Skip to main content
. 2012 Jul 17;6:90. doi: 10.3389/fnins.2012.00090

Table 7.

Model description of the network benchmark using the reference synapse model. After Nordlie et al. (2009).

A: MODEL SUMMARY
Populations Three: uncorrelated input (U), correlated input (C), target (T)
Topology Feed-forward
Connectivity All-to-one
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory period (voltage clamp)
Synapse model Exponential-shaped postsynaptic conductances
Plasticity Intermediate Gütig spike-timing dependent plasticity
Input Fixed-rate Poisson (for U) and multiple interaction process (for C) spike trains
Measurements Synaptic weights
B: POPULATIONS
Name Elements Population size
U Parrot neurons Nu
C Parrot neurons Nc
T IAF neurons NT
C: CONNECTIVITY
Source Target Pattern
U T All-to-all, uniformly distributed initial weights w, STDP, delay d
D: NEURON AND SYNAPSE MODEL
Name IAF neuron
Type Leaky integrate-and-fire, exponential-shaped synaptic conductances
Sub-threshold dynamics Cm dV/dt = gL (EL − V) + g(t) (Ee − V) if t > t* + τref V(t) = Vreset else g(t) = wgmax exp(−tsyn)
Spiking If V(t−) < þeta ∧ V(t+) ≥ θ 1. Set t* = t, 2. Emit spike with time stamp t*
Name Parrot neuron
Type Repeats input spikes with delay d
E: PLASTICITY
Name Intermediate Gütig STDP
Spike pairing scheme Reduced symmetric nearest-neighbor
Weight dynamics δw(w,Δt)=F(w)x(Δt)
xt) = exp(−|Δt|/τSTDP)
F(w) = λ(1 − w)μ if Δt > 0
F(w) = −λαwμ if Δt < 0
F: INPUT
Type Target Description
Poisson generators U Independent Poisson spike trains with firing rate ρ
MIP generators C Spike trains with correlation c and firing rate ρ
G: MEASUREMENTS
evolution and final distribution of all synaptic weights

For details about the hardware-inspired synapse model see Section 2.6.1.