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Abstract

A critical analysis of two treatment trials of Chinese rhesus macaques infected with Borrelia burgdorferi indicates
that insufficient attention was placed on documenting the blood levels, pharmacokinetics, and pharmacody-
namic parameters of the antibiotics used in this host. Consequently, it is impossible to conclude that the findings
have validity in judging the efficacy of doxycycline or ceftriaxone for the treatment of Borrelia burgdorferi in this
animal model.
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Embers and associates (2012) recently reported the
results of two experiments in which Chinese rhesus ma-

caques infected with Borrelia burgdorferi received either anti-
biotics or sham therapy (controls). They state that despite
‘‘aggressive’’ antibiotic therapy with ceftriaxone, followed by
doxycycline in experiment 1 or doxycycline treatment alone
in experiment 2, B. burgdorferi ‘‘appears to become tolerant’’
and ‘‘persists.’’ They also state that their results raise impor-
tant questions ‘‘about the pathogenicity of antibiotic-tolerant
persisters and whether or not they can contribute to symp-
toms post-treatment.’’

None of the non-human primates (NHPs) were described
as having objective clinical manifestations of infection (e.g.,
erythema migrans, neurologic dysfunction, or arthritis), ei-
ther during or after treatment. Thus resolution of such
findings was not used to measure antibiotic efficacy. Ob-
viously, the presence or absence of purely subjective com-
plaints such as fatigue likewise could not be reliably assessed
in this system. Instead, the evaluation of antibiotic efficacy
was based on a positive result for any one of four different
laboratory assays (detection of the growth of B. burgdorferi in
culture, identification of borrelial DNA or RNA by poly-

merase chain reaction [PCR], or the detection of B. burgdorferi
antigen by an immunofluorescence assay [IFA] in histologic
sections) in experiment 1. Xenodiagnosis was also used in
experiment 2, that had only three treated animals. In ex-
periment 1, mRNA of B. burgdorferi could be detected in 3 of
the 12 antibiotic-treated NHPs at post-mortem examination;
however, borrelial DNA was not detected by PCR in any of
these 3 animals at the same tissue site. Also, for 2 of the
mRNA-positive NHPs, borrelial DNA could not be detected
in any of the tissues examined. These are rather surprising—
and paradoxical—results. It should be emphasized that
many of these assays are presumptive rather than confir-
matory for determining the viability of microorganisms; for
example, neither the detection of DNA or mRNA is a de-
finitive indicator of viability (Barer and Harwood 1999; Bo-
gosian and Bourneuf 2001). Studies indicate that the
likelihood of detecting mRNA after cell death in bacteria is
related to the environmental conditions present, the method
by which the microorganism was killed, the physiological
state of the microorganism before killing, and the size and
the region of the RNA transcript targeted (Sheridan et al.
1999; Birch et al. 2001; Reiman et al. 2010); mRNA can remain
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undamaged for long periods if bacterial cells are destroyed
by methods that inactivate RNase, rather than mRNA itself
(Sung et al. 2004). Following exposure to potentially lethal
methods (such as antibiotics, chemical agents, or heat), mi-
croorganisms are sometimes better characterized as mori-
bund, rather than alive or dead.

In experiment 1, when the antibiotic-treated and sham-
treated groups were combined, a total of 17 NHPs were des-
ignated as persistently infected, with no difference in the rate
of persistence between antibiotic-treated and sham-treated
NHPs (Embers et al. 2012). In 11 (64.7%) of the 17 NHPs, the
sole basis for this assessment was a positive IFA, a procedure
which in tissues is highly subjective and poorly reproducible.
IFA is not a well-accepted assay in disseminated Lyme disease
except in instances when antigen density is very high, such as
in skin during early infection (Pachner et al. 2001). Given the
very low antigen density expected in the animals studied by
Embers and colleagues (2012), there is a high likelihood of
false-positive results. It is therefore essential for individuals
who perform these assays to be blinded to treatment group. If
this was done, it was not mentioned in the reported study
(Embers et al. 2012).

One treated animal and one untreated animal in experi-
ment 1 were stated to be culture-positive. For some of the
‘‘culture-positive’’ animals the spirochete could not be sub-
cultured, at least in experiment 2. Since strains of B. burgdorferi
that readily grow in vitro, such as the B31 strain, were used to
infect the NHPs, this raises questions about whether the
identified spirochetal forms were in fact viable. Although the
specificity of culture is not 100% (Fallon et al. 2008), we agree
that culture-positive animals who received antibiotics had
convincing evidence of residual viable B. burgdorferi. Based on
the results of treatment of B. burgdorferi infection in other re-
ported animal models, this suggests that some or all of the
animals were undertreated (Wormser et al. 2006; Wormser
and Schwartz 2009). This could have been due to either an
inadequate dosage or frequency of administration of the an-
tibiotics. Alternatively, inadequate antibiotic exposure might
have occurred in only a subset of the animals, due to vari-
ability in blood levels of drug among animals that received
identical doses (Wormser and Schwartz 2009). This is not
uncommon in outbred animals; in a study that measured
levels of orally administered doxycycline in the blood of
rhesus macaques, there was substantial variability in drug
levels between animals (Kelly et al. 1992). Therefore, it is es-
sential that antibiotic blood levels be closely monitored in
every animal throughout the treatment period, particularly in
a study with so few animals; this was not done by the Embers
group (2012).

To our knowledge, pharmacokinetic (PK) data for
doxycycline have never been determined in rhesus ma-
caques. PK data for ceftriaxone have been determined
for only seven rhesus macaques; none was noted to be of
Chinese origin. The terminal half-life of ceftriaxone was
quite variable, ranging from 89 min to 6.4 h (Matsui et al.
1984; Pelak et al. 1987; Sundelof et al. 1997). The usually
reported half-life in adult humans is 6–8 h (Patel and Kaplan
1984). Given the high degree of variability of the half-life
in macaques, it is certainly not justifiable for Embers and
associates (2012) to assume that the dosage of ceftriaxone
administered was comparable to that in humans given
this antibiotic. Furthermore, until an erratum was posted

recently (www.plosone.org/article/info%3Adoi%2F10.137%2F
journal.pone.0029914), the authors stated that they actually
treated their animals with ceftiofur, not ceftriaxone; the PK
of ceftiofur apparently has never been studied in any pri-
mate. Given the paucity of reported data on the PK of
doxycycline, ceftiofur, and ceftriaxone in NHPs, there is no
evidence to support the claim by the Embers group (2012),
that one of the two primary reasons for using rhesus ma-
caques was ‘‘the similarity between the available pharma-
cokinetics data for ceftriaxone and doxycycline in rhesus
macaques and in humans.’’

The few doxycycline levels that were reported by Embers
and associates (2012) were based on bioassays. Ideally, levels
of doxycycline in blood should not be determined by bioas-
say, because such assays measure native drug plus any other
active metabolites or chemical moieties. This can be prob-
lematic unless the bioassay incorporates B. burgdorferi, which
was not the case in the bioassays of the Embers group (2012).

Without PK data or detailed information on the blood
levels of the antibiotics administered at multiple time points,
with their level of protein binding, it is impossible to ascertain
the customary pharmacodynamic (PD) parameters for the
antibiotics used in the experiments of Embers and co-workers
(2012). With other infections, the PD parameter that seems to
be most pertinent for the antimicrobial efficacy of doxycycline
is the area under the concentration time curve at 24 h (AUC) of
free drug divided by the minimum inhibitory concentration
(MIC) of the infecting microorganism (Ambrose et al., 2007).
For ceftriaxone, the PD parameter that correlates best with
antibiotic efficacy is the duration of time that free drug in
serum exceeds the MIC of the microorganism being treated
(Ambrose et al. 2007).

It is also important to note that the Embers group (2012)
used an extremely large dose of needle-inoculated spirochetes
(3.2 · 108), injected in different sites, to produce a dissemi-
nated B. burgdorferi infection. The authors acknowledge that
this in no way approximates a naturally-acquired infection;
obviously under such circumstances extrapolation of the re-
sults obtained to naturally-acquired human disease is not
valid.

There are other concerns regarding the extrapolation of
the findings of the Embers group (2012) to humans. Most
importantly, their findings in NHPs are not consistent
with the results of human studies. Despite extensive testing
by various diagnostic modalities including culture and
PCR, there has been no evidence for the persistence of
B. burgdorferi in treated patients in the United States, in-
cluding patients with antibiotic-refractory arthritis or with
post-treatment Lyme disease syndrome (PTLDS; Klempner
et al. 2001; Klempner, 2002; Fallon et al. 2008; Li et al. 2011).
The term PTLDS refers to patients with persistent subjec-
tive symptoms despite treatment with antibiotics and res-
olution of the objective manifestations of Lyme disease (e.g.,
erythema migrans; Wormser et al. 2006). In the absence
of tissue inflammation or exotoxin production, it is also un-
clear how ‘‘persisters’’ might cause symptoms associated
with Lyme disease or with PTLDS; indeed, the hypothesis
that they would is counterintuitive for B. burgdorferi, as well
as for other microorganisms. For example, only a tiny frac-
tion of patients with acute mononucleosis develop persistent
fatigue, but essentially all patients remain infected with
the Epstein-Barr virus. Moreover, one-third of the world’s
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population has persistent Mycobacterium tuberculosis infec-
tion without any symptoms. When latent tuberculosis re-
activates there are clearly demonstrable objective findings.
Long-term follow-up of Lyme disease patients with post-
treatment subjective complaints indicates that these patients
never manifest objective clinical manifestations such as
arthritis (the most common late manifestation of Lyme dis-
ease in humans) at later time points (Nowakowski et al. 2003;
Wormser et al. 2006). Thus, even when present, persistent
microorganisms are largely irrelevant clinically unless they
can be shown to cause disease.

A study of a Chinese rhesus macaque model for the
evaluation of a recombinant OspA vaccine preparation
for prevention of tick-transmitted B. burgdorferi infection
may be instructive (Philipp et al. 1997). This study used
some of the same assessment measures that the Embers
group (2012) used, and was conducted by some of the same
investigators. In this study, at least 9 of the 12 macaques
that were vaccinated and later challenged by tick bite had
molecular evidence (7 of 12 were PCR-positive), or had
immunohistologic evidence of B. burgdorferi infection; cu-
riously, the animals did not develop serologic evidence of
infection and were culture-negative. Philipp and associates
(1997) suggested that ‘‘these monkeys may have undergone
a low level of infection that was transient.’’ Although
the findings could have been interpreted to suggest that the
OspA vaccine was completely ineffective if one employs the
criteria used by Embers and associates (2012) in the treat-
ment study under discussion, clinical trials demonstrated
just the opposite. The vaccine was found to be efficacious
for humans, and the vaccine was approved by the FDA.
Thus, as with any animal model, caution should be exer-
cised in making extrapolations from the rhesus model to
human disease.

In conclusion, it is not justifiable to assume that reliable
information about human Lyme disease or PTLDS can be
inferred from the methodologically flawed study of Embers
and colleagues (2012) on the use of ceftriaxone and/or
doxycycline for the treatment of latent B. burgdorferi infection
in rhesus macaques. It is essential that future studies on the
treatment of animals infected with B. burgdorferi address
standard PK/PD parameters, and provide sufficient docu-
mentation of the consistency of antibiotic blood levels over
time and among different animals.
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