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As biology begins to move into the
‘‘postgenomic’’ era, a key emerging

question is how to approach the under-
standing of how complex biomolecular
networks function as dynamical systems.
Prominent examples include multimo-
lecular protein ‘‘machines,’’ intracellular
signal transduction cascades, and cell–cell
communication mechanisms. As the pro-
portion of identified components involved
in any of these networks continues to
increase, in certain instances already
asymptotically, the daunting challenge of
developing useful models—mathematical
as well as conceptual—for how they work
is drawing interest. At one extreme is the
hope that fundamental relationships will
emerge from essentially statistical analy-
ses of large genomic and proteomic data-
bases enumerating correlations among
gene expression, protein levelystatey
location, and cell behavior. At another
extreme is a view that sheer computa-
tional power can be harnessed to create
comprehensive simulations of the full set
of fundamental physicochemical molecu-
lar interactions. Recently, an intermediate
concept suggests a ‘‘modular’’ framework,
treating subsystems of complex molecular
networks as functional units that perform
identifiable tasks—perhaps even able to
be characterized in familiar engineering
terms (1). The idea of functional modules
as an effective approach to modeling bio-
molecular systems is quite appealing, be-
cause, even in nonbiological applications,
engineering design is generally carried out
in hierarchical or ‘‘nested’’ fashion. That
is, the behavior of a system at the highest
(i.e., largest space scale andyor longest
time scale) level is typically analyzed and
predicted with a model involving proper-
ties of the next-lower spaceytime scales;
these properties are then analyzed and
predicted with another set of models in-
volving further subdivided space andyor
time scales and so forth to a most detailed
level as limited by current data.

Despite its intuitive appeal, however,
support for the concept of modular cell
biology will demand that actual manifes-
tations be identified that can lead to ad-
vances in understanding of cell function in

molecular terms. Thus, the contribution
by Yi et al. (2) is important in providing a
compelling example, based on analysis of
adaptation in bacterial chemotaxis (3) as a
dynamical systems control process. Che-
motaxis, most simply defined as a phe-
nomenon in which cells can bias their
locomotion along gradients in concentra-
tion of a chemical stimulus, has a well
characterized foundation of molecular
components involved in its signal trans-
duction cascade in the case of the flagellar
bacterium Escherichia coli (4). Indeed, the
completeness of its component identifica-
tion has permitted it to be unusually ame-
nable to full computational simulation
(5–7). Accordingly, the molecular net-
work of signaling in bacterial chemotaxis
offers a timely test bed for elucidating
modular representation.

As illustrated schematically in Fig. 1 and
outlined by Yi et al. (2), this network
comprises six intracellular proteins (des-
ignated A, B, R, W, Y, and Z) along with
the transmembrane receptor that binds
the stimulatory chemotactic ligand. Bio-
logically, the input is the stimulatory li-
gand concentration, and the output is the
frequency of tumbling (the process by
which the cell stops swimming in a partic-
ular direction and reorients randomly).
Because ligand concentration is perceived
by receptor binding and the tumbling fre-
quency is governed by the level of phos-
phorylated Y, a dynamical systems repre-
sentation can use receptor occupancy and
phosphorylated Y as surrogate input and
output. A striking previous finding (3) had
been that this system of molecular inter-
actions possesses the characteristic of ro-
bustness, meaning that the inputyoutput
relationship is relatively insensitive to
variations in parameter values across a
wide range. Robustness is an important
property of an engineered system when
functional behavior needs to be reliable in
the face of external and internal uncer-
tainties and heterogeneities. In the con-
text of bacterial chemotaxis, the inputy
output property found to be robust is that
of perfect adaptation (8). That is, the
output (tumbling frequency) attained at
steady state after the transient after a

change in input (stimulus concentration)
is exactly equal to the prestimulus level
regardless of the input value (see Fig. 2).
This behavior seems to be necessary for
bacteria to respond to stimulus concentra-
tion gradients (9).

How is this crucial behavior accom-
plished by the biochemical signaling net-
work of Fig. 1? What Yi et al. (2) have
determined is that this network possesses
the central characteristics of a process
control strategy termed integral feedback
control. Process control refers to an engi-
neering operation by which a system
makes decisions about how to best manip-
ulate available variables to obtain a de-
sired output. Feedback means that the
information on which the decision is based
derives from measurement of the output.
Diverse types of feedback control are pos-
sible, including proportional (P), differen-
tial (D), and integral (I) as well as various
combinations such as PI, PID, etc. (10).
Integral feedback control bases decisions
about manipulating system variables on
the disparity between the desired output
and the actual output integrated over
time. A critical feature of integral feed-
back control, as outlined explicitly by Yi et
al. (2), is that the steady-state value ulti-
mately reached after a changed input is
indeed the original prestimulus value—
i.e., perfect adaptation. Control schemes
lacking integral feedback, such as P or PD,
in general yield new steady-state values
after a changed input that are different
from the prestimulus value; in process
control parlance, the deviation is known
as off-set. In many engineering applica-
tions, nonzero off-set is tolerable, but
when it is not, implementation of an in-
tegral feedback control scheme is re-
quired.

Hence, in considering models for bac-
terial chemotaxis, continuing our exam-
ple, alternative options are available de-
pending on the goal of the modeling ef-
fort. One can employ a full computational
simulation of the complete set of physi-
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cochemical molecular events, as did Bray
et al. (5), Bray and Bourrett (6), and Spiro
et al. (7). This approach yields direct pre-
diction of effects of molecular-level alter-
ations on the overall cell behavior, a very
useful capability. At the same time, full
simulations of this sort may not easily lead
to elucidation of central system operating
characteristics, as evidenced by the chro-
nology of the integral feedback control
representation after initial simulations by

over nearly a half decade. If one needs to
incorporate the chemotaxis signaling
pathway as merely one of perhaps dozens
of physiological regulatory processes in
the bacterium, profit might be gained
from modeling it as a simple inputyoutput
module (see figure 2 of Yi et al.; ref. 2),
possessing measurable quantitative prop-
erties (ultimately predictable from the
physicochemical model underneath),
alongside analogous modules represent-

ing the dynamical characteristics of the
other dozens of pathways. This type of
framework has been suggested recently
for modeling cell-signaling pathways (11).

The question is thus begged as to
whether this bacterial chemotaxis signal-
ing pathway is essentially singular in per-
mitting representation as an operational
module. Although effort dedicated along
these lines is only in a nascent stage,
additional examples can in fact be noted.
One is the mitogen-activated protein ki-
nase (MAP kinase) pathway, which is
found almost universally in eukaryotic
cells as a series of at least three protein
kinases: a MAP kinase that is phosphor-
ylated by a MAP kinase kinase that has
been phosphorylated by a MAP kinase
kinase kinase. Such a sequential cascade
of reactions was initially speculated to
serve as an amplifier of an upstream re-
ceptoryligand binding event. More recent
analysis indicates that, in many cases, it
acts as a switch providing an almost
threshold-like inputyoutput response to
receptor activation, with a new steady-
state level of MAP kinase activity that is
substantially higher than the original base-
line level, if the input stimulus is suffi-
ciently great (12). Operation as a switch in
this manner could be useful for regulating
gene expression events required for a cell
decision to divide or differentiate, and this
operation can be obtained as a module
representing a proportional control
scheme in which variables are modulated
in response to the immediate difference
between a desired output and current
output. Interestingly, however, in other
situations, this same class of molecular
network undergoes exact adaptation or
integral feedback control, behavior simi-
lar to that of the bacterial chemotaxis
pathway, with MAP kinase activity pro-
ceeding through a transient peak back to
its original baseline level in response to
continuous ligandyreceptor occupancy
(13). The significance of this transient
peak for cell behavioral responses, such as
migration and proliferation, merits inves-
tigation, as does the mechanism in terms
of molecular interactions for how this
generic MAP kinase pathway can seem to
be represented by diverse types of mod-
ules. Crosstalk from other signaling path-
ways is among the likely explanations for
the apparent interconversion of a given
module from one category of behavior to
another.

It is important to appreciate that often
the machinery assembled to implement
control and safety schemes for operation
of a core function is more complicated
than the machinery of the core itself
(14). As a crude example, consider a
liquid-holding tank possessing input and
output pipes. This operating system is
indeed quite simple. Yet its operating

Fig. 1. Schematic illustration of bacterial chemotaxis signaling pathway, adapted from Alon et al. (3) and
analyzed by Yi et al. (2) as a feedback control module. The output, cell tumbling frequency, is determined
from the input, a stimulatory ligand that binds to cell membrane receptors, by the dynamics of the
depicted cascade of interactions between intracellular proteins termed A, B, R, W, Y, and Z. Proteins R and
B enzymatically add and remove, respectively, methyl groups (designated by m) on the ligandyreceptor
complex; the removal activity of B depends on its level of phosphorylation (designated by p), which in turn
is mediated by protein A that is coupled to the receptor via protein W. Protein A also adds phosphate
groups (which are removed by protein Z) to protein Y; the cell tumbling frequency, which affects the
direction of cell locomotion, is governed by the level of protein Y phosphorylation. Adaptation of the
output (as illustrated in Fig. 2) after initial response to a change in input is accomplished by the
methylation of receptor, which influences the rate at which protein A phosphorylates protein Y.

Fig. 2. Illustration of dynamic responses of a system to a change in input. In the total absence of
adaptation, a new steady-state output is attained; partial adaptation reduces the ‘‘off-set’’ of the new
steady-state output value compared with the original prestimulus value, whereas perfect adaptation
brings the output back to the original value. Alon et al. (3) previously found that the bacterial chemotaxis
system shown in Fig. 1 adapts perfectly, and Yi et al. (2) now demonstrate that this pathway possesses
characteristic features of an integral feedback control module.
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behavior, if uncontrolled, can be quite
problematic: for instance, if the input is
not properly regulated, a sudden surge
may cause the tank to overf low, and if
the output is not properly regulated a
slow leak may cause the tank to drain
dry. Therefore, if one desires to maintain
a constant liquid f low reliably in the face
of unpredictable surges and leaks, a con-
trol system involving valves, f low-rate
measurement devices, measurement
transducers, and mechanical valve regu-
lators must be built around the tank and
pipes—not to mention the computa-
tional algorithm required to generate the
correct control strategy for the valve
regulators derived from the f low-rate

measurements. Clearly, most of the com-
plexity of this example system is in the
elements that implement the control
scheme rather than in the core function.
Moreover, the objective of this complex-
ity is to guarantee that the core function
will generate reliable output. In a nut-
shell, the system complexity is built in to
provide for simple behavior. This type of
complexity is, in many ways, quite the
opposite of much of current ‘‘complexity
theory’’ in which diverse behaviors are
sought from simple systems. This point
along with deeper insights have been
forwarded more powerfully and ele-
gantly elsewhere (15). Information con-
cerning the molecular makeup of cells, as

is emerging from genomic studies, indi-
cates that the proportion of components
devoted to regulatory networks as op-
posed to core functions such as metab-
olism and energy generation is dominant
(16). If this information proves to be
general, we can speculate that the com-
positional complexity of cells is designed
chief ly for the purpose of enabling reli-
able cell decisions concerning simple
behavioral functions in uncertain and
variable environments. Consequently, a
hierarchical framework involving modu-
lar control elements—in turn comprised
of underlying physicochemical molecular
interactions—could be useful for both
conceptual and quantitative models of
cell function.
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