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Abstract: Atypical functional magnetic resonance imaging (fMRI) language patterns may be identified
by visual inspection or by region of interest (ROI)-based laterality indices (LI) but are constrained by a
priori assumptions. We compared a data-driven novel application of principal component analysis
(PCA) to conventional methods. We studied 122 fMRI data sets from control and localization-related
epilepsy patients provided by five children’s hospitals. Each subject performed an auditory description
decision task. The data sets, acquired with different scanners but similar acquisition parameters, were
processed through fMRIB software library to obtain 3D activation maps in standard space. A PCA
analysis was applied to generate the decisional space and the data cluster into three distinct activation
patterns. The classified activation maps were interpreted by (1) blinded reader rating based on prede-
fined language patterns and (2) by language area ROI-based LI (i.e., fixed threshold vs. bootstrap
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approaches). The different classification results were compared through j inter-rater agreement statis-
tics. The unique decisional space classified activation maps into three clusters (a) lower intensity typi-
cal language representation, (b) higher intensity typical, as well as (c) higher intensity atypical
representation. Inter-rater agreements among the three raters were excellent (Fleiss j ¼ 0.85, P ¼ 0.05).
There was substantial to excellent agreement between the conventional visual rating and LI methods
(j ¼ 0.69–0.82, P ¼ 0.05). The PCA-based method yielded excellent agreement with conventional meth-
ods (j ¼ 0.82, P ¼ 0.05). The automated and data-driven PCA decisional space segregates language-
related activation patterns in excellent agreement with current clinical rating and ROI-based methods.
Hum Brain Mapp 34:2330–2342, 2013. VC 2012 Wiley Periodicals, Inc.

Key words: brain activation pattern; data-driven clustering; fMRI; epilepsy; language; lateralization
indices; PCA-based decisional space; visual rating
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INTRODUCTION

Previous studies with intracarotid amobarbital (IAT),
Doppler flow, and functional magnetic resonance imaging
(fMRI) demonstrate that language dominance is typically
left dominant, but there are known variants—bilateral or
right dominance—present in both right-handed (5%) and
left-handed (22%) populations [Pujol et al., 1999; Rasmussen
and Milner, 1977; Springer et al., 1999; Szaflarski et al., 2002;
Woods et al., 1988]. Moreover, patients with Localization-
related epilepsy (LRE) reveal greater occurrence of atypical
language (20–30%) based on the quantitative region of inter-
est (ROI) analysis [Frost et al., 1999; Gaillard et al., 2007;
Woermann et al., 2003] at hemispheric or regional levels
[Binder et al., 1996; Gaillard et al., 2002; Ramsey et al., 2001;
Spreer et al., 2002] or through visual rating (VR) [Fernandez
et al., 2001; Gaillard et al., 2002, 2004] using fMRI data. This
study aims to expand upon data-driven and unbiased meth-
ods to identify deviant fMRI language patterns that are not
constrained by a priori assumptions including regions or
thresholds used in conventional assessments.

Previously, we reported the clustering characteristics of a
principal component analysis (PCA)-based decisional space
in relation to intensity and lateralization dominance of
fMRI language task activation patterns. The study was
based on 122 children (64 control and 58 LRE patients with
age range of 4.5–19 years) across five sites using EPI BOLD
fMRI and an auditory description decision task [You et al.,
2011]. The method identified three distinct patterns, one

atypical right dominant and two typical left dominant. One
of the left dominant groups featured higher intensity acti-
vation in the left frontal lobe and was thought to represent
a variant group that may have used a different cognitive
strategy to perform the task. In this study, we aimed to as-
certain the agreement of our PCA method with two con-
ventional methods: (1) quantitative ROI-based laterality
index (LI) rating and (2) subjective clinical VR.

Epilepsy patient populations provide a means for vali-
dating these novel segregation methods because of their
known heterogeneity of language dominance either on
adults [Price et al., 2006, 2005] or on older children or ado-
lescents [Berl et al., 2005]. Such an approach could augment
the knowledge gained through different PCA-based
approaches reported in the literature that have either
attempted to maximize variability [Suma and Murali, 2007],
used for recovering signal of interest in 4-D fMRI data sets
[Andersen et al., 1999; Viviani et al., 2005], applied the k-
means method [Mbwana et al., 2009], or used the scale sub-
profile model (SSM) normalization transformation
[Alexander and Moeller, 1994]. In all of these approaches,
the shared belief is that the PCA remains a powerful data-
driven method with good scalability. The PCA can also
overcome the need for a priori assumptions and the subjec-
tivity associated with VR methods that are prone to bias.

We aimed to compare our PCA-based method, which is
independent of a priori assumptions and biases inherent
to ROI and visual analyses, with conventional visual and
ROI rating methods among control and epilepsy groups.

DATA AND SUBJECTS

Our institution, in partnership with pediatric epilepsy
programs at five children’s hospitals, built a multisite con-
sortium and repository for pediatric epilepsy data (http://
mri-cate.fiu.edu/) to investigate the effects of epilepsy on
brain function and structure [Lahlou et al., 2006]. Procedures
were followed in accordance with local institutional review
board requirements; all parents gave written informed
consent and children gave assent. Each data set was
deidentified to guarantee patient’s confidentiality.

Abbreviations

B bilateral
fMRI functional magnetic resonance imaging
L left
LI laterality index
LRE localization-related epilepsy
O other
PCA principal component analysis
R right
ROI region of interest
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Patients were between 4.5 and 19 years old and
underwent epilepsy surgery evaluation. Typically devel-
oping control subjects were right handed, native English
speakers, and free of any current or past neurological or
psychiatric disease; they were recruited from the commu-
nity. In all, 64 control and 58 children with LRE included
in this study have complete and usable clinical data [You
et al., 2011]. The mean age of patients was 13.86 years,
with mean age seizure onset 8.23 years (range, 1–18
years). Twenty-six patients had a left localized hemisphere
focus (17 temporal and 9 extra-temporal foci); 18 had a
right hemisphere focus (7 temporal foci and 11 extra-tem-
poral foci). Three patients had bilateral independent sei-
zure foci. Twenty-two patients had abnormal MRI: seven
tumor; five mesial temporal sclerosis; four focal cortical
dysplasia; one vascular malfunction; three focal gliosis;
and two atrophy. Of the 45 patients with seizure etiology
information, 21 had remote symptomatic etiology, 21
unknown causes, and 3 acute symptomatic. Eleven
patients (out of the 54 available) had atypical dexterity
(left or ambidextrous).

All participants performed an auditory description de-
cision task-ADDT (active condition, a word definition—
for example ‘‘a large gray animal is an elephant’’—dur-
ing which subjects pressed a button when the statement
was true; control condition, reverse speech, during which
subjects pressed a button on hearing an interspersed
beep; for both conditions, 70% true responses and 30%
foils) designed to activate both temporal (Wernicke’s
area, ‘‘receptive speech’’) and inferior frontal (Broca’s
area, ‘‘expressive speech’’) cortex [Gaillard et al., 2007].
The task required comprehension of a phrase, semantic
recall, and a semantic decision via push button response.
The block design paradigm consisted of 100 (TR ¼ 3 s)
or 150 (TR ¼ 2 s) time points, with experimental and
baseline periods alternating every 30 s for five cycles,
totaling 5 min.

For uniform analysis of data sets collected from several
sites, all data sets were exported into Neuroimaging Infor-
matics Technology Initiative (NIFTI) format using the
transversal view and radiology convention, and were regis-
tered into the standard Montreal Neurological Institute
brain with 3 � 3 � 3 (mm3) voxel size and resolution of 61
� 73 � 61 (axial � coronal � sagittal). The fMRIB Software
Library was used to perform the pre and postprocessing
required for determining the 3D activation maps [Jenkinson
et al., 2002; Woolrich et al., 2001], including motion correc-
tion using MCFLIRT [Jenkinson et al., 2002], brain extrac-
tion using BET [Smith, 2002]; spatial smoothing using
Gaussian kernel of FWHM 8 mm, intrasubject mean-based
intensity normalization, high pass temporal filtering with
sigma 120.0 s, time-series statistical analysis using FMRIB’s
improved linear model with local autocorrelation correc-
tion [Woolrich et al., 2001], using fMRI Expert Analysis tool
to generate Z (Gaussianized T/F) statistic images thresh-
olded using clusters determined by Z > 2.3 and a (cor-
rected) cluster significance threshold of P ¼ 0.05 [Forman

et al., 1995; Friston et al., 1994; Worsley et al., 1992], and
registration to high-resolution and standard images was
carried out using FLIRT [Jenkinson et al., 2002].

METHOD

Conventional Methods

For quantitative assessments, we used two approaches
to calculate regional LIs: (1) a fixed threshold (the thresh-
old at which VR was performed Z > 2.3) and (2) a boot-
strap method (postulated to be more versatile than a fixed
threshold as it incorporates multiple thresholds into its
calculations) [Wilke and Schmithorst, 2006; Wilke and
Lidzba, 2007]. There are occasions where one may be able
obtain more clinically useful assessment of language dom-
inance by looking at several thresholds [Binder, 1996; Gail-
lard et al., 2002], an approach that is captured by the
bootstrap method which is aimed at rendering an optimal
LI value. With these measures, we then categorized the re-
gional activation maps into a specific laterality category
using these following criteria: LI � 0.2 is deemed left; LI
� �0.2 is deemed right; |LI| < 0.2 is deemed bilateral
[Gaillard et al., 2002, Wilke and Schmithorst, 2006]. The
regions employed can be hemispheric [Binder et al., 1996;
Springer et al., 1999], or sub regions in the frontal and
temporal lobes or any small region, such as specific
functional Brodmann area [Gaillard et al., 2002; Ramsey
et al., 2001; Spreer et al., 2002]. We defined typical lan-
guage-related area Broca’s [BA: 44, 45, 47] and Wernicke’s
[BA 21, 22, 39] areas as our two ROIs. These specific
regions were extracted from BA templates provided by
MRIcro [Rorden and Brett, 2000]. LI was derived using
the following equation:

LI ¼
P

VLeft �
P

VRight
P

VLeft þ
P

VRight
(1)

where V denotes the activation magnitude or voxel count.
The average LI which takes into account both extent and
magnitude is defined as follows:

LIavg ¼ ðLI exent þ LI magnitudeÞ=2 (2)

Once the two regions’ LIs were calculated (for fixed
threshold and bootstrap methods), we then used the fol-
lowing criteria for determining hemispheric language
dominance: (1) right dominance when both Broca’s and
Wernicke’s areas are right lateralized, or when one region
is deemed right and the other bilateral or with no activity
(NA); (2) left dominance if both regions are left, or one
region is left and the other is bilateral or with NA;
(3) bilateral if both regions are bilateral, or one is bilateral
and the other is with NA, or one is left and the other is
right [Fernandez et al., 2001; Gaillard et al., 2002, 2004].
For visual and ROI ratings, right activation and bilateral
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activation are considered to be atypical language domi-
nance patterns.

Furthermore, we used a comparable strategy for the VR
system to categorize each subject’s activation map into
similar dominance patterns. Instead of a pre-extracted
ROI, the language-related areas were visually identified.
An Access-based tool was used such that all images could
be scored to one of the predetermined set of language net-
work patterns representing the differing combinations of
activations in canonical frontal and temporal regions [Gail-
lard et al., 2004]. Each subject’s activation map was first
thresholded (Z > 2.3 with P ¼ 0.05 cluster corrected) for
visualization clarity and then overlaid on top of the brain
template. Three skilled readers, who were blinded to sub-
ject identity, then categorized the laterality of activation in
language network-related areas, and each rater provided
the level of confidence in the rating (confidence scale was
from 1 to 5: 5 being most confident, 1 least (i.e., not) confi-
dent of rating). Raters also made relevant comments on
their observations when there was concern about noise or
null activation [Guillen et al., 2009].

The PCA-Based Decisional Space

Though PCA is commonly used as a dimensional
reduction process, it plays an important role in multivari-
ate statistical analysis as well. PCA has been reported as
the core analysis of SSM after the initial normalization
transformation in the context of modeling regional pat-
terns of brain function [Alexander and Moeller, 1994]. In
this study, normalization of intensity is purposely
avoided to allow for the examination of any effect the
original features embedded in the data sets may have,
which may serve as a means to gauge intersubject
variability.

Based on the concept of subject loading, we performed
the PCA on the given 122 fMRI activation maps fore-
going altogether regional masking and intensity normal-
ization as previously reported [You et al., 2011]. 3D data
were arranged into a 2D matrix where each subject’s
data constitute a specific column. An eigensystem was
then generated. Based on the relationship among the top
eigenvectors, general lateralization, intensity difference,
as well as the dendrogram of the Euclidian distance
matrix of the PCA, the top two eigenvectors of the PCA-
based decisional space were used to delineate three
primary clusters (the first as major group left dominant,
the second featured higher intensity levels, and the third
with right dominant activation). The undecided cases
were then projected onto a new decisional space based
on the PCA of only those data sets that initially were
identified as belonging to the three primary clusters. By
using the modified-Euclidean distance method, the
undecided cases were then classified in the new
decisional space into one of the three primary clusters
initially determined, using unique mathematically
derived PCA-based thresholds.

Statistical Analysis

First, we assessed inter-rater agreement. Inter-rater agree-
ments among the three raters were analyzed using Fleiss j
coefficients to evaluate the rating difficulty and consistency
among different raters and different level of clinical experi-
ences [Fleiss, 1971]. The interpretation from the j value fol-
lows: >0.81 as excellent agreement, 0.61–0.80 as good
agreement, 0.41–0.60 as moderate agreement, 0.21–0.40 as
fair agreement, and <0.20 as poor agreement. Next, we
compared a single rater (most senior) to the fixed threshold
LI and the bootstrap LI using v2. Classifications, including
mismatches, between visual and LI rating were identified
and plotted by the two ROIs (Broca’s and Wernickes’ areas).
Finally, we compared the visual rater, and both LI methods
to PCA analysis. Agreement between the conventional
methods and the PCA results was quantified using Kappa
coefficient (k) [Viera and Garrett, 2005]. Owing to the char-
acteristics of the three groups identified through the PCA
decisional space, we compared the language dominance in
terms of right dominant (corresponding to Group 3) and
left dominant (corresponding to Groups 1 and 2).

To assess the stability of our PCA decisional space, we
examined whether classification results differ if a deci-
sional space included only the LRE patients. Then we gen-
erated 200 synthetic data sets, 100 left lateralized and 100
right lateralized, and classified them based on the current
PCA decisional space initially derived from the 122 real
subjects to assess the sensitivity and specificity.

RESULTS

Summary of Previous Results on the PCA

Decisional Space

After performing the PCA on the 122 fMRI activation
maps, the eigenvalues of the first two eigenvectors (PCA
spatial patterns) alone make up 80% of the sum of all eigen-
values and reveal the regions of interest, a bipolar value of
anterior (Broca) and posterior (Wernicke) clusters. As a
result, fMRI activation maps can later be masked with lan-
guage areas (Broca’s and Wernicke’s) to calculate the ROI-
based LI. Moreover, the zero line in the second eigenvector
axis tends to separate typical and atypical language groups,
according to the general definition derived from overall LI.
Furthermore, the zero line of the first eigenvector was
deemed sufficient at separating any of the following two
groups: higher intensity typical vs. atypical, lower intensity
typical vs. atypical, as well as higher intensity typical vs.
lower intensity typical. The dendrogram of the subjects’
loading matrix identified three major clusters within these
122 subjects [You et al., 2011]. After the selection of primary
cluster member, as well as applying the Euclidean Distance
method, three subgroups of the 122 subjects were identified
with distinct group maps: typical left dominant (Group 1),
typical left dominant with higher intensity (Group 2), and
atypical right dominant (Group 3).
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Categorization Through Conventional Methods

The inter-rater agreement for VR among the three raters
was 0.81 (Fleiss j P ¼ 0.05) (Table I). There was lower rat-

ing confidence in the cases where there was rater disagree-
ment (unpaired two sample t-test, t ¼ �3.61, P < 0.001, n1
¼ 86 [concordant cases, mean 2.7], n2 ¼ 36 [discordant
cases, mean 2.3]). Moreover, 52% of the confidence ratings

TABLE I. The pattern of distribution as identified by the three raters. [Color table can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Left

Rater 1 Rater 2 Rater 3

Control LRE Total Control LRE Total Control LRE Total

37 30 67 38 31 69 39 33 72

1 3 4 2 4 6 1 4 5

5 3 8 7 2 9 4 2 6

1 1 2 1 1 2 0 1 1

6 5 11 4 5 9 4 4 8

Bilateral

3 1 4 3 1 4 5 1 6

0 0 0 0 0 0 0 0 0

1 2 3 0 1 1 1 0 1

1 0 1 0 0 0 0 0 0

2 0 2 1 1 2 1 0 1

Right

0 0 0 0 0 0 0 1 1

1 2 3 1 2 3 0 2 2

0 1 1 0 1 1 1 1 2

0 2 2 1 2 3 0 2 2

0 5 5 0 5 5 1 4 5

Other

0 0 0 0 0 0 1 0 1

6 3 9 6 2 8 6 2 9

r You et al. r

r 2334 r



from the most senior reader (Rater 3) were a ‘‘3’’ or better
compared to 26% for the other readers. Therefore, the cate-
gorization results from the senior reader’s rating were
selected for further comparison with other categorization
methods.

Rater 3 exhibited substantial to excellent inter-rater
agreement with fixed LI (j 0.64 with all four categories
and 0.69 without the ‘‘other’’ category; 0.82 with only left
and right categories), but moderate to substantial inter-
rater agreement with bootstrap LI (0.51 without the

‘‘other’’ category; 0.69 with only left and right categories).
No significant differences were found in the distribution
of the categorizations rendered by VR of Rater 3 as com-
pared to either of the LI methods (Table II).

Mismatch between Rater 3’s VR and LIs (fixed thresh-
olded and bootstrap, Figs. 1 and 2) are plotted in a 2D
plane with axis of LIs of Broca’s and Wernickes’ to discern
sources of disagreements.

Instances of either overt or partial disagreement were
uncommon, and had either lower confidence score from
Rater 3 VR or higher standard deviation for bootstrap LI.

Between the fixed threshold LI and the VR, there were
four cases of overt disagreement; rater confidence for all
four cases were poor (<2.5, t ¼ �1, P < 0.2); there were
eight cases of partial disagreement; again, the rater confi-
dence was poor (<2.5, t ¼ �3.7, P ¼ 0.003); there were six
cases rated visually as ‘‘other’’ but classified as left (n ¼ 3)
or right (n ¼ 3) by LI; there was one case rated visually as
‘‘left’’ but classified as ‘‘other’’ by LI. There was lower rat-
ing confidence in the circumstances where the raters
exhibited some form of disagreement (n ¼ 19) with LI
than those that were in agreement (n ¼ 103) (unpaired
two sample t-test, t ¼ �2.9253, P ¼ 0.0021).

Between the bootstrap LI and the VR, there were six
cases of overt disagreement and 11 cases of partial dis-
agreement. For cases of partial disagreement, the rater

TABLE II. Categorization results between VR and LI

VR (Rater 3)

OtherLeft Right Bilateral

LI (fixed) Left 83 1 1 3
Right 3 11 2 3

Bilateral 5 0 5 0
Other 1 0 0 4

LI (bootstrap) Left 84 3 5 6
Right 3 8 0 3

Bilateral 5 1 3 1

Figure 1.

Distribution of visual rating results in fixed thresholded LI of

Broca’s and Wernicke’s language areas. Solid black line delineates

the border between right dominant and bilateral and the blue

dash line is the border between bilateral and right dominant

defined at fixed threshold LI (Z > 2.3). VR standards for visual

rating, different legends show the characteristics of results of

visual rating by Rater 3. Red pentagram shows the partial mis-

match R/B, B/R, L/B, or B/L between VR/LI. Blue asterisks are

the overt mismatch cases, where R/L or L/R between VR/LI.

The null activation in fixed thresholded LI is not plotted. Some

symbols overlap. B, bilateral; R, right; L, left; VR, visual rating; LI,

laterality indices. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2.

Distribution of visual rating results in bootstrap LI of Broca’s

and Wernicke’s language areas. Solid black line delineates the

border between right dominant and bilateral and the blue dash

line is the border between bilateral and right dominant defined

by bootstrap LI. VR standards for visual rating, different legends

show the characteristics of results of visual rating by Rater 3.

Red pentagram shows the partial mismatch R/B, B/R, L/B, or B/L

between VR/LI. Blue asterisks are the overt mismatch cases: R/L

or L/R between VR/LI. B, bilateral; R, right; L, left; VR, visual rat-

ing; LI, laterality indices. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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confidence was poor (<2.5, t ¼ �2.1, P ¼ 0.03); there were
10 cases rated visually as ‘‘other’’ but classified as left (n ¼
6) or right (n ¼ 3) or bilateral (n ¼ 1) by bootstrap LI.
There was lower rating confidence and greater variability
of bootstrap LI values in the cases where the raters exhib-
ited some form of disagreement (n ¼ 27) than those that
were in agreement (n ¼ 95) (unpaired two sample t-test,
VR confidence: t ¼ �2.1, P < 0.02; LI standard deviation: t
¼ 2.1, P < 0.02).

Assessing Measurements with the PCA

Clustering Results

The PCA analysis placed patients with visual/ROI bilat-
eral ratings in to either left dominant groups (1 and 2) or
right dominant group (3); they are automatically consid-
ered as partial mismatches (Table III). All three raters
exhibited substantial to excellent inter-rater agreement
with PCA in left and right categories (j 0.78-0.83). ROI LI
showed moderate inter-rater agreement with PCA (fixed

LI: j 0.54; bootstrap LI: j 0.60). The overt and partial mis-
matches cases between PCA and conventional methods
(fixed threshold LI, bootstrap LI, and Rater 3’s VR)
are shown in the PCA first two eigenvectors’ space in
Figure 3.

Next, we performed a comparison of conventional meth-
ods, combining the concordant results of LI and VR as
shown in Table IV and Figure 4. Intermethod agreements
between PCA and conventional methods were excellent in
the left and right categorization (j ¼ 0.82, P ¼ 0.05).

Appendix A presents the postsurgical data for LRE par-
ticipants who had epilepsy surgery.

DISCUSSION

A data-driven method that identifies activation patterns
in heterogeneous populations is useful to facilitate timely
and unbiased analysis, especially when data sets are large.
Our language fMRI consortium of pediatric epilepsy and
control populations aims to use these analyses to enhance

TABLE III. Categorization results between conventional methods and PCA

PCA

LI LI

Rater1 Rater2 Rater3 (Fixed threshold) (Bootstrap)

L R B O L R B O L R B O L R B O L R B

Group 1 (L) 75 3 8 9 78 4 5 8 75 4 6 10 71 11 8 5 79 7 9
Group 2 (L) 17 0 1 0 17 0 1 0 17 0 1 0 17 0 1 0 18 0 0
Group 3 (R) 0 8 1 0 0 8 1 0 0 8 1 0 0 8 1 0 1 7 1

Figure 3.

Distribution of discordant cases in the PCA top two eigenvector

space. Partial disagreement is shown in black asterisk and overt

disagreement in red pentagrams. There are only partial disagree-

ments for members in Group 2 (left dominant with higher activ-

ity) and Group 3 (right dominant). (a) Between fixed threshold

LI and PCA, there are totally 11 overt mismatch cases in Group

1 (left dominant with lower activity than Group 2 or Group 3).

(b) Between bootstrap LI and PCA, there are total eight overt

mismatch cases in Group 1 (c) Between VR and PCA, there are

in total four overt mismatch cases in Group 1. VR, visual rating;

LI, laterality indices. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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our understanding of activation maps in relation to clinical
variables. We developed a PCA-based decisional space
which achieved automatic classification of different lan-
guage network activation patterns segregated into three
groups: left dominant-high intensity, left dominant-low
intensity, and an atypical right dominant group. Compar-
ing the PCA method with the traditional methods of ROI-
based LI and visual clinical rating, we found excellent but
not complete agreement. These findings fundamentally
validate the PCA decision-making process. Research meth-
ods of classification/segregation of data into subgroups
can render results that are informative from a neurobiolog-
ical perspective. In addition, by demonstrating that the
PCA method has strong agreement with traditional clinical
methods, PCA has promise as a useful clinical tool.

ROI methods are quantitative but are based on a priori
assumptions—type of ROI, location of ROI, threshold
used—and can be time consuming. The PCA method we
employed is automated, data driven, uniform, and easy to
use. We do not claim that the proposed method is better
than other segregation methods; rather, we suggest that
these methods can be applied to patient populations on
group and at individual levels. One of the distinguishing
factors of the PCA approach is that patients and controls
are found in all three groups, an observation that empha-
sizes normal and pathological variability rather than strict
division between controls and patients. The distribution of
language patterns obtained in this study is similar to prior
studies of language dominance using other techniques
including transcranial-Doppler, transcranial magnetic stim-
ulation, or the IAT [Gaillard et al., 2002, 2004; Khedr et al.,
2002; Knecht et al., 2000; Kurthen et al., 1994; Rasmussen
and Milner, 1977; Risse et al., 1997; Springer et al., 1999;
Woermann et al., 2003; Woods et al., 1988; Wyllie et al.,
1991].

Although the agreements across rating systems and
methods were substantial, discrepancies did occur. The
inter-rater agreement and agreement with ROI are similar
to the previous reports [Fernandez et al., 2001; Gaillard
et al., 2002]. Most differences are of partial disparity rather
than overt disagreement [Gaillard et al., 2002]. Through a
systematic target-oriented rating system [Gaillard et al.,
2002], senior readers were able to rate language pattern in
excellent agreement. Not surprisingly, cases where there
was disagreement among three raters had lower confi-
dence than those cases with complete agreement. Simi-

larly, among the three raters, the most senior rater had an
overall higher confidence score, and had better agreement
with the LI. These observations emphasize the need for
skill in VR and highlight the limits of subjective rating sys-
tems, suggesting the need for caution when less confident
of rating. An additional reason for the discrepancies is that
the VR was performed at a fixed threshold.

Moreover, a LI calculated based on voxel counting may
neglect important information of the activation intensity,
whereas the voxel summation method is sensitive to statisti-
cal outliers [Price et al., 2005; Wilke and Lidzba, 2007; Wilke
and Schmithorst, 2006]. In this study, the averaged LI which
takes both factors into account was used to compare PCA
clustering results. The LI is also affected by the defined ROI
activation. Apart from the subjectivity of VR that might
account for the disagreements between the PCA and the VR,
the differences may also be explained by the approach taken
in thresholding: PCA uses only raw intensity values,
whereas the VR is based on postprocessed thresholded
images and judgment of activation relevance. For example, a
weak activator’s thresholded image may be dominated by
the peaks (maxima), whereas the raw data utilized by the
PCA method account for all the activated voxels (extent).

Furthermore, PCA is sensitive to intensity difference
and does not cluster based on lateralization, rather the
eigenvectors which we have presumed relate primarily to
this feature; hence, some cases may segregate differently
from LI and VR. Though we did not have complete

TABLE IV. Categorization results between combined

conventional methods and PCA

PCA

VR and LI (fixed threshold)

L R B O

Group 1(L) 66 3 3 4
Group 2(L) 17 0 1 0
Group 3 (R) 0 8 1 0

Figure 4.

Distribution of mismatch cases between conventional methods

(VR and LI) and PCA in the first two eigenvectors (subjects

loading). Partial disagreement is shown in black asterisk and

overt disagreement in red pentagrams. There are only partial

disagreements for members in Group 2 (left dominant with

higher activity) and Group 3 (right dominant). Overt disagree-

ments are only found in Group 1. Note that the disagreements

are along borders. VR, visual rating; LI, laterality indices. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r A Decisional Space for fMRI Pattern Separation r

r 2337 r



agreement between these methods, PCA properly identi-
fied the strong right dominant group and was supported
by both VR and the ROI-based LI. All of the (rare) overt
disagreements between the traditional and the PCA meth-
ods occurred only in Group 1. Disagreements, when pres-
ent, occurred mostly along the borders of PCA-derived
clusters. Recall, Group 1 is the left dominant lower inten-
sity group and Group 3 has the feature of right dominant
higher intensity. Therefore, when the subject has low in-
tensity and right dominance, overt disagreement with con-
ventional methods may occur if low-intensity features
overrule the right lateralized feature and PCA would clus-
ter the subject into Group 1 instead of Group 3. As differ-
ences with PCA are found along borders of clusters;
refinement of clustering algorithms may be able to
improve patient segregation. The disagreements do not
mean that any one method is always correct [Gaillard
et al., 2004; Hunter et al., 1999].

Without comparison to invasive methods—such as
Wada testing, electrocortical mapping, or postresection
outcomes—it may not be possible to determine which
approach is more accurate in discordant cases between
conventional and PCA methods. Furthermore, fMRI infor-
mation changes clinical practice [Medina et al., 2005] as it
is used to plan surgery and to minimize postoperative lan-
guage deficits beyond what one would expect by operat-
ing on a temporal lobe dominant for language [Sabsevitz
et al., 2003]. No patient in our series had clinically appa-
rent postoperative aphasia but postoperative outcomes
were not rigorously evaluated. Our goal is to compare tra-
ditional fMRI rating techniques to data-driven methods.
Conventional ratings have excellent but not complete
agreement with invasive methods [Gaillard et al., 2002;
Pouratian et al., 2002].

Furthermore, fMRI category decision task hemispheric lat-
erality indices predict postoperative performance on the
Boston Naming task (Binder group). Unfortunately, there
are no similar postoperative outcome studies of fMRI lan-
guage tasks and analysis methods in children. Ideally, we
would like to have systematic invasive method results
(Wada test, electrocorticography) for comparison, especially
in those cases where our analysis strategies disagree. How-
ever, Wada tests are no longer routinely performed on chil-
dren at most pediatric epilepsy centers. When these tests are
performed—typically when there is concern about integrity
of noninvasive mapping—they proceed under circumstan-
ces that make interpretation and comparison problematic.
Finally, there are clear limitations to the use of either Wada
test or electrocorticography as ‘‘gold standards’’ as both, like
fMRI, may be flawed and under various circumstances yield
faulty information [Gaillard et al., 2011a].

Epilepsy has complex effects of brain function, which
may include atypical levels/extent of activation on fMRI as
we reported in our previous study, identifying the higher
intensity left dominant group. Recent studies do not find a
direct effect of regional hypometabolism or hypoperfusion
on the ability of patients to mount a BOLD response [Duke

et al., in press; Gaillard et al., 2011b]. More importantly,
through the use of the PCA on patients only, we found that
the PCA decisional space remained stable and the algo-
rithm worked well at clustering the patients, and because of
the less skewed distribution of the three primary clusters,
the clustering results conformed better to the conventional
methods (Appendix B). We also showed that the sensitivity
and specificity of our PCA decisional space are acceptable
and thus useful clinically after applying the decisional
space on the synthetic data sets (Appendix C).

Limitations

The PCA method has several limitations, which may
limit its clinical utility and application at the single subject
(individual patient) level. First, the PCA decision space
depends on the population that is sampled; as new sub-
jects are included in a group sample, the decisional space
will potentially change unless the sampled population
includes all possible language patterns. As a consequence,
one needs to establish such a decision space from a fairly
large representative sample before it can be used to evalu-
ate individual subjects. As we have over 100 subjects in
our group, this method can be a basis of learning the lan-
guage processing features of the normal and pediatric epi-
lepsy populations. Despite our large sample size, the
relatively low number of children with atypical language
lateralization in the LRE and control groups may make it
difficult for the decision space derived from the PCA anal-
ysis to include all possible language patterns. As our con-
sortium grows in number and the database increases in
size, new subjects can be projected into the decisional
space which is subjected to computational learning. As a
consequence, the process may be refined by potentially
identifying new subgroups and subsets, and thus improve
clinical applicability. Second, the classification based on
the PCA-derived clusters did not separate different bilat-
eral language patterns, which potentially limits single sub-
ject clinical utility. Third, PCA places greater emphasis on
intensity of activation rather than spatial extent; it is
unclear which factor is more important for language
dominance

To overcome these limitations; first, we expect the con-
sortium to grow and thus provide larger representative
language pattern samples. Second, it may be possible to
use synthetic activation maps to generate a multiclass clas-
sifier to refine cluster border classification.

CONCLUSION

The PCA-based method presented here employs cluster
tools that may help the assessment of very large data sets
and may be applied on an individual basis based on fea-
tures gleaned from a large database. The agreements
found between PCA and conventional methods (LI and
VR) suggest that such methods may be used clinically.
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Our PCA approach segregated patients and controls with
overall strong agreement with conventional methods. The
differences between methods were all found along the bor-
ders of PCA clusters. Adjustments in PCA clustering
should be amenable to learning and modeling to avoid pit-
falls and improve clinical utility.
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APPENDIX A: POSTSURGICAL DATA FOR

LRE PARTICIPANTS

Postsurgical data for LRE participants reveal that out of
58 LRE participants, 14 subjects did not have surgery. The
44 patients had surgery on different regions of the brain as
summarized in Table A.I, including 28 on left hemisphere,
15 on right hemisphere, and 1 on bilateral frontal. For three
cases with some form of disagreement (two overt and one
partial), surgical data are not available. For the ones we do
have data, the only case of overt disagreement had surgery
on the right frontal lobe, and it is of path multifocal Palmini
type IIA FCD. Among the eight partial disagreements, six
cases had surgery on the temporal lobe (two on the right
and four on the left), one on the left occipital lobe, and one
had right hemispherectomy (who was diagnosed with dys-
plasia). No patients had gross postoperative aphasia on bed-
side testing. We do not have formal neuropsychological
language testing on the large majority of patients.

Postoperative outcome measures would be another
source of information to examine the cases of disagree-
ment, but this is also flawed. The objective of preoperative
fMRI is to avoid postoperative naming deficits beyond
what one would expect on operating on a dominant hemi-
sphere [Sabsevitz, 2003]. Findings from fMRI change prac-
tice [Medina, 2005], for example either by not pursuing
surgery, use of invasive mapping, or altered resection
based on fMRI data. Part of the motivation of this project
is to gather the data and develop the methods necessary
to fund a larger scale outcome project with all the techni-
cal challenges that ensue as there are no outcome studies
using fMRI in children with epilepsy.

TABLE AI. Postsurgical data for LRE participants

Hemisphere Lobe/Region Number Disagreements

Bilateral Frontal 1
Left Frontal 3

Temporal 22 4 (partial; PCA-L
Group1)

Occipital 1 1 (partial; PCA-L
Group1)

Hemispherectomy 1
Anatomical

Hemispherectomy
1

Right Frontal 5 1 (overt; PCA-L
Group1; path
multifocal Palmini
type IIA FCD)

Temporal 6 2 (partial; PCA-L
Group1)

Parietal 1
Hemispherectomy 1 1 (partial; PCA-L

Group 1;
dysplasia)

Strip/Grid 1
Rolandic 1
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APPENDIX B: STABILITY OF THE PCA

DECISIONAL SPACE

The results given in this appendix are to demonstrate
the stability of the PCA decisional space derived using
both patient and control populations, by using this same
decisional space but only on the patient population. Thus
after applying a similar PCA process on the LRE patients
only, the newly generated space, as shown in Figure B.1,
differed slightly from the above-reported decisional space
which included the control population.

Using the same primary clusters as before, the results
summarized in Table B.I show two fewer overt disagree-
ments between PCA and the conventional methods. Three
patients changed from classification as left (‘‘1’’) to right
(‘‘3’’), yielding greater agreement with either LI or visual rat-
ing; one patient changed from strong left (‘‘2’’) to left (‘‘1’’)
which maintained the agreement with conventional ratings.

APPENDIX C: SYNTHETIC DATA GENERATION

AND CLASSIFICATION

Synthetic activation patterns were generated based on
the masks on Broca’s and Wernicke’s areas in our stand-
ard space (61 � 73 � 61). According to the combinations
of the different activations in the left and right Broca
areas, and left and right Wernicke areas, we generated 10
standard patterns as shown in Figure C.1. In accordance
with the definition of typical and atypical activations, the
top five patterns were regarded as typical (left dominant),
and the bottom five were considered atypical (right
dominant).

Based on the different characteristics of these activation
patterns, activations in the volume are generated ran-
domly in accordance to the following rules: (i) each activa-
tion satisfies the Gaussian distribution; (ii) the center of
activation must be within the ROI; (iii) the covariance ma-
trix is randomly generated, and (iv) the number of activa-
tions is randomly chosen from 1 to 10.

The procedure for generating synthetic data consists of
the following steps:

1. Generate related parameters following the set rules.
2. Resample the original volume size into 244 � 292 �

244.
3. Generate randomly points in the resampled volume

(2,500 points in this case are generated for each acti-
vation pattern).

4. Accumulate the number of points on each voxel as
the value of that voxel.

Figure B1.

New PCA decisional space using only the patient population.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

TABLE BI. Comparison of different PCA space—all

subjects vs. patients onlya

PCA
cluster All
subjects

LI
fixed

LI
bootstrap

Rater
1

Rater
2

Rater
3

PCA
cluster

Patients
only

1 3 3 3 3 0 3
2 1 1 1 1 1 1
1 3 1 0 0 3 3
1 3 2 3 3 3 3

aPCA: left (‘‘1’’), right (‘‘3’’), strong left (‘‘2’’); LI and VR: left (‘‘1’’),
right (‘‘3’’), bilateral (‘‘2’’), and others (‘‘0’’).

Figure C1.

Standard synthetic activation patterns. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE CI. Synthetic data classification resultsa

Synthetic category Cluster 1 (�) Cluster 2 (�) Cluster 3 (þ)

Left (typical)� 84 1 15
Right(atypical)þ 1 0 99

asensitivity ¼ 99%, specificity ¼ 85%, accuracy ¼ 92%, and preci-
sion ¼ 86.8%.
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5. Resample the volume back to its original size 61 �
73 � 61.

6. Apply the mask to obtain the synthetic data.

Following these steps, 100 left dominant patterns and 100
right dominant patterns were generated for the classification
process. After generating the synthetic data, based on the in-
tensity of the real data, we first normalize it between 0 and 1,
and then multiple by a random number centered at 4 with
variance of 2. Then similarly to the clustering steps in our
previous study, we project each synthetic data Unew using

the relation UTUnew onto the primary clusters (U—the eigen-
vectors from our real subjects’ PCA space). Then use the
same distance method to classify the synthetic data.

After projecting the synthetic data onto the PCA deci-
sional space, the classification results obtained are as sum-
marized in Table C.I. Right dominant cases are considered
atypical (positive), and left dominant cases are considered
typical (negative). In these results, the reason sensitivity is
relatively lower is owing to the original real data sample
which had a much smaller amount of atypical (right domi-
nant) cases in our initial PCA decisional space.
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