of interference from additional exemplars within a category will depend on the
degree of subcategorical knowledge, and not the degree of perceptual similarity within a
category. However, these factors may be difficult to manipulate independently, as perceptual
similarity judgments have been shown to depend on learned categories (Gauthier, James,
Curby, & Tarr, 2003). Although future research should experimentally manipulate
conceptual and perceptual distinctiveness, for the present purposes it is important to validate
our perceptual distinctiveness measures, to make sure that the lack of correlation with
memory interference is not due to limitations of the ranking procedures employed.

Experiment 4: Distinctiveness Rankings and Visual Search
The previous experiments support the hypothesis that conceptual distinctiveness, and not
perceptual distinctiveness, alleviates memory interference. However, one concern with the
lack of correlation between perceptual ranking on memory is that the perceptual rankings
might not be valid measures of perceptual distinctiveness (e.g., because they are too noisy,
the range is too restricted, or they simply do not provide a measure of perceptual
distinctiveness that can predict performance on any other task). To address these concerns,
we used a task that is known to depend on perceptual distinctiveness of items—visual search
(e.g., Duncan & Humphreys, 1989). If the perceptual rankings correlate with search times,
then we can conclude that the lack of correlation between perceptual distinctiveness and
memory interference is not due to invalid measures of perceptual distinctiveness.
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Method
Participants—Six adults (aged 20–35 years old) gave informed consent and received $40
for participating in the 4-hr search experiment. No observers in Experiment 4 participated in
Experiment 1.

Stimuli—The image database was the same set used in Experiments 2 and 3, consisting of
200 object categories with 17 exemplars each. On each trial, all images were selected from
one of the 200-object categories and presented in randomly selected locations from an
invisible 7 × 5 grid (with each object subtending approximately 5° × 5° visual angle). At the
center of the display one of the 17 exemplars was presented with a black outline frame,
designating that item as the target item. Sixteen other items were placed randomly in the
remainder of the display (see Figure 7). On target present trials, the target could appear at
any location within the 7 × 5 grid.

Procedure—Observers performed a visual search task. On each trial, a random category
from the set of 200 was selected, and a random exemplar from the set was chosen to be the
target for that trial. The target item was presented at the center of the display highlighted
with a black outline frame, and the remaining items were randomly placed on the rest of the
display (see Figure 7). The task was to determine as quickly and as accurately as possible
whether the target item appeared anywhere else on the display. On half of the trials, the
target was absent and all 16 nontarget exemplars were presented. On the other half of the
trials, the target was present, and 15 different nontarget exemplars were shown (randomly
chosen without replacement from the set of 16 nontargets). Observers completed four 1-hr
sessions of 800 trials, yielding 16 trials per category.

Results
The overall error rate was low (<8%), and the following analyses were conducted on mean
RT for correct responses collapsed across target presence (present vs. absent). RT was
collapsed across observers and was calculated separately for each of the 200 categories, and
it was then correlated with the conceptual and perceptual rankings obtained in Experiments
2 and 3.

There was no reliable correlation between conceptual distinctiveness and RT (r = −.015, t <
1, p = .84). However, both focused perceptual measures showed a significant correlation
with RT: RT was faster when the within-category colors were more distinctive (r = −.667),
t(198) = 12.6, p < .001, and when the within-category shapes were more distinctive (r = −.
146), t(198) = 2.08, p = .04. Furthermore, both estimates of overall perceptual
distinctiveness correlated with RT as well (upright: r = −.520, p < .001; inverted: r = −.610,
p < .001). Taking into account the reliability of the ranks and search RTs, the amount of
explainable variance accounted for by each dimension is, in order, inverted overall
perceptual distinctiveness (64%), color (61%), upright overall perceptual distinctiveness
(43%), and shape (4%; see Appendix A, Table A1, r2 adjusted column). Figure 8 plots
search RT as a function of the five distinctiveness rankings from Experiment 2 and 3,
illustrating that perceptual, not conceptual, distinctiveness modulates search performance.

A stepwise multiple linear regression analysis using only the focused distinctiveness
measures along color, shape, and conceptual dimensions yielded a model with both the color
and shape included (partial correlation denoted with the abbreviation pr; color included: pr =
−.705, t[197] = 13.94, p < .001; shape included: pr = −.335, t[197] = 4.99, p < .001; kinds
excluded: pr = −.036, t < 1, p = .62). A stepwise linear regression analysis including all five
distinctiveness measures includes both upright and inverted overall perceptual ranks and
color and excludes shape and kinds (color included: pr = −.601, t[196] = 10.52, p < .001;
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upright overall percept included: pr = −.301, t[196] = 4.41, p <.001; inverted overall percept
included: pr = .178, t[196] = 2.53, p = .01; shape excluded: pr = .13; t[196] = 1.86, p = .07;
kinds excluded: pr = .12; t[196] = 1.7, p = .09).

Finally, visual search RT does not predict memory interference (r = .04, p = .54). This
provides an additional measure of perceptual distinctiveness that does not predict memory
interference.

Discussion
Visual search rates for a target among exemplar foils was well predicted by how distinctive
the set of exemplars within a category were in both color and shape, as well as in overall
perceptual appearance. These results demonstrate that the within-category perceptual
rankings are valid, and they confirm well-established findings that search is affected by
similarity between targets and distracters and similarity between distracters and other
distracters (Duncan & Humphreys, 1989). We did not observe a correlation between
conceptual distinctiveness and search rates, even when taking into account the contributions
of the other two factors. This is somewhat surprising, given that the visual search task has a
slight memory demand: After fixating the target to find it among the field of distracters, a
memory trace must be maintained so that inspected items can be compared to the target (see
Shore & Klein, 2001, for a review of the role of memory in search). However, by design, we
attempted to reduce the memory demands in the visual search task by having the target
preview always present at the center of the display. Together, these correlations present a
second dissociation between perceptual and conceptual contributions, here within the
context of an online visual processing task.

We also found that the visual search RTs did not predict memory interference slopes from
Experiment 1. Examining these two tasks of search and memory, there are some striking
similarities: For search, observers are finding a target among distracters in view, whereas for
recognition memory, observers “find” the same target from among the same “distracters” in
memory. The lack of correlation between these two tasks implies that the factors that
influence search times are not the same as the ones that influence visual long-term memory.
Of course, in some sense this must be true; for example, in a search array visual acuity
constrains the features that can be seen from items in the periphery and thus how attention is
guided through the search array, whereas similar visual acuity constraints are not present in
memory. However, one might expect at least a partial overlap between categories with easy
targets to find online (search) and offline (memory), and we did not find any support for this
prediction in the present data.

Finally, these data give rise to a double dissociation with the long-term memory experiment.
Conceptual distinctiveness supports memory more than perceptual distinctiveness, whereas
perceptual and not conceptual distinctiveness predicts search time. These data further
confirm the results of Experiment 1, wherein memory for object details, seemingly
“perceptual” information, is retrieved more easily and/or stored more efficiently when the
item is conceptually distinct from other items in memory. Furthermore, the degree of
perceptual overlap within a category does not predict what categories will be easier or
harder to remember, but it does predict how difficult it will be to search for one among
many. These results support, at a minimum, the conclusion that conceptual distinctiveness
plays a more prominent role than perceptual distinctiveness in supporting detailed
representations in visual long-term memory.
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General Discussion
Observers are capable of remembering thousands of visual representations in long-term
memory (e.g., Shepard, 1967; Standing, 1973), including detail beyond just the “gist” of the
image (e.g., Brady et al., 2008; Hollingworth, 2004; Vogt & Magnussen, 2007). The aim of
the current experiments was to explore what kind of information supports this detailed visual
long-term memory. Our initial hypothesis was that knowledge about object category might
provide a “conceptual hook” on which to index a single detailed representation but that
multiple exemplars might exhaust the benefits of a conceptual hook quickly.

To examine this possibility, in Experiment 1 we presented observers with thousands of
objects with a variable number of exemplars from each object category. We found that
memory performance was quite high— even with 16 exemplars per category, observers
were still well above chance at recognizing which of two exemplars they had previously
seen (82%). This result indicates that 16 exemplars do not reach the bounds of exemplar-
level memory capacity. However, we also found that memory performance was
systematically lower as the number of stored exemplars increased, demonstrating that object
categories play a role in maintaining such detailed memory representations.

To explore the nature of this categorical interference, our approach was to predict which
object categories suffered from more interference or less interference in memory. In
Experiments 2 and 3, for each category we estimated how distinctive the exemplars were in
visual appearance (perceptual distinctiveness) and number of kinds (conceptual
distinctiveness). We found that there was less interference for categories in which the
exemplars were conceptually distinctive. On the other hand, the degree of perceptual
distinctiveness did not predict the amount of interference: Perceptually distinctive exemplars
lead to impaired memory performance just as much as perceptually similar exemplars. This
was true for all four measures of perceptual distinctiveness we measured: shape, color,
overall visual similarity, and inverted overall visual similarity. Experiment 4 verified that
these perceptual measures are valid and predict performance on a visual search task, thus
providing a double dissociation for the role of conceptual and perceptual distinctiveness in
visual memory and visual search.

The present experiments expand our understanding of visual long-term memory in two
ways. First, the fidelity of visual long-term memory representations appears to be higher
than previously demonstrated, as observers succeeded at exemplar-level memory tasks after
viewing thousands of objects with multiple exemplars per object category. Second, there
was minor but reliable interference due to additional exemplars in memory, where the
degree of memory interference can be predicted by how conceptually distinctive the
exemplars are from each other, but not by their perceptual distinctiveness. The correlation
between interference and conceptual distinctiveness ranks suggests that conceptual structure
at the basic level and subordinate level supports the massive capacity of visual long-term
memory.

Conceptual Knowledge Supports Detailed Visual Memory
Previous research has demonstrated that concepts can help support visual long-term memory
representations. For example, Wiseman and Neisser (1974) presented observers with two-
tone ambiguous face images (Mooney faces) and asked them to judge whether there was a
face present. Although all of the images contained faces, observers remembered the images
they had seen as faces better than images that did not make contact with this organizing
concept. Similarly, memory for ambiguous shapes is improved when studied with an
accompanying semantic label (Koutstaal et al., 2003, Experiment 1), and memory for real-
world objects is better than memory for perceptually rich but nonmeaningful objects
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(Koutstaal et al., 2003, Experiment 2). Broadly, these data support the idea of a conceptual
hook, wherein existing knowledge about object categories supports long-term storage. The
current results expand upon this idea, suggesting that subordinate category structure can
provide multiple hooks, which support long-term memory for item-specific details.

Although conceptual knowledge supports detailed long-term memory, it is still necessary to
attend to the details in order to encode them into memory. For instance, focusing on the
conceptual aspects of a stimulus can actually lead to impaired memory for visual details or
other item-specific perceptual information (Intraub & Nicklos, 1985; G. R. Loftus &
Kallman, 1979; Lupyan, 2008; Marks, 1991). For example, Marks (1991) found that
observers had better memory for pictorial details when the study task required them to judge
the physical features of the pictures (an item-specific task) compared to when they judged
how well the pictures fit into scenes (a semantic task). This is consistent with the idea of
transfer-appropriate processing (e.g., Morris, Bransford, & Franks, 1977; Roediger &
Blaxton, 1987; Roediger, Weldon, & Challis, 1989), where memory performance depends
on the match between how information was studied and how it is tested. These results
suggest that attention to the details is necessary to remember them, and the current results
add that item-specific details cannot be stored in memory without the support of preexisting
conceptual knowledge.

Role of Concepts at Encoding and Retrieval
How might conceptual knowledge support detailed memory representations? One possibility
is that prior knowledge of object categories can enable compressive encoding, reducing the
information load of a presented stimulus. For example, compressive encoding has been
demonstrated in working memory. In the verbal domain remembering familiar letter strings
(e.g., FBI–CBS–NCAA–PBS) is much easier than unfamiliar strings (FB–ICB–SNA–AAP–
BS; Bower & Springston, 1970). Similarly, in visual working memory, learned knowledge
about color pairs enables more colors to be remembered (Brady, Konkle, & Alvarez, 2009;
see also Feigenson & Halberda, 2008). Just as these working-memory representations rely
on existing knowledge, long-term memory representations might rely on similar
mechanisms. For example, using category-specific knowledge, it could take less space in
memory to encode that an apple is round than that a bread loaf is round, because observers
already know that apples are round and bread loaves can come in many shapes. On this
account, compressive encoding allows observers to maintain more features from objects for
which they have more prior knowledge. When presented with an item again at test, the
richer representation stored in long-term memory would be more likely to match, improving
recognition accuracy for objects for which we have more prior knowledge.

Alternatively, prior knowledge might support high memory performance by directing
attention and encoding resources to only the details that are likely to distinguish between
exemplars (e.g., Eysenck, 1979; Nosofsky, 1986; see also Goldstone, 1998). Indeed, the
notion that diagnostic features support successful retrieval is fundamental to distinctiveness
models of memory (Nairne, 2002; see also Hunt & Worthen, 2006; Schmidt, 1991), as well
as models of categorization (Nosofsky, 1984, 1986; see also J. R. Anderson, 1991;
Tenenbaum & Griffiths, 2001). In these models, the effectiveness of some cue or feature at
retrieval depends not only on how likely it is to match an item stored in long-term memory
but also on how unlikely it is to match other items. Thus, observers in our experiment may
have used prior knowledge to encode only diagnostic features that would enable them to
distinguish the item from exemplars within the category and from items across categories.
At retrieval, these diagnostic features may enable observers to more accurately recognize
which item was studied. Although the compressive encoding account predicts that observers
are maintaining richer representations for some items and not others, this directed encoding
account predicts that observers are maintaining a sparse representation of each item, where
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more informative and diagnostic details are stored for items for which we have more prior
knowledge.

A final possibility is that prior knowledge creates new features for items people know more
about, leading to an expanded representation. Studies of category learning provide support
for this hypothesis, demonstrating that category learning can go beyond a strategic
reweighting of relevant stimulus dimensions and instead involve the creation of new features
to represent objects (Goldstone, Lippa, & Shiffrin, 2001; Hock, Webb, & Cavedo, 1987;
Schyns & Murphy, 1994; Schyns & Rodet, 1997). For example, Schyns and Rodet (1997)
showed that exposing observers to one kind of categorization task affects the features they
use on a later categorization task, revealing that features are flexibly created and depend on
an observer’s past history with an object (i.e., their preexisting knowledge). Importantly,
Schyns argued that new features for representing visual stimuli are created as a consequence
of the categorization task and terms them functional features (e.g., Schyns & Murphy, 1994;
see also Archambault, O’Donnell, & Schyns, 1999). On this account, observers in our
experiments use preexisting knowledge about object categories to encode each item, where
the richer the category and subordinate category information, the more functional features
can be encoded. This enhanced coding model would allow observers to store more
information from these stimuli. On this expanded encoding account, observers have a richer
representation of some items, providing a higher probability of a match between a target
item and this representation during retrieval. Both enhanced and compressive encoding (also
called chunking or unitization) argue that observers have a richer representation for
conceptually distinctive items but differ in that compression relies on hierarchically
combining smaller parts into a larger whole, whereas newly created features might be large
and not composed of smaller discrete parts (for discussion, see Goldstone, 1998; Schyns et
al., 1998).

Although preexisting knowledge may allow for efficient encoding, it is also possible that
conceptual distinctiveness is solely (or additionally) important at retrieval. In the strong
version of this account, visual long-term memory representations are encoded with “equal”
fidelity, and conceptual distinctiveness supports success at the memory task by providing an
effective retrieval cue. This is a variant of the cue-overload hypothesis, which states that a
memory retrieval cue becomes less effective as the number of studied items associated with
that cue increases (M. J. Watkins, 1979; O. C. Watkins & Watkins, 1975) and that forgetting
arises due to the ineffectiveness of retrieval cues, as opposed to memory trace degradation
and retroactive interference (Wixted, 2004). To account for our results on this view, one
would have to assume that memory is accessed on the basis of categorical retrieval cues,
even when making exemplar-level comparisons. Consequently, increasing the number of
remembered items sharing a single category cue will decrease the likelihood of accurate
retrieval and recognition. When we have more knowledge about a category, subcategorical
retrieval cues can be used, reducing the degree of cue overload.

Our results demonstrate that conceptual distinctiveness supports successful memory
performance for visual memory tasks requiring exemplar-level detail. Future studies are
required to understand whether this capacity is supported by compressive, directed, or
enhanced encoding of the items, or if categorical interference occurs only at retrieval, and to
what extent there is interference and degradation of stored memory traces due to
conceptually similar items.

Content and Organization of Long-Term Memory
In the present experiments, we explored which features support the ability to maintain
detailed long-term memory representations by looking for effects of similarity along
different dimensions (conceptual and perceptual). Previous research has employed a similar
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approach to examine the content and organization of both short-term and long-term verbal
memory representations. For instance, Baddeley (1966b) found that verbal short-term
memory retention is much worse for a list of acoustically similar words than a control list,
whereas there is a relatively small effect of semantic similarity on short-term memory for
words. Long-term memory appears to show the opposite pattern: Lists of semantically
similar words are remembered worse than a control list, whereas there is no effect of
acoustic similarity on long-term memory for words (Baddeley, 1966a). On the basis of these
patterns of acoustic and semantic interference, Baddeley argued that verbal long-term
memory representations are largely conceptual in nature.

However, contrary to this hypothesis of purely conceptual encoding in verbal long-term
memory, retrieval from long-term memory is primed not only by conceptually related items
(E. F. Loftus, 1973) but also by phonetically similar items (E. F. Loftus, Senders, &
Turkletaub, 1974). Moreover, it appears that words can be encoded acoustically in long-term
memory when subjects are not required to perform a distracting short-term memory task just
after learning the word list (Baddeley, 1966a). Combined, these results suggest that verbal
long-term memory is organized in terms of both conceptual and phonetic information,
favoring a multimodal view of memory in which each item is encoded and represented along
multiple dimensions (E. F. Loftus et al., 1974). These findings from verbal long-term
memory suggest our own results on visual long-term memory should be interpreted with
caution.

Although we did not observe perceptual interference effects in the current study, observers
were able to make exemplar-level discriminations which require memory for item-specific
details. It is thus possible that visual long-term memory is organized primarily by
categorical structure and that this conceptual representation provides a hook into an entire
multimodal memory trace, enabling the storage and retrieval of both the conceptual content
and item-specific perceptual details.

Relationship Between Visual and Verbal Long-Term Memory
It is widely found that stimuli presented in picture form lead to better memory performance
than when those stimuli are presented in word form—the picture superiority effect (T. O.
Nelson, Metzler, & Reed, 1974; Paivio, 1971; Paivio & Csapo, 1973; Weldon & Roediger,
1987). Put another way, memory capacity for pictures is larger than memory capacity for
words (Shepard, 1967; Standing, 1973). A classic account for this is Paivio’s dual-coding
hypothesis (Paivio, 1971, 1986, 1991), in which pictures are likely to be implicitly named
(e.g., Grill-Spector & Kanwisher, 2005) and thus benefit from both visual and verbal codes,
whereas words are less likely to spontaneously be imagined pictorially and thus do not
benefit from dual coding. However, pictures show better memory than words even when
they are not being named (Madigan, 1983), and dual-coding predictions on memory
performance when observers study pictures and are tested with words, and visa versa, are
not borne out in experimental results (e.g., Mintzer & Snodgrass, 1999; Stenburg, Radeborg,
& Hedman, 1995).

The sensory–semantic model (D. L. Nelson, Reed, & Walling, 1976) provided an alternate
account for the picture superiority effect and suggested that pictures have stronger sensory
codes than words do, leading to more distinct memory traces. Consistent with this idea,
when semantically related pictures are studied, there is less interference in recognition
memory than when corresponding semantically related words are studied (Dodson &
Schacter, 2001; Israel & Schacter, 1997; Schacter, Israel, & Racine, 1999; Smith & Hunt,
1998; see also Shiffrin et al., 1995). On this account, pictures show less interference in
recognition memory because they rely more on perceptual rather than conceptual features
(cf. Hunt & McDaniel, 1993). However, this interpretation has largely been ruled out by
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subsequent studies (e.g., Schacter, Cendan, Dodson, & Clifford, 2001; Stenburg, 2006). For
example, if the memory task is to identify whether an item from a previously studied
category, requiring memory for conceptual information, memory is no worse when pictures
were studied compared to when words were studied (Schacter et al., 2001). These data do
not support the claim that pictures have less conceptual information than words (see also
Potter & Faulconer, 1977; Stenburg, 2006).

One intuitive explanation for the difference in memory performance for pictorial and verbal
stimuli is that when a picture is presented, much more preexisting knowledge can be brought
to bear on the stimulus (e.g., not only that a car is pictured, but what kind of car it is, when it
was likely made, etc.). This subordinate and associated knowledge is not present in a verbal
stimulus that is a single word at the basic-level category (e.g., “car”). In this sense, pictures
may simply give rise to more distinct conceptual traces than words, accounting for superior
memory performance for pictures during standard recognition memory tasks.

Caveats
Given the fidelity of memory representations required to succeed at the current memory
tasks, one might be tempted to believe that everyone has near photographic memory.
However, we want to emphasize that this is certainly not the case for several reasons. First,
we tested memory for subtle but meaningful differences (e.g., those along which exemplars
differ from each other). Had we presented two objects that differed on an arbitrary
dimension, say by a 1° rotation, it is likely that observers would have very poor memory
performance. Second, the old–new repetition detection task provides a way to estimate how
memory performance changes with elapsed time, given a continuous stream of input much
like typical visual experience. Power law fits (see Wixted & Carpenter, 2007) suggest that
while d′ for the old–new task would still be above 1.0 after a day, it would likely fall below
1.0 after a month, and to below 0.6 after a year. Finally, memory for visual information is
fundamentally a constructive process, which has been well documented in cases of
eyewitness testimony (E. F. Loftus, 2003; see also Bower, Karlin, & Dueck, 1975;
Carmichael, Hogan, & Walter, 1932). These studies demonstrate that the way a visual
memory is queried influences the accuracy with which details are recalled (e.g., how fast
were the cars going when they smashed vs. bumped into each other; E. F. Loftus & Palmer,
1974). Importantly, the idea that memory is reconstructed on the basis of experience and
knowledge fits well with the central claim of this article that visual memory is supported by
conceptual knowledge. A great challenge for visual memory research is to understand the
relationship between knowledge of object categories and the visual features of underlying
visual object representations (Palmeri & Tarr, 2008).

Conclusions
Visual long-term memory has a massive capacity to store information, both in the number of
items that can be remembered and the amount of information that can be remembered about
each item. Detailed memory representations seem to depend on conceptual knowledge, by
which we mean that an item is more likely to interfere with another item if it has similar
category or subordinate category information. Importantly, conceptual knowledge enables
observers to maintain high-fidelity representations, and not simply gist-like representations
that are fully abstracted away from perceptual detail. Here we show that existing knowledge
about object categories and subordinate categorical structure supports the maintenance of
detailed visual long-term memory. Visual memory capacities, often studied with controlled
stimuli with which we have no prior experience, are part of an integrated conceptual system;
as such visual memory capacity is intrinsically tied to what we know about what we are
seeing.
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Appendix A

Test–Retest Reliability Estimates for Memory Interference Slopes
The interference slopes for each category were calculated using performance from several
observers (e.g., no single observer saw a category with 1, 2, 4, 8, and 16 exemplars); thus
neither the average pairwise observer correlation nor the effective rater reliability R could be
calculated from these data. Instead, to obtain a reliability estimate for these measures, we
simulated test–retest reliability estimates. In general, the test–retest reliability of a Measure
X is var(X)/var(Xhat), that is, the true variance in the underlying signal divided by the
observed variance of the measured signal.

To obtain the reliability measures, reported in Table A1, we estimated the reliability of the
slope measure using a simulation procedure. Here, the general approach was to draw two
samples from the estimated slope distributions for each category, correlate these, repeat for
1,000 iterations, and then compute the average of the 1,000 correlations to estimate test–
retest reliability. The specific simulation procedure was as follows. For each category, a
linear model was used to estimate the slope in memory performance as a function of the
number of studied exemplars (Xhat), and the standard error of that slope estimate (Xse).

Next, the variance of Xhat was rescaled to be equal to . This step is
necessary because the original slope distribution, Xhat, already reflects noise from Xse. Next,
we drew two samples from the rescaled slope distributions (Xhat-rescaled and Xse), generating
two possible sets of interference measures for all 200 categories. We then computed the
correlation between these two vectors and repeated this sampling procedure for 1,000
iterations. Finally, we calculated the average correlation of the 1,000 simulated correlations,
which reflects our estimate of the test–retest reliability, Rsim (see Table A1). The simulation
code is available on our website.

This estimate of reliability was also calculated for the distinctiveness ranks, where Xhat was
the average rating across observers and Xse was the standard error of the mean across
observers. The simulated test–retest reliability (Rsim) and effective rater reliability (R) are
similar in magnitude and are reported in Table A1.
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Calculating Percent of Explainable Variance
After correlating the distinctiveness measures and interference slopes, we subsequently

computed the percent of the maximum variance that can be accounted for ( ), given
the reliability of the measures. Assuming a perfect correlation between two measures, the
maximum correlation that can be observed between two measures is limited by the
reliability of both the measures: Robs = Rtrue √ (R1 * R2), where R1 and R2 are the reliability
estimates of the two measures and Robs is the highest possible correlation that can be
observed given that the true correlation between R1 and R2 (Rtrue) is 1 (see Vul, Harris,
Winkielman, & Pashler, 2009). All estimates of Radjusted use the test–retest reliability
estimates from the simulation; thus both the distinctiveness and memory interference slopes
have a reliability measure calculated from the same procedure.

Table A1

Reliability Measures and Correlations

Variable

Reliability measure

Distinctiveness rank correlation

Interference slope Search RT

MC ICC R Rsim original r2 max original r2 max 

Kinds .25 .18 .80 .74 .023* .178 .127 .000 .577 .000

Shape .55 .50 .93 .93 .002 .223 .007 .026* .725 .035

Color .64 .62 .95 .95 .000 .228 .002 .449* .741 .606

Overall percept (upright) .30 .23 .84 .81 .010 .194 .051 .270* .632 .428

Overall percept (inverted) .24 .17 .79 .75 .000 .180 .001 .372* .585 .636

Interference slope .24 — — — — — —

Search RT .75 .35 .95 .78 — — — — — —

Note. Four measures of reliability are shown for each of the rating experiments as well as the memory interference slopes
and the search reaction times (RT). MC is the mean pairwise correlation across subjects; ICC is the intraclass correlation,
which is an alternate measure of rater reliability (Bartko, 1966); R is the effective rater reliability (Rosenthal & Rosnow,
1991), which takes into account MC and the number of subjects and can be thought of as the percent signal recovered from
the true ranks; and Rsim is the average test–retest correlation simulated from sampling each measurement, adjusted for the
standard error in the measurement. We correlated the five distinctiveness dimensions with interference slope and search
RT, with the percentage of variance accounted for shown in the original r2 column. The maximum possible r2 value that
could be observed, given the reliability of the two measures and assuming a perfect underlying correlation, is shown in the

max  column. The proportion of explainable variance accounted for, given this maximum r2 value, is shown in the

 column.
*
p < .05.

Appendix B

Post Hoc Analysis of Overall Perceptual Rankings and Conceptual Ranks
The correlation between overall perceptual distinctiveness measures (made on upright
images) and memory interference slopes showed a moderate correlation strength, though it
was not statistically significant (r = .10, p < .17). We also observed that upright perceptual
ratings were significantly correlated with conceptual ratings (r = .35, p < .001). In this post
hoc analysis, we examined the possibility that the correlation between memory interference
and upright perceptual ratings was driven by shared variance with the conceptual ratings.
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To do so, we divided the set of 200 categories into two subsets. The first subset contained
the categories that had similar ranks for upright perceptual distinctiveness and conceptual
distinctiveness (kinds). Of the 200 categories, 47 categories had average ranks within ±0.5
for these two dimensions. Examining only these categories, there was a significant
correlation between memory interference and these 47 categories’ conceptual ranks (r = .34,
p = .02) and upright overall perceptual ranks (r = .31, p = .04).

The second subset contained the remaining 153 categories, which had different ranks for the
overall perceptual and conceptual dimensions. Importantly, the conceptual ranks of these
153 categories still showed a correlation with memory slope (r = .16, p = .05), whereas the
overall perceptual ranks did not (r = .01, p = .88). This analysis suggests that the moderate
correlation observed between upright overall perceptual ranks and memory interference can
be attributed to its correlation with the conceptual dimension of the number of kinds.
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Figure 1.
Sixteen categories of object exemplars, sampled from the set of 200 categories used for the
recognition memory task. The full database of stimuli is available from our website.
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Figure 2.
Left panel: Methods. During the study phase, 2,800 images were presented, one at a time,
for 3 s each, with an 800-ms fixation between images. The number of exemplars presented
from a given category was varied from one to 16. At test, two images were presented on the
screen, and observers had to indicate which object they had seen during the study phase. In
the novel condition, the foil image was a categorically distinct item, and in the categorical
interference conditions, the foil item was a new exemplar from the same category. Right
panel: Recognition memory performance. When observers viewed a singleton item from a
category and were tested against an item from a distinct category (novel condition), memory
performance was 93%. When a singleton item from a category was tested against an
exemplar foil (one studied-exemplar condition), performance was 89%. Recognition
memory performance decreased approximately 2% for each doubling of exemplars in
memory. Error bars reflect ±1 SEM.
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Figure 3.
Repeat detection performance. Left panel: Sensitivity for detecting repeated images in the
stream, as a function of how many intervening items appeared between the first presentation
of the image and the repeat presentation. Note that these data could be due to the amount of
elapsed time between repetitions or the number of intervening items. Right panel: Sensitivity
for detecting repeated images in the stream, as a function of the number of prior exemplars
presented before the first presentation of the to-be-repeated image. All error bars reflect ±1
SEM.
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Figure 4.
Distinctiveness rankings. Distinctiveness ratings were gathered for all 200 object categories
along three dimensions: conceptual distinctiveness (are there few or many different kinds of
this object?), shape distinctiveness (how similar or distinctive are the three-dimensional
shapes of these objects?), and color distinctiveness (how similar or distinctive are these
items in color?). Example categories at each end of the continuum (very similar and very
distinctive) are shown for all three dimensions.
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Figure 5.
Memory interference and distinctiveness ratings. Object categories were divided into three
bins based on the mean rank and standard deviation of the distinctiveness scores. The
average interference slope from Experiment 1 is plotted against distinctiveness scores for
conceptual, shape, and color ranking dimensions. Negative slope values indicate memory
interference, and the steeper the slope the greater the interference. Conceptual
distinctiveness correlated with the interference slope: The more conceptually distinct items
from a category there were, the less interference there was as the number of exemplars in
memory increased. Perceptual dimensions of color and shape did not correlate with the
degree of interference in memory. Error bars reflect ±1 SEM.
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Figure 6.
Memory interference and overall perceptual distinctiveness ratings. Object categories were
divided into three bins based on the mean rank and standard deviation of the distinctiveness
scores. The average interference slope from Experiment 1 is plotted against distinctiveness
scores for overall perceptual ratings on images presented either upright or inverted. Error
bars reflect ±1 SEM.
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Figure 7.
Visual search experiment methods. An example search display is shown. The target item
was presented in a box at the center of the display. Observers responded as quickly as
possible whether the target was present or absent in the surrounding display. Average search
time was measured for each of the 200 object categories.
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Figure 8.
Search time and distinctiveness ratings. Object categories were divided into three bins based
on the mean rank and standard deviation of the distinctiveness scores. The average search
time from Experiment 4 is plotted for each bin, for conceptual, shape, and color ranking
dimensions (Experiment 2), and overall perceptual rankings for upright and inverted images
(Experiment 3). All perceptual measures correlated with search time: The more distinctive
items were in color, shape, or overall appearance, the easier it was to find the search target
amidst an array of exemplar distracters. Conceptual distinctiveness did not correlate with
search time. Error bars reflect ±1 SEM.
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